
1

Communication-aware Supernode Shape
Georgios Goumas, Nikolaos Drosinos and Nectarios Koziris

National Technical University of Athens
School of Electrical and Computer Engineering

Computing Systems Laboratory
Zografou Campus, Zografou 15780, Greece
{goumas, ndros, nkoziris}@cslab.ece.ntua.gr

Abstract— In this paper we revisit the supernode-shape selec-
tion problem, that has been widely discussed in bibliography. In
general, the selection of the supernode transformation greatly
affects the parallel execution time of the transformed algorithm.
Since the minimization of the overall parallel execution time
via an appropriate supernode transformation is very difficult
to accomplish, researchers have focused on scheduling-aware
supernode transformations that maximize parallelism during
the execution. In this paper we argue that the communication
volume of the transformed algorithm is an important criteri on,
and its minimization should be given high priority. For this
reason we define the metric of the per process communication
volume and propose a method to miminize this metric by se-
lecting a communication-aware supernode shape. Our approach
is equivalent to defining a proper Cartesian process grid with
MPI Cart Create, which means that it can be incorporated
in applications in a straightforward manner. Our experimental
results illustrate that by selecting the tile shape with theproposed
method, the total parallel execution time is significantly reduced
due to the minimization of the communication volume, despite
the fact that a few more parallel execution steps are required.

Index Terms— Loop tiling, supernode transformation, tile
shape, MPI, process grid, scheduling.

I. I NTRODUCTION

Tiling or supernode1 transformation has been proposed as
one of the most efficient methods to map applications based
on stencils onto distributed-memory architectures with significant
commucation latencies. Stencil computations are very frequently
met in image processing and in simulation applications resulting
from the discretization of PDEs using explicit finite-difference
schemes [2]–[4]. Such applications are essentiallyDOACCROSS
loop nests, i.e.n-dimensional loop nests with at leastn linearly
independent data dependencies. In order to executeDOACCROSS
nested loops in the aforementioned parallel architectures, re-
searchers have proposed the application of tiling transformation
[5]. Tiling groups neighboring iterations into one computational
unit, the tile or supernode. For the parallel execution of tiled
iteration spaces, tiles are assigned to the available processes which
are orchestrated to communicate before and after the computation
within one tile. In this way, both the communication volume
and frequency are reduced enablingDOACCROSSnested loops,
that suffer from high communication needs, to efficiently execute
onto parallel platforms where remote memory access times are

1Throughout relevant research papers the termssupernodeand tiling
transformation have been used to describe the same transformation. Although
we adopt the term tiling, we have used the term supernode in our title and
in several sections of this manuscript as a reference to the seminal paper of
Irigoin and Triolet [1].

crucially larger than local access times and communicationstartup
latencies are an important hurdle to high performance.

Tiling for coarse-grain parallelism has attracted extensive sci-
entific research [5]–[26] right after its presentation by Irigoin
and Triolet in 1988 [1]. Tiling transformation provides flexibility
concerning the number of iterations to be grouped together into
a single tile (tile size), as well as the shape of the enclosing
parallelogram. Since the selection of the tile size and shape greatly
affects the properties of the transformed space, researchers have
focused on defining criteria for an efficient tiling transformation.
Ohta et. al. [17], Hodzic and Shang [11], and Andonov et. al.
[27] focused on the selection of the optimal tile size based
on the special characteristics of the application and the target
architecture. Ramanujam and Sadayappan [5], Boulet et. al.[7]
and Xue [21] worked on the selection of a tile shape that
minimizes theper tile communication volume, i.e. their goal was
to minimize the dependence vectors cutting the planes defining
a tile. In this case, the optimal tile shape is formed by planes
parallel to the algorithm’s dependence cone. More importantly,
for a given tile size, Hodzic and Shang [11], [14] and Högstedt et.
al. [15], [28] determined the tile shape that minimizes the parallel
execution steps of the tiled space. In this case, thescheduling-
aware tile shape is obtained by: (a) deciding on an appropriate
basic tile shape (in most cases, tile sides are again parallel to the
dependence cone) and (b) properly scaling the sides of the tile, in
order to minimize the maximum parallel execution path between
the first and the last tile.

Determining the optimal tiling transformation, i.e. the one that
minimizes parallel execution times, is very difficult, since various
tiling transformations lead to different transformed (tiled) iteration
spaces, memory access patterns, communication granularities,
processor idle times and communication volumes. In order to
evaluate the impact of each of the above factors to the overall
execution time, one needs to devise a highly accurate parallel
execution model that takes into consideration all the abovefactors.
However, such an execution model is almost impossible to exist
for the extremely complex modern parallel platforms. For this
reason, the researchers simplify their approaches by discarding
some of the above factors, paying the cost of suboptimal tiling
transformations. For example, Högstedt et. al. in [15], [28] deter-
mine the shortest path between the first and the last tile without
taking into consideration the communication overhead. Hodzic
and Shang in [11], [14] propose a tile-shape selection technique
assuming constant communication times for all message sizes.
This approach disregards the communication data volume with
the assumption that the volume-dependent message transmission
is overlapped by useful computations and thus hidden. However,

2

as shown in [9] and [16], one needs to apply special scheduling
strategies (that are not considered in [11], [14]) and employ
sophisticated communication hardware in order to hide somepart
–and not all– of the transmission time.

In this paper we focus on a special but important class of
problems that are frequently met in practice. We assume rect-
angular iteration spaces (as in [11]) and non-negative elements
in dependence vectors. Note that, a tiling transformation can
be uniquely defined by determining three parameters: (a) tile
size, (b) basic tile shape and (c) scaling factors of tile sides.
In our approach, we consider the tile size as an input parameter
determined by the computation and communication costs of the
algorithm and the hardware features of the target architecture. In
addition, we consider rectangular basic tile shapes. A general,
parallelogram tiling transformation can only be implemented by
automatic parallelizing compilers due to the complexity ofthe
code that traverses non-rectangular tiles [10], [12]. For the above
problem class we propose a new criterion for the selection ofan
efficient tile shape. This criterion emphasizes the minimization
of the per processcommunication volume. Note that minimizing
the communication overhead is the primary goal of tiling trans-
formation, therefore trying to further decrease the communication
data by properly selecting the tile shape seems a good idea inthe
first place. The problem arises in the cases where the scheduling-
aware tile shape differs from thecommunication-awaretile shape
proposed here. In this paper we demonstrate that the criterion for
communication minimization should be given the greatest priority
when targeting distributed memory architectures, since itis the
one that more drastically affects the overall execution time of the
parallel algorithm.

Our method takes into consideration the boundaries of the
initial iteration space and the dependencies of the original al-
gorithm, and can be applied on a distributed memory architecture
for a limited (fixed) number of processes. This selection of the
tile scaling factors is equivalent to determining a virtualprocess
topology, and thus can be easily incorporated in a message-
passing programming environment like MPI, with a proper initial-
ization to the parameters of theMPI Cart Create routine. Our
experimental results indicate that the proposed communication-
aware tile shape significantly reduces the overall execution time,
compared to the one achieved by the scheduling-aware tile shape,
although it requires a larger number of parallel execution phases.

The rest of the paper is organized as follows: Section II
provides useful background knowledge and basic definitions
concerning the program model, supernode (tiling) transformation,
scheduling and mapping techniques. Section III discusses in more
detail work concerning criterions and methods for the selection
of efficient tiling transformations, while Section IV defines our
problem and proposes a method to select tiling transformations
that minimize the per process communication volume. Section V
experimentally tests the efficiency of the proposed approach in
terms of total parallel execution times and compares it to the
selections proposed by previous research. Finally, Section VI
provides the overall conclusions drawn from this paper.

II. PRELIMINARIES

A. Algorithmic model

Our algorithmic model concerns stencil applications, which
involve (n + 1)-dimensional perfectly nested loops with constant
flow dependencies. The iteration spaceJn+1 is rectangular, thus

it holdsJn+1 = {~j(j1, j2, . . . , jn+1) ∈ Zn+1∧ li ≤ ji ≤ ui, i =

1 . . . n + 1}, whereli, ui ∈ Z are the lower and upper bounds of
the i-th loop respectively. The dependencies of the problem are
expressed with constant, (n +1)-dimensional dependence vectors
~di, i = 1 . . . m. We denote~dij the j-th element of vector~di.
In the class of problems under consideration it holds~dij ≥ 0,
i = 1 . . . m and j = 1 . . . n + 1. The dependence matrix of the
algorithm, denotedD, is an (n + 1) × m matrix containing as
columns the dependence vectors of the algorithm. The reader
is referred to [37] for more details on the properties of data
dependencies. It holdsrank(D) = n + 1, which means that the
algorithm hasn+1 linearly independent data dependence vectors.
Note that, if rank(D) < n + 1, then the iteration space can be
partitioned into independent subspaces and parallelized without
the use of tiling [29]. We define the vector~d′ = (d′1, d′2, . . . , d′n+1)

with d′i = max(dil), l = 1 . . . m, which expresses the maximum
dependence length per dimension. Unlike [23], [30] we consider
in-core computations, i.e. all data sets assigned to each process
fit in main memory, thus we do not consider secondary storage
access times. Overall, the algorithms have the general formof
Algorithm 1, whereU is an (n + 1)-dimensional matrix andF is
a linear function.

