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Abstract

In this paper we explore the impact of the block shape on
blocked and vectorized versions of the Sparse Matrix-Vector
Multiplication (SpMV) kernel and build upon previous work
by performing an extensive experimental evaluation of the
most widespread blocking storage format, namely Block
Compressed Sparse Row (BCSR) format, on a set of modern
commodity microarchitectures. We evaluate the merit of vec-
torization on the memory-bound blocked SpMV kernel and
report the results for single- and multithreaded (both SMP
and NUMA) configurations. The performance of blocked
SpMV can significantly vary with the block shape, despite
similar memory bandwidth demands for different blocks.
This is further accentuated when vectorizing the kernel.
When moving to multiple cores, the memory wall problem
becomes even more evident and may overwhelm any benefit
from optimizations targeting the computational part of the
kernel. In this paper we explore and discuss the architectural
characteristics of modern commodity architectures that are
responsible for these performance variations between block
shapes.

1. Introduction

Sparse Matrix-Vector Multiplication (SpMV) is one of the

most important and widely used scientific kernels arising in

a variety of scientific problems. The SpMV kernel poses a

variety of performance issues both in single and multicore

configurations [4], [12], [16], which are mainly due to

the memory-intensive nature of the SpMV algorithm. To

this end, a number of optimization techniques have been

proposed, such as register and cache blocking [6], [7]

compression [9], [10], [15], column or row reordering [11],

and others.

The register blocking technique using the BCSR for-

mat [7], though initially not intending to tackle directly

the memory wall problem but rather to attack the indirect

memory references, seems currently to be one of the most

promising optimization techniques for SpMV. BCSR groups

neighboring non-zero elements into one block and is able to

keep one index per block, instead of one index per element,

which is the CSR case. In this way, it can achieve significant

reduction of the algorithm’s working set, especially for

matrices with a large number of dense sub-blocks, greatly al-

leviating the pressure to the memory subsystem. The BCSR

format allows also for other straightforward optimizations

targeting the computational part of the kernel, such as loop

unrolling and vectorization.

Recent work [4], [5], [16] has identified the memory

subsystem, and more specifically the memory bandwidth, as

the main performance bottleneck of SpMV. Nevertheless,

having attacked the above problem with an appropriate stor-

age format, such as BCSR, focusing on the computational

part of the kernel, which now constitutes a larger portion of

the total execution time, seems a relevant approach. Vector-

ization on SpMV has been studied recently [16] along with

other optimizations, but produced modest results. Although

vectorization is known to be a successful optimization for

linear algebra kernels, this does not seem to be the case for

SpMV due to its memory-bound nature. Thus, the results

discussed in [16] are not surprising. Nevertheless, we move

one step ahead with a goal to understand the architectural

implications that are responsible for this execution behavior,

and explore the possibility and conditions that must hold in

order to have performance gain from vectorization. In our

study, we conduct a series of experiments for both single-

and multithreaded configurations of the BCSR algorithm on

a representative set of modern, commodity microprocessors

with different memory subsystems and SIMD capabilities

and examine the impact of various block shapes. Although

the benefit of vectorization is small on average, there exist

several cases—especially in a multithreaded configuration—

that vectorization can indeed achieve significant speedups.

The rest of the paper is organized as follows: Section 2

provides some background information about the BCSR

storage format. Section 3 describes the architectural im-

plications on the use of different block shapes for BCSR,

Section 4 presents our experimental results, and Section 5

concludes the paper and describes future work.

2. Storage Formats for Sparse Matrices

The standard storage format for sparse matrices is the

Compressed Sparse Row (CSR) format [1]. This format

uses three one-dimensional arrays to store a n × n sparse

matrix with nnz non-zero elements: an array val of size

nnz to store the non-zero elements of the matrix, an array
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Figure 1: The BCSR storage format.

for (i=0; i<nr_block_rows; i++) {
y0 = y1 = 0;
for (j=row_bptr[i], j0=j/(2*2), k=col_bind[j0];

j<row_bptr[i+1]; j+=2*2, k=col_ind[++j0]) {
y0 += bval[j]*x[k] + bval[j+1]*x[k+1];
y1 += bval[j+2]*x[k] + bval[j+3]*x[k+1];

}
y[2*i] = y0; y[2*i+1] = y1;

}

Figure 2: The standard BCSR SpMV implementation for a
2 × 2 block.

col_ind of size nnz to store the column indices of every

nonzero element, and an array row_ptr of size n + 1 to

store pointers to the first element of each row in the val
array.

