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Abstract

This paper compares three similar loop-grouping
methods. All methods are based on projecting the n-di-
mensional iteration space Jn onto a k-dimensional one,
called the projected space, using (n-k) linear independent
vectors. The dimension k is selected differently in each
method giving various results. The projected space is di-
vided into discrete groups of related iterations, which are
assigned to different processors. Two of the methods pre-
serve optimal time completion, by scheduling loop itera-
tions according to the hyperplane method. The theoretical
analysis of the experimental results indicates the appro-
priate method, for specific iteration spaces and target
architectures.

Index Terms: loop grouping, orthogonal projection,
communication overhead, hyperplane method, mesh-con-
nected architectures.

1. Introduction

Orthogonal projection is the projection of the n-dimen-
sional (loop) iteration space Jn onto a k-dimensional sub-
space Null(�), so that the grouping is done along the g-
dimensional subspace �, where n = k + g [4]. Sheu and
Chen in [9] applied the orthogonal projection to project Jn

onto an 1-dimensional space (projection line), along an
(n-1)-dimensional projection space. Groups of neighbor-
ing iterations are formed along the (n-1)-projection space.
Heuristic rules are used to select the projection space,
based on the cardinality of the dependence vectors that
span space � and their length. The projected space is a
line, mapping directly onto a fixed size linear array of
processors, thus not exploiting all inherent loop parallel-
ism. In other words, the (n-1)-dimensional hyperplane
time schedule, which produces the optimal loop execution
time, is not preserved.

In [10], Sheu and Tai presented a systematic method of
partitioning and grouping, based on hyperplane time
scheduling. The space partitioning is done along an axis
perpendicular to the optimal hyperplane. Unfortunately
this, as it will be shown, does not always lead to the best

results. Although such a grouping preserves the optimal
time execution policy, it does not consider increasing lo-
cal referencing inside every group. Furthermore, space
partitioning is done without taking into consideration the
notion of displacement, thus giving poor results when this
factor is greater than one. Nevertheless, this approach had
the advantage of proposing a low complexity linear space
scheduling.

A method similar to the above, called Chain Grouping,
is presented in [5]. This method considerably enhances
the results presented by the previous two papers. It is
based on the projection of the iteration space onto a (n-1)-
dimensional space, using a single projection vector dk

(similarly to [10] an 1-dimensional projection space is
used). Grouping is done along a uniform chain of itera-
tions formed by the projection vector dk. The grouping
vector is chosen so as to maximize referencing inside the
same processor, through alternative dependence vector
paths. In other words, this method clusters not only di-
rectly dependent iterations (via a particular vector) to be
executed on the same processor, but also iterations which
depend on each other through other non-uniform depend-
ence paths.

In this paper we will present a comparison between
these three methods: SC (Sheu and Chen [9]), ST (Sheu
and Tai [10]) and CG (Chain Grouping [5]). Although all
three use orthogonal projection, they are primarily differ-
entiated by the way they select the projection space �
(dimension and orientation), as well as by the way they
define their grouping factor. Thus, for certain types of
problems they result on different communication cost and
biased execution time. Method comparison is mainly
based on communication cost, as ST and CG methods
preserve the optimal hyperplane scheduling, while time
scheduling in SC method is not explicitly defined. Several
examples are presented, along with comparative results on
method behavior, according to certain problem dimension
and dependence constrains.

The rest of the paper is organized as follows: basic
terminology and definitions used throughout this paper
are introduced in Section-2. Section-3 overviews SC, ST
and CG partitioning methods. Section-4 compares the



three methods, while in Section-5 each method's scoring
on certain example types is presented. We conclude in
Section-6, with some overall remarks on each method's
efficiency.

2. Preliminary Concepts and Definitions

2.1. Model of the Algorithms

We will use the computational uniform data depend-
ence model of perfectly nested FOR-loop algorithms,
widely used in many similar papers (e.g. see [1], [2], [3],
[6], [7], [8]). So, our algorithms are of the form:

FOR  i1=l1 TO u1 DO
...
FOR  in=ln TO un DO

AS1(i)
...
ASk(i)

ENDFOR
...

ENDFOR

Figure 1. The algorithm model.

where li and ui are integer-valued constants (boundary
values of the i-th inner loop); instance vector is denoted as
i = (i1, ..., in) and AS1, ..., ASk are assignment statements of
the form: V0 = E(V1, V2, ..., Vk), k∈N, where V0 is an
output variable indexed by i and produced by expression
E operating on input variables V1, V2, ..., Vk, also indexed
by i.