Algorithm 1 : algorithmic model

for j1 ← l1 to u1 do1

. . .2

for jn ← ln to un do3

for jn+1 ← ln+1 to un+1 do4

U [~j] = F (U [~j − ~d1], . . . , U [~j − ~dm]);5

B. Application example: advection equation

Advection is the physical process of transportation withina
fluid, as is for example the transportation of polluted particles
in the atmosphere. Advection phenomena are very commonly
studied in meteorology. The advection equation is the partial
differential equation (PDE) that governs the motion of a conserved
scalar as it is advected by a known velocity field (the material in
which advection occurs). The advection equation for a scalar v

(e.g. particle density or temperature) is expressed mathematically
as:

∂v

∂t
= ~a▽ v

where~a is the vector field, e.g. the velocity vector of the material.
In two spatial dimensions the above equation is equivalent to:

∂v

∂t
= ax

∂v

∂x
+ ay

∂v

∂y
(1)

If we need to study an advection process in aX × Y space
for a time windowT , we can discretize the initial domain into
a uniform grid using a time step∆t and space steps∆x and
∆y. Then, we can discretize the above PDE using a variety of
finite differencing schemes. For example, if we employ theEuler-
Forward scheme [31], the time derivative can be substituted by a

fraction of differences as follows:∂v
∂t

=
v

n+1
ij −vn

ij

∆t . The physics
of the problem allows us to employupwind [31] differencing
schemes for the space derivatives, which involves computations
with “previous” spatial grid points. This discretization strategy
favors the direct application of rectangular tiling in the sequel.

3

Thus, in this case we can substitute the space partial derivatives

as follows: ∂v
∂x =

vn
ij−vn

(i−1)j

∆x . If we substitute the above formulas
in Equation (1) we get:

vn+1
ij =

(

1 + 2a
∆t

∆x

)

vn
ij − a

∆t

∆x

(

vn
(i−1)j + vn

i(j−1)

)

(2)

where for notational convenience we suppose a uniform com-
putational grid in the two spatial dimensions (∆x = ∆y) and
ax = ay = a. Note thatv0

ij , vn
0j andvn

i0 are known from the initial
and boundary values of the PDE problem. Equation (2) can be
easily solved for all points in the discretized computational grid
T ′ ×X′ × Y ′ whereT ′ = T/ ∆t, X′ = X/∆x andY ′ = Y/∆y

with the nested loop shown in Algorithm 2.

Algorithm 2 : nested loop for 2-D advection equation

for j1 ← 0 to T ′ do1

for j2 ← 1 to X′ do2

for j3 ← 1 to Y ′ do3

U [j1+1][j2][j3] = (1+2·a·dt/dx)·U [j1][j2][j3]−4

a · dt/dx · (U [j1][j2 − 1][j3] + U [j1][j2][j3 − 1]);

The dependence matrix of the above algorithm isD =

1 1 1

0 1 0

0 0 1

 and ~d′ = (1, 1, 1). The discretization process

followed leads to nonnegative elements in the dependence matrix.
Note that alternative discretization schemes can lead to longer
dependencies. The reader can find additional details on the
equation and the discretization process in [31].

C. Supernode transformation

In a supernode transformation the iteration spaceJn+1 is
partitioned into identical (n+1)-dimensional parallelepiped areas
(tiles or supernodes) formed byn + 1 independent families of
parallel hyperplanes. Supernode transformation is definedby the
(n + 1)-dimensional square matrixH. Each row vector ofH
is perpendicular to one family of hyperplanes forming the tiles.
Dually, supernode transformation can be defined byn+1 linearly
independent vectors, which are the sides of the supernodes.
Similar to matrix H, matrix P contains the side-vectors of a
supernode as column vectors. It holdsP = H−1.

Formally supernode transformation is defined as follows:

r : Zn+1 −→ Z2n+2, r(~j) =

[

⌊H~j⌋
~j −H−1⌊H~j⌋

]

where⌊H~j⌋ identifies the coordinates of the tile that index point
~j(j1, j2, . . . , jn+1) is mapped to and~j − H−1⌊H~j⌋ gives the
coordinates of~j within that tile relative to the tile origin. Thus
the initial (n + 1)-dimensional iteration space is transformed to
a (2n + 2)-dimensional one, the space of tiles and the space of
indices within tiles. Indices within tiles have to be sequentially
executed, while tiles themselves can be assigned to processes and
executed in parallel according to a valid hyperplane schedule
as we will see in Section II-D. The tiled spaceJS and the
supernode dependence matrixDS are defined as follows:JS =

{~jS(jS
1 , . . . , jS

n+1)|~jS = ⌊H~j⌋,~j ∈ Jn+1}, DS = {~dS |~dS =

⌊H(~j0+~d)⌋, ~d ∈ D,~j0 ∈ Jn+1|0 ≤ ⌊H~j0⌋ ≤ 1} where~j0 denotes
the index points belonging in the first complete tile starting from
the origin of the iteration spaceJn+1. The tiled space can be also

written asJS = {~jS |jS
i ∈ Z ∧ lSi ≤ jS

i ≤ uS
i , i = 1 . . . n + 1}.

Each point~jS in this (n + 1)-dimensional integer spaceJS is a
distinct tile with coordinates(jS

1 , jS
2 , . . . , jS

n+1).
Given an algorithm with dependence matrixD, for a tiling

to be legal, it must holdHD ≥ 0. This ensures that tiles are
atomic and that the initial execution order is preserved [1], [5].
In the opposite case any execution order of tiles would result in
a deadlock. In this paper we assume that all dependence vectors
contain no negative element and are smaller than the tile size.
This allows us to apply rectangular tiling transformationswhich
are defined by the diagonal matricesH = diag(h1, h2, . . . , hn+1)

andP = diag(p1, p2, . . . , pn+1). Figure 1 (left) shows an example
of a rectangular tiling transformation.

Finally, we assume that all dependencies are entirely contained
in each supernode’s area, which means that|HD| < 1 [20] or
alternatively that the supernode dependence matrixDS contains
only 0’s and 1’s. This assumption is quite reasonable since
dependence vectors for common problems are relatively small,
while tile sizes may result to be orders of magnitude greaterin
systems with very fast processors. In this case every tile needs
to exchange data only with its nearest neighbors. The numberof
index points contained in a supernode expresses the respective
computation cost of this supernode (tile), and is calculated by
det(P). Thus we haveVcomp = det(P) and for rectangular tiling
transformationsVcomp = det(P) =

∏n+1
i=1 pi.

D. Scheduling, mapping and parallel execution time

We will schedule the problems under consideration with linear
scheduling techniques [32], [33]. Central to linear scheduling is
the notion of the scheduling vectorΠ. Intuitively, in simple cases,
it suffices to calculate the inner product of a point~j ∈ Jn+1 with
Π to derive the parallel time step at which~j will be executed.
In the general case [32],~j ∈ Jn+1 scheduled according to a
linear scheduling vectorΠ, will be executed attj = ⌊Π~j+t0

dispΠ ⌋,
wheret0 = −minΠ~i :~i ∈ Jn+1 is the alignment constant or the
initial time of execution of the first point in the iteration space,
and dispΠ = minΠ~di : ~di ∈ D is the displacement constant
expressing the time pace of computations. Thus, a tile~jS ∈ JS

will be executed attjS = ⌊ΠjS+t0
dispΠ ⌋. All points (or tiles) that lie

within eachn-dimensional surface perpendicular to the scheduling
vector Π can execute in parallel, thus, one can employ ann-
dimensional array of processes to maximize parallelism [34]. In
our approach we will also consider the general case of ann-
dimensional process grid to execute in parallel (n+1)-dimensional
iteration (or tiled) spaces.