The blocked version of the CSR format is the Blocked

Compressed Sparse Row (BCSR) format [7]. BCSR main-

tains three matrices, bval, col_bind, and row_bptr,

which instead of storing and pointing to individual elements

of the matrix, they store—in row-wise order—and point

to dense r × c sub-blocks of the matrix. Figure 1 shows

how blocking is applied on a sparse matrix and the data

structures used by the BCSR format. When an incomplete

block is encountered, BCSR pads with explicit zeros. The

BCSR format can significantly reduce the working set of the

kernel, by dividing the matrix into blocks and storing only

the block-column indices. However, increasing the block size

beyond a certain limit inserts excessive padding, the cost of

which can overwhelm any benefit gained from the reduction

of the indexing structures. In general, selecting blocks that

minimize the working set is a good strategy to attain high

performance [5]. BCSR blocks are row- and column-aligned

at r and c elements boundaries, respectively. Although this

alignment may seem restrictive and, generally, lead to more

padding [14], it can greatly favor vectorization as it will be

explained in the following. Figure 2 shows the SpMV kernel

for BCSR with 2 × 2 blocks.

3. Architectural implications on the execution
of blocked and vectorized SpMV kernels

The shape of a block selected to group neighboring non-

zero elements in BCSR is of vital importance for the perfor-

mance of SpMV. The primary criterion for the selection of

an efficient block shape should be the final working set of the

algorithm, since the standard CSR SpMV implementation

suffers from a bottleneck in memory bandwidth. Therefore,

block shapes that lead to excessive padding may eventually

increase the working set of the algorithm, leading to lower

performance. In this paper, however, we put aside the

impact of the working set and study possible differences

in performance using blocks of different shapes that lead

to almost the same working set. Moreover, when the non-

zero elements are organized in blocks, applying vectorization

seems straightforward and promising. In the next paragraphs,

we discuss some architectural characteristics that can interact

with the block shape and, eventually, influence performance.
Instruction-Level Parallelism. The modern commodity

superscalar microarchitectures rely heavily on instruction

level parallelism to obtain high performance from a single

core. Thus, any instruction sequence containing RAW de-

pendencies that can produce stalls should be avoided. In the

case of large “horizontal” blocks, such as the 1×8 block, half

of the floating point instructions executed—the additions—

depend on each other, since all partial sums should be

accumulated to a single register or memory location. This

instruction stream cannot be efficiently organized or sched-

uled, in order to fully utilize the execution core, therefore,

such blocks may lead to reduced performance.
Data alignment. Due to hardware limitations, when

coding using the SIMD instructions, data fetched from

memory should be properly aligned, in order to achieve

higher performance. Specifically for the SSE [8] instruction

set, vector loads and stores are faster when the requested

data are aligned at 16-byte boundaries. The SpMV kernel

in BCSR format loads the input vector x and the non-

zero elements from the bval array and stores the result

to the output vector y. In such an access pattern, it is

generally quite easy to achieve the desired alignment if the

starting addresses of these arrays are properly aligned, since

we move sequentially when computing a single block. In

order to investigate any differences in performance caused

by inappropriate alignment, we implemented the kernel

using unaligned load and store instructions for different

blocks. The results were rather unsatisfactory, since in every

case the vectorization could not offer any speedup, and

for some blocks we even encountered a degradation of

performance. Consequently, proper alignment of data should

be considered as a prerequisite for performance when trying

to vectorize SpMV. For this reason, BCSR compared to

Unaligned BCSR (UBCSR) [14] is a more appropriate data

structure for vectorization, since the logically aligned blocks



of BCSR can be easily aligned in memory without any

extra padding. Another not so obvious implication of the

alignment requirements is that blocks not having at least one

even dimension, such as the 3×1 and 3×3 blocks, cannot be

efficiently vectorized, since they cannot be naturally aligned

without effectively collapsing to larger blocks.