2.2. Notation

The sets of naturals, integers and rational numbers are
denoted by N, Z and Q respectively. n is the number of
nested FOR-loops and m is the number of dependence
vectors of the algorithm. Jn ⊂ Zn is the set of indices: Jn =
{(j1, ..., jn) | ji∈Z ∧ li ≤ ji ≤ ui, 1 ≤ i ≤ n}. Each point in this
n-dimensional integer space is a distinct instantiation of
the loop body. A dependence vector is denoted as di = (di1,
..., din), 1 ≤ i ≤ m. The dependence set D of an algorithm
A is the set of all dependence vectors of this algorithm: D
= {d1, d2, ..., dm}. Note that all dependence vectors are
considered uniform, i.e. independent of the indices of it-
erations. In the rest of the paper, Jn will be interchangea-
bly called index space or iteration space and i(i1,…in) are
the index or iteration points.

2.3. Structural Properties of the Index Space

Every single iteration is depicted as a unique point i(i1,
i2, …, in) of the index space Jn ⊂ Zn. Supposing that vari-
able a is generated in iteration i = (i1, i2, …, in) and may

be used in iteration j = (j1, j2, …, jn), there is a dependence
vector for variable a between these two iterations. So,
index points are linked through dependence vectors, cre-
ating chains of iterations (for more analytical definitions
see [10], [5] and [1]). Since there are different depend-
ence vectors, there may exist alternative dependence
paths that link various index points. Consequently, there
may be different ways of dividing the index space into
chains of iterations.

On the other hand, dependence vectors impose prece-
dence constraints between successive index point execu-
tion, thus partitioning the index space into sets, chains and
anti-chains, which must be obtained through the estab-
lishment of a partial ordering among iterations (see also
[1]). For every dependence dk, several distinct chains, of
index points linked through dk, are formed. Every chain
has a “starting” point, which has no “ancestors”, thus it is
the first in this chain. All such “starting” points form a
base set relevant to this dk vector (see also [5]):
Definition 2.1 (base set)
Given an algorithm A(Jn, D), a base set 

k
Bd  with respect

to a specific dk∈D, is defined as: 
k

Bd = {
kdb ∈ Jn | 

kdb - dk

∉ Jn }.                                                               �

Note that the member points 
kdb  of 

k
Bd are called base

points, with respect to the specific dk∈D. As shown in [5],

k
Bd can be computed efficiently.

A chain that is generated by a dependence vector d and
a base point j0 ∈ dB  is called a uniform chain with respect

to d∈D (for chains and antichains see also [5]):
Definition 2.2 (uniform chain)
A chain Cd = j0, ..., jk of Jn is a uniform chain with respect
to d iff:

• ji+1 = ji + d, 0 ≤ i ≤ k-1 and
• j0 - d ∉ Jn   and   jk + d ∉ Jn.

Cd is completely determined by its minimum element j0

because ji = j0 + i·d, where j0 is called the basis of Cd.
Clearly j0∈Bd.                                    �

A time schedule divides the index space into an-
tichains, where each antichain contains non-related itera-
tions, scheduled at the same time instance. On the other
hand, space schedule, divides the index space into chains,
where each chain contains related iterations assigned to
the same processor. Grouping methods try to cluster
neighboring chains together, while keeping track of the
following criteria: minimizing the overall completion time
and minimizing communication between iterations which
belong to different groups (processors).

3. Projection Grouping Methods

Partitioning methods based on orthogonal projection
are following similar techniques, and only the projection



and grouping parameters are specifically defined and op-
timized (for method details see [9] and [4]). Neighboring
chains of index points are grouped together, according to
different in each method criteria. In order, for a certain
method, to show up the close vicinity of the index points
that are clustered together, the index space is projected
onto subspaces. Then, certain sets of linked points, inside
these subspaces, are grouped together and assigned to the
same processor.

The procedure followed by all methods includes the
following steps. The n-dimensional iteration space Jn is
projected along a g-dimensional subspace � ⊂ Qg and it
is transformed into a k-dimensional space (where k ≤ n).
The grouping is done along this k-dimensional (projected)
subspace JP

k = Null(�) so that k = n - g or n = k + g (re-
call that � and JP are perpendicular). Every group inside
the subspace JP

k is assigned to a different processor. Ob-
viously, the dimension k = dim(JP

k) = dim(Null(�)) de-
termines the dimension of the required processor array.

In general, subspace � is generated by one or more de-
pendence vectors, in order to minimize communication
between the generated groups. Each of the above methods
proposes a different procedure to reduce communication
overhead between different groups, which means different
criteria of selecting the optimal projection space.

3.1. SC Method

Sheu and Chen in [9] project Jn onto an 1-dimensional
space (projection line) along a (n-1)-dimensional projec-
tion space �. Groups of neighboring iterations are formed
along the (n-1)-projection space �. Heuristic rules are
used to select the projection space, based on the cardinal-
ity of dependence vectors that span the space � and their
length. The projection space is � = span(P), where P is
selected so as to meet the following rules:
Rule 1: As much dependence vectors as possible are cho-
sen from set D to form set P, where: dim(span(P)) = n-1.
(In other words set P must satisfy the condition that
rank(mat(P)) = n-1, such that |P| is maximal.)
Rule 2: If more than one set satisfies Rule-1, the set with
the minimum value of ∑

∈P
i

i

)len(
d

d is chosen to produce the

���������	 
���� �� ���� ∑
≤≤

=
nj

jd)len(
1

2)(d .