Suppose, for notational convenience, thatli = 0, i =

1 . . . n + 1. Then the last point of the iteration space~jlast =

(u1, u2, . . . , un+1) will be transformed by a rectangular tiling
transformation to the last tile~jS

last = (u1
pi

, u2
p2

, . . . ,
un+1

pn+1
). Using

Π = (1, 1, . . . , 1) as scheduling vector, then the last tile will be
scheduled at time steptjS =

∑n+1
i=1

ui

pi
(t0 = 0 and supposing

dispΠ = 1), which clearly constitutes the total number of parallel
time steps for the problems under consideration. In every parallel
time step each process performs uninterrupted computationwithin
a single tile and communicates with itsn neighbors in order to
exchange data. Note that, even if the dependencies of the problem
lead to the need for data exchange with diagonal neighbors,
one can apply indirect message passing techniques (discussed in
[35]), in order to limit the neighboring processes to then non-
diagonal ones. Iftc is the time to compute one iteration,ts is the

4� � � � � � �
� �

� �
� � 	

� � 	

 �
 �
 �

Fig. 1. Tiling, mapping and scheduling example for 1-D advection equation.

communication startup latency,tt is the time to transmit a unit of
data andk is the mapping dimension (i.e. the dimension across
which all tiles are assigned to the same process), then the total
parallel execution time can be expressed by Equation (3).

T =

n+1
∑

i=1

ui

pi

n+1
∏

i=1

pitc + nts +

n+1
∑

i=1,i6=k

n+1
∏

j=1,j 6=i

pj

 d′itt

 (3)

The above equation multiplies the number of the parallel
time steps (

∑n+1
i=1

ui

pi
) with the total time o feach step. This

in turn is decomposed in the computation time of a tile
(
∏n+1

i=1 pitc), the startup time for the communication alongn
dimensions (nts) and the transmission time of all messages
(
∑n+1

i=1,i6=k

(

∏n+1
j=1,j 6=i pj

)

d′itt).

Example 1: Figure 1 (left) shows the original iteration space
for 1-D advection equation (J2 = {~j(j1, j2)|0 ≤ j1 ≤ 8 ∧ 0 ≤
j2 ≤ 5}) and the dependencies of the problem (~d1 = (1, 0)T and
~d2 = (1, 1)T , thus~d′ = (1, 1)) depicted by arrows. The grey boxes
represent the grouping of neighboring iteration points imposed

by the tiling transformation defined byP =

[

3 0

0 2

]

. Figure 1

(right) shows the tiled iteration space (JS = {~jS (jS
1 , jS

2)|0 ≤
jS
1 ≤ 2 ∧ 0 ≤ jS

2 ≤ 2}) and the tile dependencies (~dS
1 = (1, 0)T ,

~dS
2 = (0, 1)T and ~dS

3 = (1, 1)T). We map tiles along the innermost
(second in this case) dimension to the same process (C1, C2, C3).
If we apply linear scheduling with vectorΠ = (1, 1), the last
tile of the algorithm (~jS

last = (2, 2)) will be executed at time step
tjS = Π~jS

last = 4, thus the total number of parallel time steps will
be5. Tiles executed at the same time step are shaded in the same
color. According to Equation (3), the total parallel execution time
will be:

T = 5(6tc + ts + 2tt)

III. R ELATED WORK – “OPTIMAL” SUPERNODE SHAPES

After the proposition of tiling tranformation by Irigoin and
Triolet [1] researchers started elaborating on efficient oroptimal
tiling tranformations. Appart from the definition of legal tile
shapes, i.e. tile shapes that respect the dependencies of the algo-
rithm and allow uninterrupted execution of tiles, the seminal work
of Ramanujam and Sadayappan [5] introduced the idea of tiling
transformationsfor minimal communication. They formulated a

per tile communication function which needs to be minimized
respecting the legality criterions, in order to minimize the number
of dependencies that crosscut the tile’s surfaces. These cross-
cutting dependencies are responsible for communication between
tiles. Further elaborating on this optimization criterion, Xue [21]
showed that the surfaces that define the tile should be selected to
be parallel to the dependence cone of the algorithm.

A more general approach could be to search for a tiling trans-
formation that minimizes the total parallel execution timeof the
algorithm as expressed in Equation (3). Note that the selection of
various tiling transformations affects the number of parallel time
steps and the time for computation and communication per step.
Minimizing the above equation is quite an intricate task, since
one cannot effectively model the factorstc, ts and tt. tc being
the computation time of a single iteration within a tile, includes
the necessary memory accesses for the computed data. The time
to access data from memory is crucial for the computation process
and is greatly affected by the tile size and shape. The interaction
of various tiling transformations with the memory subsystem is
difficult to model, since a number of factors such as the cachesize
and organization and hardware prefetching mechanisms needto
be taken into consideration. In any casetc cannot be considered as
a constant but, on the contrary, as a proper function of the tiling
parameters, thustc = tc(p1, p2, . . . , pn+1). Accordingly, thets
time is dependent on the implementation of the message-passing
mechanisms employed (e.g. MPI library) and cannot be easily
considered as constant since it includes communication tasks that
are not deterministic, such as the management of unexpected
messages (e.g. call toreceive functions after the arrival of a
message). Finally, even fortt which is the simplest of the above
parameters, since one needs to simply divide the message size
with the effective bandwidth of the underlying communication
network, one has to consider implementation-specific issues. For
example, various MPI libraries employ different transmission
mechanisms (eager, rendezvous, etc) according to the message
size.

With a goal to minimize the total parallel execution time,
Hodzic and Shang [14], [36] employ a simpler model than
that of Equation (3). The authors disregard the communication
transmission part, assuming that this task can be overlapped by
useful computations. They considertc and ts as constants and
thus focus on the selection of tile shapes that minimize the total
number of parallel execution steps. However, as shown in [9]and
[16], one needs to apply special scheduling strategies thatare not

5

considered in [14], [36] and employ sophisticated communication
hardware in order to hide some part of the transmission time.Sim-
ilarly, Högstedt et al. [15] split the communication time in startup
and transmission times. The former is added to the computation
time as a constant while the latter is again considered overlapped
by computations. Again here the authors select a tile shape that
minimizes the path to reach the last tile, or, in other words to
minimize the processor idle times and maximize parallelism. We
call the tile shapes selected by [14] and [15] asscheduling-aware.
Note that both approaches ignore the total communication volume
imposed by a tiling selection, by assuming that all of the transmis-
sion time is hidden underneath useful computation. However, it is
not always possible to overlap communication transmissioneven
if advanced scheduling schemes and sophisticated hardwareare
employed [16]. In our approach presented in the next sectionwe
show that the minimization of the total communication volume
is an important issue that should be taken into consideration,
especially when commodity interconnection networks with no
overlapping capabilities are concerned.

Finally, Parsa and Lotfi [23] provide a genetic algorithm that
minimizes an objective function encapsulating processing, com-
munication and disk-access times. Although their approachtargets
general tiling transformations, their objective functiondoes not
represent the overall parallel execution time, while the selected
transformations are not tested in real problems and platforms as
far as their efficiency is concerned.

IV. COMMUNICATION -AWARE SUPERNODE SHAPE

In this section we propose a new criterion for the selection of
an efficient tile shape, i.e. the minimization of theper process
communication volume of the algorithm. In addition, we provide
a method to select a tile shape based on this criterion, called
the communication-awaretile shape. Prior to this, we formally
define our problem and provide thescheduling-awaresolution to
this problem proposed by previous work.

A. Definition of the problem

The input of our problem is an algorithm following the model
discussed in Section II-A. For notational convenience we assume
li = 0, i = 1 . . . n + 1, thus we consider an (n + 1) - dimensional
nested loop with a rectangular iteration space (u1 × u2 × . . . ×
un+1) and a dependence matrixD of nonnegative, constant,
flow dependencies. The tile sizeg is also given as an input
to our problem. Note that the definition of the optimal tile
size is a very difficult problem. However, for a specific parallel
architecture one can conduct a series of benchmarks taking into
consideration parameters such as the cache size, the cpu power
and the communication latency and bandwidth to experimentally
approximate an efficient tile size. Finally, we consider a fixed
number of available processesC.

Contrary to related scientific work, we adopt a different ap-
proach for the specification of the desirable communication-aware
tile shape: Instead of defining a tiling transformation matrix H

or P , we equivalently aim at determining an appropriate process
topologyC =

∏n
i=1 Ci for the mapping of the parallel algorithm,

according to the mapping scheme presented in Section II-D.
Indeed, the selection of the process topology implicitly enforces a
particular tiling transformation: Determining a topologyC1×C2×
· · · × Cn for the parallel mapping of an algorithm with iteration

spaceu1× u2 × . . .× un+1 effectively slices dimensionui to Ci

parts (i = 1 . . . n). This fact is equivalent to applying a rectangular
tiling transformation described by the following matrix

P =

u1/C1 0 . . . 0 0

. . .