Dependencies between vector elements. An important

issue, when it comes to the SIMD execution model is

that both the algorithm and the data structures used must

allow for streaming computations. The SpMV kernel has a

streaming nature, i.e., fetch data from x and bval, multiply,

and write back to y without any temporal reuse in any

of the arrays. However, not every block shape allows for

such a straightforward implementation. For example, when

trying to vectorize 1 × c blocks, the elements of the vector

containing the products must be added together and then

accumulated to y (see Fig. 3).
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Figure 3: The horizontal depen-
dency between vector elements
for 1 × c layouts (a) and the
better parallelization of the r × 1
layouts (b).

This horizontal depen-

dency between the vec-

tor elements can be re-

solved either by scatter-

ing the elements to dif-

ferent registers and then

adding them together or

by using specialized in-

structions, which add the

elements of a vector hori-

zontally. Both ways, how-

ever, are not so effi-

cient for different rea-

sons: scattering the vector

elements to different registers requires more instructions and

increases the register pressure, while horizontal-add instruc-

tions are quite complex and expensive with high latency and

low throughput [8]. Which of the two ways is more effective

is a platform-dependent issue. A possibly positive side-effect

of the horizontal-add instructions is that they can effectively

hide a RAW dependency between two instructions, since this

dependency is moved inside the vector. In practice, however,

very few were the cases that an horizontal vectorized block

outperformed its vertical counterpart.

Half vectors. When using single-precision arithmetic,

i.e., each vector can hold up to four elements, some block

shapes, e.g., 2×1, 6×1, etc. lead to the use of half vectors,

i.e., vectors with only two elements. The problem in this

case is not only that the SIMD units of the processor will

be under-utilized, but the limitations that may be imposed by

the microarchitecture when manipulating half registers. For

example, if there are dependencies between the upper and

lower halves of two registers, it is architecture-dependent

whether their values can be forwarded. Another performance

obstacle for such blocks is that full-vector loads from

memory cannot be used, since only an 8-byte alignment can

be guaranteed. For that reason, partial vector loads should

be used and possibly vector shuffle instructions to properly

arrange the elements inside the vector, which can further

degrade performance.

Duplicate loads. When trying to vectorize r×1 blocks,

the load from the input vector x must be a scalar load, and

then the loaded value must be propagated to the rest of vector

positions in order to perform the multiplication in parallel.

This two-step operation may hinder performance, since it

requires more instructions, and in current microarchitectures

shuffle instructions usually have greater latency. For that

reason, it may be preferable to use special instructions, if

available, e.g., the SSE3 movdup family of instructions,

which automatically propagate the loaded data to the differ-

ent positions of the SIMD register.

Streaming stores. In the SpMV kernel, as it is depicted

in Fig. 2, the stores to y are performed only once and their

values are never reused. Consequently, any cache misses

incurred by these stores could evict useful data and pollute

the cache. Thus, a possible optimization would be to use

streaming stores to the vector y, which bypass the cache

and store directly y to the main memory.

Implications on two-dimensional blocks. The above

considerations of horizontal and vertical blocks can have

an impact on the performance of two-dimensional blocks as

well, especially in the vectorized version of the kernel. In

effect, the implementation of a two-dimensional block is the

unrolled version of a corresponding one-dimensional block.

For example, a 2 × 2 block can be implemented as a two

times unrolled version of either the 1×2 or the 2×1 block.

However, since differences in performance can be significant

between the different one-dimensional blocks, selecting the

appropriate one-dimensional block to unroll could determine

the performance of two-dimensional blocks. Additionally,

unrolling the code of vertical blocks, implies that elements

inside the block should be stored column-wise.

4. Experimental evaluation

In order to quantify the effect of the block shape on

the performance of the single-threaded SpMV, we used a

representative set of commodity microarchitectures, con-

sisting of an Intel Pentium IV Xeon (Netburst), an Intel

Core 2 Duo Xeon (Woodcrest), and an AMD Dual-Core

Opteron (Opteron). Table 1 summarizes the architectural

characteristics of each microarchitecture.