Once set P is selected, the index space is projected to
the 1-dimensional space that is perpendicular to span(P)
space. Thus, it can be directly mapped onto a linear array
of processors. Points with the same projection are as-
signed to the same processor.

Example 1.

Consider the following algorithm A(J2, D):

 for j1 = 0 to 4 do
  for j2 = 0 to 5 do
   a(j1, j2) = a(j1, j2-1) + a(j1-1, j2) +
               a(j1-1, j2-1) + a(j1-1, j2-2)
  end
 end
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Figure 2. Projection using d1 = (0, 1) as the
projection vector.

The index space is J2 = {(j1, j2) | 0 ≤ j1 ≤ 4, 0 ≤ j2 ≤ 5} and
the set of dependence vectors is D = {d1, d2, d3, d4},
where d1 = (0, 1), d2 = (1, 0), d3 = (1, 1), and d4 = (1, 2).
By applying Rule-1, four sets P1 = {d1}, P2 = {d2}, P3 =
{d3} and P4 = {d4} can be obtained, since rank(mat(P1)) =
rank(mat(P2)) = rank(mat(P3)) = rank(mat(P4)) = 1 and
|P1| = |P2| = |P3| = |P4| = 1. By applying Rule-2 we find out

that len(d1) = len(d2) = 1, len(d3) = 2  and len(d4) = 5 .
Consequently, we can choose either P1 or P2 as set P. In
Figure-2 we show the projection and mapping on a line
perpendicular to set P1.                                                                          �

3.2. ST Method

Sheu and Tai in [10], proposed the projection of the
whole index space Jn, onto a plane perpendicular to the
���������� 	�
��� � �� ����� �� ������	� ��� ������� hy-
perplane schedule. In other words, � is 1-dimensional,
since � = ������� ��� ��� ��������
���� ������
�

Null(�) ≡ Null(span(�)) is (n-1)-dimensional, thus re-
sulting in mapping on (n-1)-dimensional processor arrays.
After the projection has taken place, a grouping is per-
formed along the so called grouping and auxiliary
grouping vectors that are defined below:
Definition 3.1 (grouping vector)

Let ri be the smallest positive integer such that: p
iir d⋅ ∈

Zn. The projected dependence vector p
ld  is selected as

grouping vector iff: rl = { }iD
rmax pp

i ∈d
, where Dp repre-

sents the set of the projected dependence vectors.          �
Supposing that rank(mat(Dp)) = �, �-1 more depend-

ence vectors are selected from Dp - { p
ld }, such that they



are linearly independent with p
ld . These �-1 additional

dependence vectors are called auxiliary grouping vectors,
as together with the grouping vector, give the ability of
grouping along the n-1 dimensional projected space (in
other words: n-1 = �). The following definitions are nec-
essary for process formal presentation.
Definition 3.2 (neighbouring groups)

Suppose pu0 , pv0  and pw0  are the base vertices of groups

Gi, Gj and Gk. If pu0 = pv0  - p
lr d⋅  (= pv0  - p

jd ), and

pu0 = pw0  + p
lr d⋅  (= pw0  + p

jd ), then Gj and Gk are the

forward and backward neighbouring groups of Gi, along

the grouping vector p
ld  (along the auxiliary grouping

vector p
jd ), respectively.                                                  �

SC method can now fully-described by the following
steps:
Step 1: Select � as the projection vector dk (� = span(dk )
= span(�)).
Step 2: Project Jn and D onto the (n-1)-dimensional
Null(span(�)). Projected Jp

n-1 and Dp are obtained.

Step 3: Select grouping vector p
ld  as the one that maxi-

mizes grouping factor r:

r = rl = { }np
iiiiD

rzminrrmax pp
i

ZN ∈⋅∈=∈ d
d

:}{: .

Step 4: Select ��� auxiliary grouping vectors from Dp -

{ p
ld }, so as:

span({ p
ld , p

aux1
d , …, p

aux 1−β
d }) = dim(Null(�)) = n-1.

[After Step 4, the projected structure can be split into

parallel lines along the direction of p
ld .]

Step 5: Select a line arbitrarily and choose a projected
point as the base vertex. Starting from that vertex, group

every r points along p
ld  into a group. Let these groups be

the initial seed groups.
Step 6: From the seed groups, find all backward and for-
ward neighbouring groups and use these as seed groups.
Repeat step until there exists no neighbouring group of
the seed groups.
Step 7: If there are some lines whose projected points are
not grouped, go to Step 5.