0 0 . . . un/Cn 0

0 0 . . . 0 (g
∏n

i=1 Ci)/(
∏n

i=1 ui)

where g is the tile size dictated by the underlying architecture
(processor speed, interconnection bandwidth etc.) and affecting
the grain of the parallelism. Thus, the problem of selecting
an efficient tiling transformation, collapses to the definition of
the terms C1, C2, . . . , Cn of the above tiling transformation.
Moreover, proposing an efficient Cartesian process topology can
lead to the direct incorporation of the optimization technique
in a message passing library like MPI, e.g. through the
MPI Cart create library routine. Note that, in the above
discussion it is assumed that all tiles along the inner dimension
are mapped to the same process. Since the algorithm contains
no negative dependence element, any permutation of the loop
nest is legal [37], [38], that is, any loop can be selected to be
the innermost one.

Example 2: Suppose we need to solve in parallel a three
dimensional problem withu1 = u2 = u3 = 128 and have16

processes available. Let also the appropriate tile size dictated
by the parallel platform beg ≈ 4096. If we map the first two
dimensions to a process gridC1 × C2 then clearly we have the
five candidate topologies:1× 16, 2× 8, 4× 4, 8× 2 and 16× 1.
The first topology (1× 16) does not partition the first dimension
of the iteration space leading top1 = 128, but slices the second
dimension into16 pieces leading top2 = 128/16 = 8. Thus we
set p3 = 4096 × 16/1282 = 4 to determine the tiling parameter
for the third dimension. Thus, given the constraints on the number
of available processes and the appropriate tile size the above five
process topologies lead to the following tile shapes:128× 8× 4,
64× 16× 4, 32× 32× 4, 16× 64× 4 and 8× 128 × 4.

B. Previous work: Scheduling-aware supernode shape

According to [14], [15], givenC processes for the mapping of
an (n + 1)-dimensional algorithm on ann-dimensional process
grid, the scheduling-aware tiling transformation can be obtained
as a feasible solution to the following optimization problem:

Ci → n
√

C, Ci ∈ N, i = 1 . . . n

C =
∏n

i=1 Ci

}

(4)

A process topology complying to (4) tries to place equal
number of processes in each dimension, minimizing in this way
the required total number of parallel execution steps, but fails
to consider both the algorithmic dependencies and the iteration
space, in order to reduce the communication volume. The advan-
tage of such a process topology is that it minimizes the latency of
the parallel program; it ensures that the most distant process will
start executing its work share at the earliest possible timestep.
Note that in this paper we do not compare against [14], [15] asa
whole, since these papers propose the selection of a generaltiling
transformation (not necessarily rectangular) that minimizes the
idle tiles of processes. On the contrary, we compare our approach
presented in the next paragraph against the approach of [14], [15]
to solve the problem defined in Section IV-A.

6

C. Communication-aware supernode shape

In this section we discuss that an important criterion for the
selection of an efficient tiling transformation is the communica-
tion volume imposed by the transformation. We use the notion
of the per processcommunication volume, i.e. the data that need
to be sent by one process due to algorithmic dependences. For
the problems under consideration, a process in then-dimensional
process grid needs to sendn distinct messages (one per dimen-
sion). The size of each message is equal to the product of the
maximum dependence across the dimension of communication
by the size of then− 1-dimensional boundary surface. Lemma 1
provides an expression for this metric.

Lemma 1: If an (n+1)-dimensional rectangular iteration space
u1×u2× . . .×un+1 is assigned to ann-dimensional process grid
C1 × C2 × . . . × Cn = C, then the total communication volume
of a non-boundary process is given by the expression:

Vpcomm = d′1

n
∏

i=1
i6=1

ui

Ci
un+1 · · ·+ d′n

n
∏

i=1
i6=n

ui

Ci
un+1

=
un+1

∏n
i=1 ui

C

(

d′1C1

u1
+ · · ·+ d′nCn

un

)

(5)

whered′i = max(dil), l = 1 . . . m, i = 1 . . . n.
Proof: In ann-dimensional process grid, each non-boundary

process needs to send communication data imposed by the al-
gorithmic dependencies fromn boundary surfaces to exactlyn
neighboring processes. The area of the boundary surface in the j-
th dimension for this process is

∏n
i=1
i6=j

ui

Ci
un+1. The communica-

tion data across thej-th dimension clearly derive from the product
of the area of the boundary surface with the maximum dependence
perpendicular to that dimension, i.e.d′j

∏n
i=1
i6=j

ui

Ci
un+1. If we sum

the communication data for all dimensions we deduce (5).

Example 3: As an example, suppose one needs to solve an
advection problem in a two-dimensional rectangular domain
u1 × u2 for a time windowu3. Let the tile size beg, the
available number of processes16 and the data dependencies of
the algorithm lead to the following dependencies per dimension
~d′1 = (2, 0, 0)T , ~d′2 = (0, 2, 0)T and ~d′3 = (0, 0, 2)T . The
rectangular tiling transformation that will be applied canbe
defined by a3-dimensional diagonal matrixP = diag(p1, p2, p3).
We partition theu1 × u2 space in16 tiles and appropriately
adjust the tile height to conform with the restriction of thetile
size. Thus, we will first determinep1, p2 and subsequently we
will set p3 = g/p1p2. We will investigate two alternative feasible
tile shapes, namely (p1 = u1/4, p2 = u2/4, p3 = 16g/u1u2) and
(p1 = u1/8, p2 = u2/2, p3 = 16g/u1u2).

Figure 2 shows the projection of the tiled iteration space on
the j1j2 surface and its allocation to the16 processes (c1 · · · c16)
for the two alternative tiling transformations. Note that each
process is assigned a chain of tiles along thej3 dimension.
The shaded parts of Figure 2 represent the communication
data for the two candidate tiling transformations. The total
communication volumeVtcomm derives from the boundary area
between the processes (3u1u3+3u2u3 for the first transformation
and u1u3 + 7u2u3 for the second transformation), multiplied
by the maximum coordinate of the dependence matrix in the
corresponding dimension, which in our case is2. Thus, we have
Vtcomm,1 = 6u1u3 + 6u2u3 and Vtcomm,2 = 2u1u3 + 14u2u3.

This difference in communication volume is depicted on the per
process communication volume as well, derived from Lemma 1,
whereVpcomm,1 = 2u3(u1

4 + u2
4) andVpcomm,2 = 2u3(u1

8 + u2
2).

If we apply linear scheduling defined by vectorΠ = (1, 1, 1),
then the tile (4, 4, T/p3) will be scheduled last according to the
first tiling transformation, and will be executed at time step T1 =

8 + T/p3, while the respective last tile (8, 2, T/p3) of the second
transformation will be executed at time stepT2 = 10+T/p3. This
implies that the first transformation is better as far as the total
number of parallel execution steps is concerned, sinceT1 < T2.
However, notice that ifu1 > 2u2, then Vtcomm,1 > Vtcomm,2,
which means that the second transformation is superior in terms
of total communication volume. Consequently, when it comesto
executing the above problem foru1 > 2u2, we need to decide
between scheduling-aware and communication-aware tiling. Intu-
itively, in our example one can see that the communication-aware
transformation entails a moderate increase in the number oftime
steps, if we make the reasonable assumption thatT/pt >> 2.
On the other hand, if we haveu1 = 4u2, the communication-
aware transformation leads to almost27% less communication
data. For this reason, we claim that the communication-aware
transformation will lead to a significantly lower total execution
time.

The following lemma provides the condition that must hold in
order to minimize the communication of a non-boundary process.
This is achieved by the even distribution of communication data
in all process dimensions.

Lemma 2:Let u1×u2× . . .×un+1 be an (n+1)-dimensional
rectangular iteration space,d′i = max(dil), l = 1 . . . m, i = 1 . . . n

be the maximum dependence per direction andC be the number
of processes available for the parallel execution of the algorithm.
If there existCi ∈ N, such that

C =

n
∏

i=1

Ci (6)

and
d′iCi

ui
=

d′jCj

uj
, i, j = 1 . . . n (7)

then process topologyC1 × · · · × Cn minimizes the per process
communication for the tiled algorithm onC processes.