As a base implementation of BCSR, we used the im-

plementation provided by the OSKI [13] sparse kernel

optimization library and tweaked the block-specific BCSR

multiplication routines by using the vector instructions of

the processor. Both the standard and the vectorized versions

of OSKI were compiled using gcc version 4.2 with the

-O3 and the -funroll-loops switches turned on. For

the SSE instructions we either explicitly used the compiler

intrinsics or implemented our own, whenever an intrinsic



Netburst Woodcrest Opteron
Clock speed 2.80 GHz 2.66 GHz 1.8 GHz
L1-cache Trace cache + 16 KB, 4-way,

Data, 64 byte cacheline
32 KB, 8-way, Instr. + 32 KB,
8-way, Data, 64 byte cacheline

64 KB, 2-way, Instr. + 64 KB,
2-way, Data, 64 byte cacheline

L2-cache 1 MB, 8-way, Data, 64 byte
cacheline

4 MB, 16-way, Data, 64 byte
cacheline

1 MB, 16-way, Data, 64 byte
cacheline

SIMD capabilities SSE, SSE2, SSE3 SSE, SSE2, SSE3, SSSE3 SSE, SSE2, SSE3
SIMD execution units 3 (pipeline shared, issued

from one port)
3 (issued from three ports) 3 (pipeline shared)

Table 1: Characteristics of the microarchitectures used.

was not available for the desired instruction. All experiments

were run on a GNU/Linux platform running the 2.6 kernel.

The matrix suite for the experiments comprised of 59

matrices for double-precision and 40 matrices for single-

precision arithmetic selected from Tim Davis’ collection

of sparse matrices [2]. For more information about the

matrices used, the reader is referred to [4]. The reason

for selecting different sets for double- and single-precision

is mainly technical. In order to save padding, the OSKI

library breaks the strict alignment of BCSR blocks when

the last block-column exceeds the bounds of the original

matrix, by truncating the blocks of the before-last block-

column. Although this is not a concern for the unvectorized

BCSR, it forces at least an unaligned vector load from

input vector when using vectorization, which can harm

performance (see Section 3). Changing the OSKI internal

representation of BCSR would lead to extensive changes to

the BCSR module, thus we decided to use only matrices

whose number of columns was divisible by two or four for

double- and single-precision, respectively. However, the set

of matrices is still representative, since it contains matrices

from different categories, as it is depicted in Table 2. For

the implementation of the vectorized version on Netburst,
we used duplicate loads from memory and streaming stores,

since these optimizations offered an additional 2%–6%

speedup. We also avoided the use of horizontal adds for

large horizontal blocks, since these instructions have a very

large 13-cycle latency and 4- to 6-cycle throughput [8]. On

the other hand, the implementation on Woodcrest was more

straightforward, since neither duplicate loads nor streaming

stores offered any speedup, and horizontal adds are much

better implemented having a modest 3-cycle (6-cycle for

single precision) latency and 2-cycle throughput for both

single- and double-precision [8].

For each microarchitecture, we have conducted extensive

experiments for the vectorized and unvectorized versions of

the BCSR kernels, for single- and double-precision arith-

metic, and for all r × c block shapes, such that r · c ≤ 8.

Larger blocks were not considered, since preliminary exper-

iments showed that BCSR failed to provide any significant

speedup over the basic CSR for such blocks, due to excessive

padding. We performed 128 iterations of each multiplication

and the results presented are the average over all the iter-

Problem category Matrix id
Chemistry 014 (d), 020, 023, 097
Circuit Simulation 018 (d), 051, 057 (d), 063, 080 (d), 086

(d)
Computational
Fluid Dynamics

002, 005, 009 (d), 011, 013 (d), 017
(d), 021, 024, 032, 035, 036

Graphs 073 (d)
Financial 025
Linear
Programming

040 (d), 042, 044, 069

Materials 007
Semiconductor
Device

029, 037

Structural 003 (d), 045, 048, 049, 055, 059 (d),
064, 066, 071 (d), 072, 078 (d), 096 (d)

Miscellaneous
2D/3D

015 (d), 062, 075 (d), 076, 077, 083,
085, 089, 092

Other 028, 067 (d), 068 (d), 087, 099 (d)

Dense 001
Random 046

Table 2: Problem categories of matrices used. Those matrices

marked with a ‘d’ were only used for double-precision

experiments. See in text for the reason behind this selection.

ations. We should note here that we made no attempt to

artificially pollute the cache after each iteration, in order

to better simulate iterative scientific application behavior,

where the data of the matrices is present in the cache

because either it has just been produced or it was recently

accessed. We have made two decisions for the illustration

of our experimental results, which aid in understanding the

performance issues involved. First, in several cases we focus

on the results collected for the dense 1000 × 1000 matrix

(#001). The dense matrix demonstrates several performance

issues in a more clear way and provides the upper limits

for several candidate optimizations. Second, we show our

experimental results for single precision, where the vector

units of the microprocessors are wider. Though in practice

double precision is used for the majority of the cases,

single precision exhibits better the vectorization capabilities

of current commodity processors and gives a picture of

future microarchitectures, where wider vectorization units

are expected. However, all observations and conclusions

hold for double precision as well, unless differently stated.



Processor Single-precision Double-precision
Woodcrest 19.90% 9.22%
Netburst 11.77% 13.71%
Opteron −0.37% −0.07%

Table 3: The effect of vectorization on BCSR. The figures
in the table are average values over all the matrices used in
each case.

4.1. Preliminary results: the effect of vectorization

Table 3 illustrates the impact of vectorization for single-

and double-precision for each of the microarchitectures con-

sidered. It is noteworthy that the vectorization can provide

non-negligible speedups even for the memory-bound SpMV

kernel, especially in the case of Woodcrest, whose SIMD

engine is more sophisticated and better integrated to the

microarchitecture. On the other hand, Opteron failed to gain

any performance benefit from vectorization. This is due to

the fact that the AMD microarchitecture implements the

SSE instruction set by splitting each 128-bit instruction

into two 64-bit macro-ops, which is effectively equivalent

to executing two standard 64-bit instructions [3]. For that

reason, we will present results only from Woodcrest and

Netburst for the single-threaded configuration. Figure 4

presents the effect of vectorization using single-precision

for every matrix considered. It should be noted here that

vectorization can provide speedup in cases where simple

BCSR may fail to do so.

4.2. The effect of the block shape

Figure 5 shows the vectorized and unvectorized BCSR

performance achieved on the dense matrix using various

blocks and single-precision arithmetic. In this figure, the

blocks are sorted on the x-axis with increasing size, i.e.,

decreasing working in our case. We have included two

versions of the two-dimensional blocks, ‘a’ and ‘b’, which

denote whether we unrolled an horizontal block (version

‘a’) or a vertical block (version ‘b’) to implement them.

This distinction is only relevant for the vectorized version

of the kernel. A number of observations can be made from

these figures that confirm to a large extent the implications

discussed in Section 3.

• Larger blocks, i.e., smaller working sets in this case,

do not always lead to higher performance. For example,

4×1 blocks exhibit more than 15% higher performance

than 1 × 6 and 1 × 7 blocks on Woodcrest, despite

having 12% larger working set. The differences are

even greater in the vectorized case.

• Horizontal blocks achieve significantly lower perfor-

mance than vertical blocks, especially for the vectorized

version of the kernel.

• Significant performance differences exist for two-

dimensional blocks depending on their implementation.

• The use of full vectors, such as in 4 × 1 and 8 × 1
blocks, offer a significant performance boost and can

outperform larger blocks (see the Netburst case).

• Vectorizing blocks, especially horizontal ones, that

cannot be naturally aligned in memory can severely

degrade performance. The great differences in perfor-

mance between such horizontal and vertical blocks is

that the implementation of horizontal blocks involves

a large number of register shuffle operations, in order

to properly align the vector elements before doing the

actual computation.

To further support the results of the dense matrix, Fig. 6

presents the performance of BCSR against the working set

of two representative matrices (kim2, #085, and msc23052,

#049), where BCSR can achieve significant speedup. The

points in the graphs represent the performance of the 22

block shapes used, including the different implementations

for two-dimensional blocks, for both the vectorized and

unvectorized versions of the kernel. Although there is a clear

tendency to higher performance when the working set of

the algorithm decreases, a closer look at the graphs reveals

that there exist significant variations in performance among

blocks that lead to similar working sets. Furthermore, the

block shape that leads to the absolutely smaller working

set does not always achieve the best performance. Similar

behavior was observed for the rest of the matrices that BCSR

achieved speedup.

4.3. Multithreaded implementation and results

We have also implemented a multithreaded version of

SpMV using the BCSR storage format, in order to inves-

tigate the effect of block shape on the current multicore

microarchitectures. We have chosen not to implement a

multithreaded version of the actual multiplication routines

of OSKI, since this would require extensive changes and

a possible redesign of some modules. Instead, we have

split the matrix row-wise and assigned each thread a chunk

of the initial matrix converted to the BCSR format. The

actual splitting of the initial matrix is based on the non-zero

elements, such that each chunk is assigned almost the same

number of non-zero elements. We impose two restrictions to

the splitting procedure: each chunk shall contain whole rows,

and the number of rows shall be divisible by the vector size,

so that vectorization alignment requirements are always met

when storing to y. For the multithreaded implementation,

we have used the NPTL 2.7 library.