Proof: According to (6), it holds

Cn =
C

C1 × · · · × Cn−1
(8)

Each process assumes⌈ui/Ci⌉ iterations along directioni, where
1 ≤ i ≤ n. For the sake of simplicity, we assume that⌈ui/Ci⌉ ≃
ui/Ci. Using (8), (5) from Lemma 1 can be written by substituting
Cn as follows:

Vcomm =
un+1

∏n
i=1 ui

C

n−1
∑

i=1

d′iCi

ui
+

d′nun+1
∏n

i=1 ui

unC1 . . . Cn−1
(9)

Note that Vcomm is substantially a function ofC1, . . . , Cn−1

(formally: Vcomm : N
n−1 → R). Let V comm be the real

extension ofVcomm, defined by (9) forCj ∈ R, 1 ≤ j ≤ n

(V comm : R
n−1 → R). For a stationary point(C1, . . . , Cn−1) of

V comm and1 ≤ j ≤ n− 1 it holds:

∂V comm

∂Cj
= 0⇒ djCj

uj
=

d′nCn

un
(10)

7

�
� � � �

� � �� � � � � � � � �� � � � � � � �� � � � � � �� � � � � � � � �
� � � �

� � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� �� � � � � � ! " �" # $! " % " #& � ' $ " # () # � � � � � � �% * " �" #$ +, " % " #& % +- $ " # () #
Fig. 2. Total communication volume and parallel execution steps for two tiling transformations

Also,
∂2V comm

∂Cj
2

=
2d′n

∏n
i=1 ui

unC1 . . . C3
j . . . Cn−1

> 0 (11)

Because of (10) and (11),V comm has a minimum at
(C1, . . . , Cn−1), and asCi ∈ N, 1 ≤ i ≤ n − 1, this will be
the minimum ofVcomm, as well. Therefore, the communication
data is minimal when a topologyC1 × · · · × Cn satisfying (10)
is assumed.

Finally, Theorem 1 makes use of Lemma 2 to derive an
expression for the number of processes in each dimension.

Theorem 1:Let u1×u2×. . .×un+1 be an (n+1)-dimensional
rectangular iteration space,d′i = max(dil), l = 1 . . . m, i = 1 . . . n

be the maximum dependence per direction andC be the number
of processes available for the parallel execution of the algorithm.
In order to minimize the per-process communication volume,the
number of processes in each dimension should be set by

Cj =
uj

d′j

n

√

C
∏n

i=1 d′i
∏n

i=1 ui
, j = 1 . . . n (12)

Proof: Note that it holds

C
∏n

i=1 d′i
∏n

i=1 ui
=

d′1C1

u1
× · · · × d′nCn

un
(13)

By combining (13) with (10), we can easily deduce (12).
It should be noted that (12) does not always define a valid

integer process topology: it is possible thatCj /∈ N for some
value j with j = 1 . . . n. However, when truncated to an
integer, it can serve as a good starting value for an exhaustive
algorithm searching for feasible process topologies in theclose
neighborhood of the minimum ofV comm, as determined by (12).
In practice, asn + 1 does not exceed 3 or 4, andC ranges
up to a few hundreds or maybe thousands of processes, the
high complexity of the heuristic algorithm does not result in
high execution times. Furthermore, the monotonicity of func-
tion V comm allows immediate elimination of candidate process
topologies, that lead to increased communication cost. In order to
verify this claim, we measured on a PIII@800MHz the execution
times for the specification of a feasible communication-aware
3D process topology, given all possible 4D iteration spaces
(100 . . . 10k)× (100 . . . 10k)× (100 . . . 10k)× un+1, data depen-
dencies[(1 . . . 3, 0, 0, d), (0, 1 . . . 3, 0, d′), (0, 0, 1 . . . 3, d′′)] and for
100 ≤ C ≤ 1k. The execution time equaled on average 21 msec,
while under no circumstances did it exceed 0.9 sec. Note, finally,

that the approach described above does not theoretically ensure
the finding of the minimum communication volume in integer
space. However, it greatly restricts the search space compared to
an exhaustive search within all possible process topologies at the
cost of possible unoptimality.

V. EXPERIMENTAL RESULTS

In this section we will experimentally evaluate the parallel
performance of the communication-aware tiling transformations
or equivalently process topologies as derived from Equation (12).
In addition, we will compare the proposed topologies against
the scheduling-aware ones proposed in [14], [15] and derived
from Equation (4). We consider the 2-D and 3-D advection
equation and an artificial kernel with a3-dimensional nested
loop following the algorithmic model described in Section II-
A. Our experimental platform is a16-node Linux cluster (kernel
2.6.23.1). Each node includes two quad-core Xeon chips based on
Intel’s Core 2 microarchitecture (E5335@2GHz). Two cores per
package share a4MB L2 cache. The interconnection network is
Gigabit Ethernet. We experimented with100 processes running in
the above cluster. We used MPICH v. 1.2.7 MPI implementation,
configured with gcc v. 4.2.3 and applied the -O2 optimization
flag to all programs. In order to reduce as much as possible the
differences in memory access patterns induced by various tiling
transformations, we applied cache blocking as described in[39].

A. 2-D advection equation

Recall from Section II-B that the 2-D advection equation prob-
lem results in a3-dimensional iteration space which is mapped
on a 2-dimensional process grid. We experimented with various
iteration spaces (X×Y ×T) and all possible process topologies for
the100 processes. We mapped theX×Y plane on the process grid
and assigned tiles alongT to the same process. In all cases the
scheduling-aware process topology that derives from Equation 4
is 10 × 10. Figure 3 provides information on the scalability of
our implementation for an increasing number of processing cores
and four different problem sizes. As expected by the nearest-
neighbor nature of the communication and the dimension of the
problem, the algorithm scales better for larger problems. The
hardware configuration of our platform enforces several cores to
share the same network interface which is a bounding factor for
the scalability of our implementation.

Figure 4 presents the first comparison between the scheduling-
aware and the communication-aware strategies for the selection

8

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

S
pe

ed
up

of cores

1Kx1Kx1K
2Kx2Kx2K
4Kx4Kx4K
5Kx5Kx5K

Fig. 3. Scalability of the 2D advection equation.

of a process topology forX = 50K and Y = 8K. The
communication-aware topology in this case is25× 4. We varied
T and the tile size in order to assign a different number of tiles
(denotedT iles) to the same process across different runs. We
observe that when the total number of tiles assigned to each
process is small, then the scheduling-aware topology outperforms
the communication-aware, since, as expected, for small number of
total parallel time steps it is crucial to maximize the concurrency
of processes, or in other words to minimize the steps before the
last process starts its execution. The scheduling-aware topology
enforces the last process to start its execution at paralleltime
step 20, while the communication-aware topology enforces the
last process to start its execution at parallel time step29. Observe
also that this difference in concurrency diminishes as the number
of tiles increases. In this case, the reduction of the communication
volume imposed by the communication-aware topology leads to
smaller total parallel execution times. Note that for meaningful
parallelization scenarios we assign a number of tiles to each
process significantly larger thanC, thus for the forthcoming
experiments we will assumeT iles≫ 100.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 500 1000 1500 2000 2500 3000

N
or

m
al

iz
ed

 p
ar

al
le

l e
xe

cu
tio

n
tim

e

Tiles

Iteration space: 50Kx8KxTiles

communication-aware
scheduling-aware

Fig. 4. Comparison ofscheduling-awareandcommunication-awareprocess
topologies for various numbers of tiles.

In Figure 5 we present normalized parallel execution times
decomposed into communication and computation times for six
iteration spaces and all feasible process topologies. We experi-
mented with various tile sizes per iteration space and present the
best attained performance. The communication-aware topology is

denoted with a dot over the corresponding bar. The first obser-
vation that can be made is that the total parallel execution time
greatly differentiates between different topologies (thedifference
reaches even to a factor of5). These large differences are due
to the extreme increases in communication times that can be
imposed by an unfortunate selection of process grid. This fact
justifies our argument that the minimization of the communication
volume via the selection of a proper tiling transformation should
be given high priority. Observe also that the communication-
aware topology outperforms the scheduling-aware topologyin the
first five iteration spaces, while for the sixth iteration space both
strategies lead to the selection of a10×10 topology. Note finally
that the communication-aware topology leads to the lowest total
parallel execution times among all topologies in five out of six
iteration spaces.

Table I provides a direct comparison between the two strategies
for the iteration spaces of Figure 5. The communication-aware
topology exhibits an improvement in performance compared to
the scheduling-aware topology in five out of six iteration spaces
that ranges from2.5% (in iteration space40K × 10K × 5K)
to 32.8% (in iteration space200K × 2K × 5K). In iteration
space40K × 20K × 5K both strategies propose the10 × 10

topology thus leading to the same execution and communica-
tion times. Note that we present the maximum computation
and maximum communication time, reduced over all processes
and normalized to themaximum computation time +

maximum communication time under the scheduling-aware
tiling transformation. The sum of these partial times is notnec-
essarily equal to the total execution time, as we depict the worst
case scenario for both the communication and the computation
times (this holds for the 3-D advection equation and the artificial
kernel in the next sections). However, despite the relatively small
differences in the computation times, that can be attributed to data
locality effects, this profiling confirms that the relative advantage
of the communication-aware tiling transformation can be directly
attributed to the respective reduction of the communication times.
The communication-aware topology takes into consideration the
bounds of the iteration space and adjusts the placement of
processes per dimension in order to reduce the communication
volume. This, as shown from the experimental results, has a
significant positive impact on the overall performance of the
algorithm.