The platforms used for our multithreaded experiments

were (a) a two-way SMP Intel Core 2 Quad Core Xeon

(Clovertown) and (b) a two-way ccNUMA AMD Dual-

Core Opteron (Opteron). The architectural characteristics

of the Opteron have already been described in Section 4.

Clovertown is clocked at 2 GHz, has separate 8-way set
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Figure 4: Effect of vectorization on the performance of BCSR for individual matrices. For each matrix, the block with the
best performance is selected.
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Figure 5: Vectorized and unvectorized BCSR performance for different block shapes on the dense matrix (single-precision).

associative, 32 KB instruction and data L1-caches, and a 16-

way set associative, 4 MB L2-cache.

Figures 7a and 7b show the BCSR performance on the

1000×1000 dense matrix as the number of cores increases.

We only depict results of blocks with a total size of eight ele-

ments, since these lead to the smallest working set. It should

be noted here that in the two- and four-thread configurations

we have assigned threads to cores, such as none of them

shares the cache. When the number of cores increases, the

differences in performance among different block shapes can

be dramatic reaching up to 6 GFlop/s for both versions of

the kernel in favor of vertical blocks. Similarly, vectorization

can offer a significant gain in performance, 14 GFlop/s vs.

11 GFlop/s.

However, these differences may be deceptive, since the

problem is no longer memory-bound even from the two-core

configuration; the working set of the specific matrix with 8-

element blocks is about 8 MB, which when split in two,

fits in each thread’s cache. In order to expose the memory

wall problem, especially in this SMP architecture where 8

cores should access the common bus, we applied the BCSR

on a 2000 × 2000 dense matrix, whose working set using

blocks with 8-element blocks is approximately 32 MB. The

results are depicted in Figs. 7c and 7d. The memory wall

problem is now obvious, since no speedup is achieved for

more than four threads. Moreover, the significant speedup

encountered for two and four threads can be attributed to

the fact that each thread has been assigned a smaller portion

of the input matrix, which should fit in the same cache. The

most important observation though is that any benefit that a

“good” block, or the vectorization itself, would offer is dis-

appeared, when the problem becomes very memory-bound,

as is the case of the 2-way SMP quad core configuration.

Table 4 also presents the average benefit of vectorization for

all matrices as the number of cores increases. It is obvious

that as the problem becomes more memory bound (8 cores),

the vectorization cannot offer significant speedups.

To further investigate the effect of the memory bottleneck

to the behavior of BCSR with different block shapes, we

have implemented a NUMA-aware version of the SpMV
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Figure 6: The effect of block shape for two representative sparse matrices. Each point represents a distinct block shape for
vectorized and unvectorized implementation.
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(a) Unvectorized BCSR (1000×1000 dense)
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(b) Vectorized BCSR (1000×1000 dense)
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(c) Unvectorized BCSR (2000×2000 dense)
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(d) Vectorized BCSR (2000×2000 dense)

Figure 7: Effect of block shape on the multithreaded BCSR for dense matrices (single-precision, Clovertown). The memory-

wall problem becomes evident for the 2000×2000 matrix.

# Cores Single-precision Double-precision
2 9.4% 3.5%
4 9.9% 8.2%
8 3.8% 3.8%

Table 4: The average effect of vectorization as the number
of cores increases (Clovertown).

algorithm and tested it on Opteron. For the NUMA im-

plementation, we used the libnuma 1.0.2 library, and

explicitly allocated memory on the memory node, where

each thread belongs, according to its processor affinity. The

results for the NUMA configuration against the standard

algorithm for the large dense matrix are depicted in Fig. 8.

Apart from the much higher performance that the NUMA-

aware algorithm achieved in any case, it is obvious, espe-

cially in the vectorized case, that the NUMA implementation

can further expose the differences in performance for block

shapes (again here the vertical blocks are favored), since the

NUMA implementation mitigates the memory bottleneck.

Specifically for the four-core configuration, the performance

between blocks varies between 2% and 3% for the non-

NUMA configuration, while a 6%–16% variation in perfor-

mance is observed for the NUMA configuration.

5. Conclusions and future work

In this paper, we have explored the effect of the block

shape in the BCSR storage format on the performance

of the SpMV kernel on modern commodity multicore mi-

croarchitectures, especially when using vectorization. We

showed that a block shape can significantly affect the SpMV

performance, especially when using vectorization, since sub-

tle microarchitectural implications become apparrent. These

differences can be further accentuated when the memory

intensiveness of the algorithm has already been tackled,

either by splitting the workload to a large number of cores

or by exploiting the NUMA capabilities of a machine. Fur-

thermore, we showed that vertical block shapes and column-

wise storage inside two-dimensional blocks can yield better

performance results. As a future work, we opt for imple-

menting and evaluating a performance model for blocking

methods for sparse matrices, that apart from working set, it
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Figure 8: Effect of block shape on BCSR using NUMA-aware memory allocation (2000×2000 dense matrix, single-precision).

will also account for the performance differences between

block shapes. Such a model could be used to select the most

appropriate pair of blocking method and block shape for a

specific matrix and architecture among all available blocking

methods and their possible block shapes.

References

[1] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato,
J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der
Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. SIAM, Philadelphia, 1994.

[2] T. Davis. University of Florida Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices. NA Digest,
vol. 97, no. 23, June 1997.

[3] A. Fog. The microarchitecture of Intel and AMD CPU’s:An
optimization guide for assembly programmers and compiler
makers. Copenhagen University College of Engineering, July
2007.

[4] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and
N. Koziris. Understanding the Performance of Sparse Matrix-
Vector Multiplication. In Euromicro PDP 2008, Toulouse,
France, February 2008.

[5] W. Gropp, D. Kaushik, D. Keyes, and B. Smith. Toward
realistic performance bounds for implicit CFD codes. In
Proceedings of Parallel CFD’99. Elsevier, 1999.

[6] E. Im and K. Yelick. Optimizing Sparse Matrix-Vector
Multiplication on SMPs. In 9th SIAM Conference on Parallel
Processing for Scientific Computing. SIAM, March 1999.

[7] E. Im and K. Yelick. Optimizing Sparse Matrix Computations
for Register Reuse in SPARSITY. LNCS, 2073:127–136,
2001.

[8] Intel Corp. Intel R© 64 and IA-32 Architectures Optimization
Reference Manual, November 2007.

[9] K. Kourtis, G. Goumas, and N. Koziris. Improving the Perfor-
mance of Multithreaded Sparse Matrix-Vector Multiplication
using Index and Value Compression. In ICPP, Portland,
Oregon, USA, Sep. 2008.

[10] D. Moloney, D. Geraghty, C. McSweeney, and C. McElroy.
Streaming sparse matrix compression/decompression. In High
Performance Embedded Architectures and Compilers, First
International Conference, HiPEAC 2005, Barcelona, Spain,
November 17-18, 2005, Proceedings, volume 3793 of LNCS,
pages 116–129. Springer, 2005.

[11] A. Pinar and M. T. Heath. Improving the Performance of
Sparse Matrix-Vector Multiplication. In Supercomputing’99,
Portland, OR, November 1999. ACM SIGARCH and IEEE.

[12] O. Temam and W. Jalby. Characterizing the behavior of sparse
algorithms on caches. In Supercomputing’92, pages 578–587,
Minnesota., MN, November 1992. IEEE.

[13] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A
library of automatically tuned sparse matrix kernels. In
Proceedings of SciDAC 2005, Journal of Physics: Conference
Series, San Francisco, CA, USA, June 2005. Institute of
Physics Publishing.

[14] R. W. Vuduc and H. Moon. Fast sparse matrix-vector
multiplication by exploiting variable block structure. In High
Performance Computing and Communications, volume 3726
of LNCS, pages 807–816. Springer, 2005.

[15] J. Willcock and A. Lumsdaine. Accelerating Sparse Matrix
Computations via Data Compression. In ICS ’06: Proceedings
of the 20th annual international conference on Supercomput-
ing, pages 307–316, New York, NY, USA, 2006. ACM Press.

[16] S. Williams, L. Oilker, R. Vuduc, J. Shalf, K. Yelick, and
J. Demmel. Optimization of sparse matrix-vector multiplica-
tion on emerging multicore platforms. In Supercomputing’07,
Reno, NV, November 2007.