B. 3-D advection equation

In our second set of experiments we applied all feasible process
topologies in various iteration spaces for the 3-D advection
equation. The iteration space in this case is4-dimensional (X ×
Y ×Z×T) thus, we map the planeX×Y ×Z on a3-dimensional
process grid and assign tiles acrossT to the same process. The
scheduling-aware process topology in this case is5 × 5 × 4, or
5 × 4 × 5 or 4 × 5 × 5. We present the best result from the
above three. In each iteration space and process topology we
experimented with various tile sizes and present the best attained
results. Figure 7 provides information on the scalability of the
three-dimensional algorithm. In this case the performanceand
scalability are rather poor due to the more intense communi-
cation needs of the the three-dimensional process grid and the
consequent bottlenecks created at the shared network interaces.
Communication dominates in this application and platform,which

9

Communication

Computation

 0

 1

 2

 3

 4

 5

 6

1x
10

0
2x

50
4x

25
5x

20
10

x1
0

20
x5

25
x4

50
x2

10
0x

1

1x
10

0
2x

50
4x

25
5x

20
10

x1
0

20
x5

25
x4

50
x2

10
0x

1

1x
10

0
2x

50
4x

25
5x

20
10

x1
0

20
x5

25
x4

50
x2

10
0x

1

1x
10

0
2x

50
4x

25
5x

20
10

x1
0

20
x5

25
x4

50
x2

10
0x

1

1x
10

0
2x

50
4x

25
5x

20
10

x1
0

20
x5

25
x4

50
x2

10
0x

1

1x
10

0
2x

50
4x

25
5x

20
10

x1
0

20
x5

25
x4

50
x2

10
0x

1

N
or

m
al

iz
ed

 p
ar

al
le

l e
xe

cu
tio

n
tim

e

Iteration Spaces

*
* * *

* * *

200Kx2Kx5K 100Kx2Kx5K 100Kx4Kx5K 50Kx8Kx5K 40Kx10Kx5K 40Kx20Kx5K

Fig. 5. Normalized total parallel execution time for various iteration spaces. Thescheduling-awaretopology is10×10. Thecommunication-awareis denoted
with a dot over the bar.

Iteration space
Scheduling-aware topology Communication-aware topology
Total time Comm. time Total time Comm. time

200K × 2K × 5K 112.89 28.44 85.01 4.89

100K × 2K × 5K 53.33 10.90 42.68 2.74

100K × 4K × 5K 99.67 15.48 83.67 3.80

50K × 8K × 5K 88.52 7.33 83.57 3.71

40K × 10K × 5K 84.95 4.20 82.89 2.96

40K × 20K × 5K 165.96 6.62 165.96 6.62

TABLE I

COMPARISON OFscheduling-awareAND communication-awarePROCESS TOPOLOGIES FOR VARIOUS ITERATION SPACES IN2-D ADVECTION EQUATION.

ALL TIMES OF THE TABLE ARE IN SECONDS.

makes our approach to alleviate the communication overheads
even more relevant.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120

S
pe

ed
up

of cores

200^4
400^4
600^4
800^4

Fig. 7. Scalability of the 3D advection equation.

Figure 6 presents comparison results for four iteration spaces.
In this case the differences in the total parallel executiontime
between different topologies are even greater. The communication
overhead imposed by an unfortunate selection of process topology
can kill performance. Thus it is clear that one needs a criterion
to effectively select between the36 feasible topologies for this
problem. Again here, the communication-aware strategy succeeds
well in this selection.

Table II performs a comparison between the scheduling-aware

and the communication-aware process topology for12 iteration
spaces. For the first two iteration spaces both strategies lead to the
proposal of the same topology. The third iteration space (800 ×
200 × 400 × 1K) is the only one in which the scheduling-aware
topology outperforms the communication-aware one by a factor
of 1.7%. For the rest of the iteration spaces the communication-
aware topology outperforms the scheduling-aware one by a factor
that ranges between3.3% to 213.8%. It is clear that for 4-
dimensional iteration spaces mapped on3-dimensional process
grids the selection of a communication-aware process topology is
even more crucial, since the communication in this case occurs in
three dimensions and thus the relevant overhead severely affects
performance.

C. Artificial kernel

In this last set of experiments we implemented an artificial ker-
nel expressed by a3-dimensional nested loop following the model
of Section II-A in order to compare the two topology selection
strategies when, apart from the iteration space, the dependencies
of the problems vary. Note that in 2-D and 3-D advection
problems the dependencies in the communication dimensions
were always the same. However, since the communication-aware
topology takes this factor into consideration as well, we varied d′1
and d′2 in order to check their impact on performance. Table III
presents results (total parallel execution times and communication
times) for three iteration spaces and various combinationsof

10

computation
communication

 0

 20

 40

 60

 80

 100

 120

10
0x

1x
1

50
x2

x1
50

x1
x2

25
x4

x1
25

x2
x2

25
x1

x4
20

x5
x1

20
x1

x5
10

x1
0x

1
10

x5
x2

10
x2

x5
10

x1
x1

0
5x

20
x1

5x
10

x2
5x

5x
4

5x
4x

5
5x

2x
10

5x
1x

20
4x

25
x1

4x
5x

5
4x

1x
25

2x
50

x1
2x

25
x2

2x
10

x5
2x

5x
10

2x
2x

25
2x

1x
50

1x
10

0x
1

1x
50

x2
1x

25
x4

1x
20

x5
1x

10
x1

0
1x

5x
20

1x
4x

25
1x

2x
50

P
ar

al
le

l e
xe

cu
tio

n
tim

e
(s

ec
)

Iteration space 5Kx100x50x1K

(a) Communication-aware topology:100 × 1× 1

computation
communication

 0

 200

 400

 600

 800

 1,000

10
0x

1x
1

50
x2

x1
50

x1
x2

25
x4

x1
25

x2
x2

25
x1

x4
20

x5
x1

20
x1

x5
10

x1
0x

1
10

x5
x2

10
x2

x5
10

x1
x1

0
5x

20
x1

5x
10

x2
5x

5x
4

5x
4x

5
5x

2x
10

5x
1x

20
4x

25
x1

4x
5x

5
4x

1x
25

2x
50

x1
2x

25
x2

2x
10

x5
2x

5x
10

2x
2x

25
2x

1x
50

1x
10

0x
1

1x
50

x2
1x

25
x4

1x
20

x5
1x

10
x1

0
1x

5x
20

1x
4x

25
1x

2x
50

1x
1x

10
0

P
ar

al
le

l e
xe

cu
tio

n
tim

e
(s

ec
)

Iteration space 2Kx400x400x2K

(b) Communication-aware topology:50 × 2× 1

computation
communication

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450
10

0x
1x

1
50

x2
x1

50
x1

x2
25

x4
x1

25
x2

x2
25

x1
x4

20
x5

x1
20

x1
x5

10
x1

0x
1

10
x5

x2
10

x2
x5

10
x1

x1
0

5x
20

x1
5x

10
x2

5x
5x

4
5x

4x
5

5x
2x

10
5x

1x
20

4x
25

x1
4x

5x
5

4x
1x

25
2x

50
x1

2x
25

x2
2x

10
x5

2x
5x

10
2x

2x
25

2x
1x

50
1x

10
0x

1
1x

50
x2

1x
25

x4
1x

20
x5

1x
10

x1
0

1x
5x

20
1x

4x
25

1x
2x

50
1x

1x
10

0

P
ar

al
le

l e
xe

cu
tio

n
tim

e
(s

ec
)

Iteration space 2Kx100x500x1K

(c) Communication-aware topology:20× 1× 5

computation
communication

 0

 50

 100

 150

 200

 250

 300

 350

 400

10
0x

1x
1

50
x2

x1
50

x1
x2

25
x4

x1
25

x2
x2

25
x1

x4
20

x5
x1

20
x1

x5
10

x1
0x

1
10

x5
x2

10
x2

x5
10

x1
x1

0
5x

20
x1

5x
10

x2
5x

5x
4

5x
4x

5
5x

2x
10

5x
1x

20
4x

25
x1

4x
5x

5
4x

1x
25

2x
50

x1
2x

25
x2

2x
10

x5
2x

5x
10

2x
2x

25
2x

1x
50

1x
10

0x
1

1x
50

x2
1x

25
x4

1x
20

x5
1x

10
x1

0
1x

5x
20

1x
4x

25
1x

2x
50

1x
1x

10
0

P
ar

al
le

l e
xe

cu
tio

n
tim

e
(s

ec
)

Iteration space 600x600x600x2K

(d) Communication-aware topology:5× 4× 5

Fig. 6. Total parallel execution time (sec) for four iteration spaces in 3-D advection equation. The scheduling-aware topology in all cases is either5× 5× 4

or 5× 4× 5 or 4× 5× 5.

d′1 × d′2. From this table we observe four important issues: (a)
The communication-aware topology adjusts to the iterationspace
shape and to the dependencies of the problem, (b) In6 out of
23 cases both strategies selected the same (10 × 10) topology,
(c) In 3 cases the scheduling-aware topology outperformed the
communication-aware topology since the latter caused a slow-
down ranging from2.7% to 23.5% and (d) In 14 cases the
communication-aware topology led to lower parallel execution
times providing an improvement that ranged from0.4% to 96.9%.

D. Overall conclusions on the experiments

The experimental results presented in the previous paragraphs
lead us to the following conclusions:

- When the total number of tiles assigned to each process is
“small”, then the minimization of the processor idle times
with the scheduling-aware process topology is important (see
Figure 4), thus the scheduling criterion should be given
higher priority. As a rule of thumb, one can prioritize

scheduling-aware tiling transformations whenT iles ≈ C.
However, we claim that for the majority of real-life problems
it will hold T iles≫ C.

- In clusters with commodity interconnection networks, such
as the one used in our experiments, it is crucial to reduce
the communication volume as much as possible. IfT iles≫
C then the communication-aware process topologies were
able to drastically reduce the communication times with an
important positive impact on total parallel execution times
compared to the scheduling-aware process topologies. The
reduction in total parallel execution time reached up to213%.
(see Tables I, II and III). The greater differences were ob-
served in 3-D advection which used a3-dimensional process
grid. In this case the communication overhead increases, both
in terms of communication volume and in terms of number
of messages (see Figure 6).

- The proposed communication-aware tiling is particularly
efficient when the algorithm exhibits asymmetric data de-

11

Iteration space
Scheduling-aware Communication-aware

Topology Total time Comm. time Topology Total time Comm. time

600 × 600 × 600× 2K 5× 4× 5 175.36 125.86 5× 4× 5 175.36 125.86

800 × 400 × 400× 1K 5× 5× 4 61.48 42.65 5× 5× 4 61.48 42.65

800 × 200 × 400× 1K 5× 4× 5 30.75 21.37 10× 2× 5 31.28 21.70

1K × 200 × 1K × 1K 5× 5× 4 49.99 21.76 10× 1× 10 43.89 10.54

2K × 200 × 500 × 1K 5× 4× 5 67.97 25.89 20× 1× 5 43.74 14.96

1K × 500 × 100 × 1K 5× 5× 4 27.85 20.91 20× 5× 1 23.22 15.46

1K × 200 × 200 × 1K 4× 5× 5 19.18 14.21 25× 2× 2 18.56 13.10

1.5K × 200 × 400 × 1K 5× 5× 4 56.61 40.94 25× 1× 4 41.43 28.45

2K × 100 × 500 × 1K 4× 5× 5 49.77 38.33 25× 1× 4 47.47 32.87

5K × 100 × 50× 1K 5× 5× 4 20.75 19.33 50× 2× 1 10.80 7.35

2K × 200 × 200 × 2K 5× 5× 4 77.99 64.167 100× 1× 1 61.29 46.27

3K × 400 × 400 × 2K 5× 5× 4 443.78 325.19 100× 1× 1 207.58 151.93

TABLE II

COMPARISON OFscheduling-awareAND communication-awarePROCESS TOPOLOGIES FOR VARIOUS ITERATION SPACES IN3-D ADVECTION EQUATION.

ALL TIMES ARE IN SECONDS.

It. space d′
1
× d′

2

Sched.-aware topology Comm.-aware topology
% diff.

Total time Comm. time Topology Total time Comm. time

5K × 5K × 2K 1× 1 2.54 0.43 10 × 10 2.54 0.43 0.0

5K × 5K × 2K 2× 1 2.60 0.45 5× 20 2.41 0.28 -7.8

5K × 5K × 2K 3× 1 2.55 0.44 5× 20 2.54 0.42 -0.4

5K × 5K × 2K 4× 1 2.77 0.54 5× 20 2.63 0.51 -5.3

5K × 5K × 2K 5× 1 3.27 1.03 4× 25 2.49 0.33 -31.3

2K × 4K × 2K 1× 1 1.02 0.32 5× 20 0.84 0.13 -21.4

2K × 4K × 2K 1× 2 0.85 0.14 10 × 10 0.85 0.14 0.0

2K × 4K × 2K 1× 3 0.86 0.16 10 × 10 0.97 0.26 0.0

2K × 4K × 2K 1× 4 1.20 0.48 20× 5 1.57 0.77 +23.5

2K × 4K × 2K 1× 5 1.44 0.71 20× 5 1.48 0.72 +2.7

2K × 4K × 2K 2× 1 1.07 0.37 5× 20 0.86 0.15 -24.4

2K × 4K × 2K 3× 1 0.93 0.22 4× 25 0.98 0.46 +5.1

2K × 4K × 2K 4× 1 1.81 1.06 4× 25 1.23 0.53 -47.2

2K × 4K × 2K 5× 1 2.58 1.82 4× 25 1.31 0.70 -96.9

2K × 8K × 2K 1× 1 1.80 0.45 5× 20 1.67 0.28 -7.7

2K × 8K × 2K 1× 2 2.08 0.84 5× 20 1.96 0.57 -6.1

2K × 8K × 2K 1× 3 1.74 0.40 10 × 10 1.74 0.40 0.0

2K × 8K × 2K 1× 4 2.05 0.80 10 × 10 2.05 0.80 0.0

2K × 8K × 2K 1× 5 2.13 0.78 10 × 10 2.13 0.78 0.0

2K × 8K × 2K 2× 1 1.81 0.45 4× 25 1.72 0.30 -5.2

2K × 8K × 2K 3× 1 2.25 1.05 4× 25 2.09 0.64 -7.6

2K × 8K × 2K 4× 1 2.61 1.21 2× 50 1.85 0.48 -41.1

2K × 8K × 2K 5× 1 3.10 1.64 2× 50 1.69 0.30 -83.4

TABLE III

COMPARISON OFscheduling-awareAND communication-awarePROCESS TOPOLOGIES FOR VARIOUS ITERATION SPACES AND DEPENDENCIES IN THE

ARTIFICIAL KERNEL . THE scheduling-awareTOPOLOGY IS10 × 10. ALL TIMES ARE IN SECONDS.

pendencies and/or iteration space dimensions.
- The proposed communication-aware tiling exhibits very

good performance even when compared to the best possible
total parallel execution time achieved by any topology (see
Figures 5 and 6), since in several cases it succeeds the
minimum time. However, there exist cases where alter-
native topologies minimize the execution time, which is
reasonable since, as discussed in Sections II and III, the

minimization of the total parallel execution time is a problem
involving numerous parameters such as cpu power, memory
organization, communication bandwidth and latency. The
communication-aware strategy takes into consideration only
the communication volume of the problem. However, the fact
that based on this sole criterion we were able to mininize
the execution time is several cases and approach close to the
minimum in several others, leads us to the conclusion that

12

the minimization of the communication volume should be
given a very high priority.

VI. CONCLUSIONS

This paper presented a novel approach for the selection of an
efficient and feasible tile shape for the parallelization ofstencil
algorithms. We formulate a simple and applicable method for
the specification of an appropriate tile shape, that minimizes the
communication volume of a non-boundary process, assuming a
fixed total number of processes. Compared to alternative tile
shapes that aim at minimizing the processor idle times thus
maximizing parallelism, the communication-aware tile shapes
proposed here exhibit significantly lower parallel execution times
for real-life problems. This improvement in performance isdue
to the drastic reduction in the communication volume imposed
by the proposed tile shapes, that take into consideration the
bounds of the iteration space and the problem dependencies in
order to reduce communication data. The presented technique can
be easily combined with theMPI Cart create primitive, to
deliver efficient Cartesian process topologies.

REFERENCES

[1] F. Irigoin and R. Triolet, “Supernode Partitioning,” inProceedings of the
15th Ann. ACM SIGACT-SIGPLAN Symp. Principles of Programming
Languages (POPL’85), San Diego, California, USA, Jan 1988, pp. 319–
329.

[2] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,Numerical
Recipes in C: The Art of Scientific Computing. New York, NY, USA:
Cambridge University Press, 1992.

[3] B. D. Acunto, Computational Methods for PDE in Mechanics. World
Scientific Pub., 2004.

[4] K. Morton and D. Mayers,Numerical Solution of Partial Differential
Equations. Cambridge, UK: Cambridge University Press, 2005.

[5] J. Ramanujam and P. Sadayappan, “Tiling Multidimensional Iteration
Spaces for Multicomputers,”Journal of Parallel and Distributed Com-
puting, vol. 16, pp. 108–120, 1992.

[6] R. Andonov, S. Balev, S. Rajopadhye, and N. Yanev, “Optimal Semi-
Oblique Tiling,” IEEE Trans. on Parallel and Distributed Systems,
vol. 14, no. 9, pp. 944–960, Sep 2003.

[7] P. Boulet, A. Darte, T. Risset, and Y. Robert, “(Pen)-ultimate Tiling?”
INTEGRATION, The VLSI Jounal, vol. 17, pp. 33–51, 1994.

[8] P. Boulet, J. Dongarra, Y. Robert, and F. Vivien, “StaticTiling for
Heterogeneous Computing Platforms,”Journal of Parallel Computing,
vol. 25, no. 5, pp. 547–568, May 1999.

[9] G. Goumas, A. Sotiropoulos, and N. Koziris, “MinimizingCompletion
Time for Loop Tiling with Computation and Communication Overlap-
ping,” in Proceedings of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS’01), San Francisco, USA, Apr 2001.

[10] G. Goumas, M. Athanasaki, and N. Koziris, “An Efficient Code Gen-
eration Technique for Tiled Iteration Spaces,”IEEE Trans. on Parallel
and Distributed Systems, vol. 14, no. 10, pp. 1021–1034, Oct 2003.

[11] E. Hodzic and W. Shang, “On Supernode Transformation with Mini-
mized Total Running Time,”IEEE Trans. on Parallel and Distributed
Systems, vol. 9, no. 5, pp. 417–428, May 1998.

[12] G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris, “Message-
Passing Code Generation for Non-rectangular Tiling Transformations,”
Journal of Parallel Computing, vol. 32, no. 10, pp. 711–732, Nov 2006.

[13] N. Drosinos and N. Koziris, “Performance Comparison ofPure MPI
vs Hybrid MPI-OpenMP Parallelization Models on SMP Clusters,”
in Proceedings of the IEEE International Parallel and Distributed
Processing Symposium 2004, Santa Fe, New Mexico, Apr 2004, p. 10.

[14] E. Hodzic and W. Shang, “On Time Optimal Supernode Shape,” IEEE
Trans. on Parallel and Distributed Systems, vol. 13, no. 12, pp. 1220–
1233, Dec 2002.

[15] K. Högstedt, L. Carter, and J. Ferrante, “On the Parallel Execution
Time of Tiled Loops,”IEEE Trans. on Parallel and Distributed Systems,
vol. 14, no. 3, pp. 307–321, Mar 2003.

[16] N. Koziris, A. Sotiropoulos, and G. Goumas, “A Pipelined Schedule
to Minimize Completion Time for Loop Tiling with Computation
and Communication Overlapping,”Journal of Parallel and Distributed
Computing, vol. 63, no. 11, pp. 1138–1151, Nov 2003.

[17] H. Ohta, Y. Saito, M. Kainaga, and H. Ono, “Optimal Tile Size Ad-
justment in Compiling General DOACROSS Loop Nests,” inProceed-
ings of the 9th International Conference on Supercomputing(ICS’95),
Barcelona, Spain, Jul 1995, pp. 270–279.

[18] Y. Song and Z. Li, “Impact of Tile-Size Selection for Skewed Tiling,”
in Proceedings of the 5-th Workshop on Interaction between Compilers
and Architectures (INTERACT’01), Monterrey, Mexico, Jan 2001.

[19] P. Tang and J. Xue, “Generating Efficient Tiled Code for Distributed
Memory Machines,”Journal of Parallel Computing, vol. 26, no. 11, pp.
1369–1410, 2000.

[20] J. Xue, “On Tiling as a Loop Transformation,”Parallel Processing
Letters, vol. 7, no. 4, pp. 409–424, 1997.

[21] ——, “Communication-Minimal Tiling of Uniform Dependence Loops,”
Journal of Parallel and Distributed Computing, vol. 42, no. 1, pp. 42–59,
1997.

[22] J. Xue and W. Cai, “Time-minimal Tiling when Rise is Larger than
Zero,” Journal of Parallel Computing, vol. 28, no. 6, pp. 915–939, 2002.

[23] S. Parsa and S. Lotfi, “A New Genetic Algorithm for Loop Tiling,”
Journal of Supercomputing, vol. 37, no. 3, pp. 249–269, 2006.

[24] L. Renganarayanan, D. Kim, S. Rajopadhye, and M. M. Strout, “Pa-
rameterized Tiled Loops for Free,” inProceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation. New York, NY, USA: ACM, 2007, pp. 405–414.

[25] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Effective Automatic Parallelization
of Stencil Computations,” inProceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation.
New York, NY, USA: ACM, 2007, pp. 235–244.

[26] N. Ahmed, N. Mateev, and K. Pingali, “Tiling Imperfectly-nested
Loop Nests,” in Proceedings of the 2000 ACM/IEEE conference on
Supercomputing. Washington, DC, USA: IEEE Computer Society,
2000, p. 31.

[27] R. Andonov, P. Calland, S. Niar, S. Rajopadhye, and N. Yanev, “First
Steps Towards Optimal Oblique Tile Sizing,” inProceedings of the 8th
International Workshop on Compilers for Parallel Computers, Aussois,
France, Jan 2000, pp. 351–366.

[28] K. Högstedt, L. Carter, and J. Ferrante, “Selecting Tile Shape for
Minimal Execution time,” inProceedings of the ACM Symposium on
Parallel Algorithms and Architectures, Saint Malo, France, 1999, pp.
201–211.

[29] E. D’Hollander, “Partitioning and Labeling of Loops byUnimodular
Transformations,”IEEE Trans. on Parallel and Distributed Systems,
vol. 3, no. 4, pp. 465–476, Jul. 1992.

[30] M. Kandemir, R. Bordawekar, A. Choudhary, and J. Ramanujam,
“A Unified Tiling Approach for Out-of-Core Computations,” in Sixth
Workshop on Compilers for Parallel Computers. Aachen, Germany:
Forschungzentrum Julich GmbH, 1996, pp. 323–334.

[31] G. E. Karniadakis and R. M. Kirby,Parallel Scientific Computing in
C++ and MPI: A Seamless Approach to Parallel Algorithms and their
Implementation. Cambridge University Press, 2002.

[32] W. Shang and J. Fortes, “Time Optimal Linear Schedules for Algorithms
with Uniform Dependencies,”IEEE Trans. on Computers, vol. 40, no. 6,
pp. 723–742, 1991.

[33] A. Darte, L. Khachiyan, and Y. Robert, “Linear Scheduling is Nearly
Optimal,” Parallel Processing Letters, vol. 1, no. 2, pp. 73–81, 1991.

[34] W. Shang and J. Fortes, “On Time Mapping of Uniform Dependence
Algorithms into Lower Dimensional Processor Arrays,”IEEE Trans. on
Parallel and Distributed Systems, vol. 3, no. 3, pp. 350–363, 1992.

[35] P. Tang and J. Zigman, “Reducing Data Communication Overhead
for DOACROSS Loop Nests,” inProceedings of the 8th International
Conference on Supercomputing (ICS’94), Manchester, UK, Jul 1994, pp.
44–53.

[36] E. Hodzic and W. Shang, “On Time Optimal Supernode Shape,” in
Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), Las Vegas, USA, Jun
1999, pp. 2019–2026.

[37] K. Kennedy and J. R. Allen,Optimizing compilers for modern archi-
tectures: a dependence-based approach. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2002.

[38] M. Wolf and M. Lam, “A Loop Transformation Theory and an Algorithm
to Maximize Parallelism,”IEEE Trans. on Parallel and Distributed
Systems, vol. 2, no. 4, pp. 452–471, Oct 1991.

[39] G. Rivera and C.-W. Tseng, “Tiling Optimizations for 3DScientific
Computations,” inProceedings of the 2000 ACM/IEEE conference on
Supercomputing. Washington, DC, USA: IEEE Computer Society,
2000, p. 32.