Note that, for every group Gi = { pv0 , pv1 , …, p
rv 1− } of

the projected structure, the corresponding partitioned
block Bi is the set:

�
i

p
k Gv

p
k

n ttvJ
∈

∈Π⋅+=∧∈ } ,{ Rjj .

Example 2.

Consider algorithm A(J2, D) of Example-1. For the de-
pendence vectors mentioned before, the optimal hyper-

plane � is [1, 1], which gives Null(span(�)) = span({(-1,
1)}). These give Dp = {1, -1, 0, 1} and r = 1, taken from

grouping vector p
1d = 1.
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Figure 3. ���������� 
���� � � ��� ���������� ��ctor.

In this example there is no need of auxiliary grouping
vectors, as the projected space is linear. In Figure-3 we
show the projection and mapping on a line perpendicular
to �.                                                                                  �

3.3. CG Method

Chain Grouping, presented in [5], applied the orthogo-
nal projection to map onto a (n-1)-dimensional array. This
method is quite similar to ST and also preserves the opti-
mal hyperplane time schedule. A dependence vector is
chosen from set D and the index space is projected to a
(n-1)-dimensional space that is perpendicular to the cho-
sen dependence vector. This vector is called projection
vector dk. � is 1-dimensional since � = span(dk) and the
perpendicular subspace is consequently (n-1)-dimensio-
nal. Chain Grouping clusters into the same processor uni-
form chains of iterations, formed by the projection vector
dk. The number of uniform chains that are clustered in the
same processor, is defined by a grouping factor, given by

r = ⎥
⎦

⎥
⎢
⎣

⎢
Π

⋅Π
disp

)gcd(/ kik dd
.

Definition 3.3 (projection vector)
Given an algorithm A(Jn, D) and the corresponding opti-
mal �������	
� �� ��� �������
 ����� dk is selected as:

dk: ⎥
⎦

⎥
⎢
⎣

⎢
Π

⋅Π
disp

)gcd(/ kik dd
 = 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎥
⎢
⎣

⎢
Π

⋅Π
disp

)gcd(/
max

jij dd
,

dj∈D, i = 1, …, n,
where gcd(.) is the greatest common divisor of the coor-
dinates dji of dj.                                              �

Once the projection vector dk is selected from set D,
the method projects all points of Jn to the plane perpen-
dicular to dk. The following definition determines the



projection of a point j(j1, …, jn), with respect to the pro-
jection vector dk.
Definition 4.4 (projected point)
Given a projection vector dk(dk1,…,dkn), the projected
point jdk is defined as the projection of the index point
j(j1,…, jn) onto a plane perpendicular to dk. Mathemati-

cally: jdk = j - k
kk

k d
dd

dj

⋅
⋅

 (see [10] for details).              �

Consequently, the projection of all points of Jn pro-
duces the Projected Index Space. The vector that is used
to group the projected points of Jn into groups is called
grouping vector.
Definition 4.5 (grouping vector)
Given an algorithm A(Jn, D) and the corresponding opti-
mal ���������� �	 
�� ������� ���
�� �� �����
�� ���

dg: �dg = min{�di, i = 1, ..., m}, where di∈{D - dk}.
                                                                                          �
Once the projection vector dk is selected, the method finds
set 

k
Bd , the base set with respect to dk.

CG method can be fully-described by the following
steps:
Step 1: Selection of projection vector dk and of grouping
vector dg.
(Hint: If there exist more than one dk with minimum r,
repeat steps 2-4 for all candidate dk’s and select the one
that creates the projected base set of step 2, with less car-
dinality.)

Step 2: Finding set 
k

Bd and the projected base set k

k
B d

d .

Step 3: Partitioning the projected base set k

k
B d

d into sub-

sets k

km,Bd
d using the grouping factor r.

Step 4: Finding the uniform chains k
ib

C d

Step 5: Grouping together the uniform chains k
ib

C d into

the groups k
mGd and assigning each group to a different

processor.

Example 3.

Consider the algorithm of Example-1. The optimal hyper-
����� ���� 	
����� � �	 ��� ��� ��� ������� ��
��� r is:

r = max ⎥
⎦

⎥
⎢
⎣

⎢
Π

⋅Π
disp

)gcd(/ jij dd
, j = 1, ..., 4 and it is r = 3 for

d4 vector, which is chosen to be the projection vector.
The grouping vector is one out of d1, d2. We arbitrarily

choose d1 = (0, 1). The base set of the index space is:

4dB = {(0, 5), (0, 4), …, (3, 1), (4, 0), (4, 1)}. The whole

projected basis set is: {(-2, 1), (-8/5, 4/5), …, (12/5, -6/5),
(14/5, -7/5), (16/5, -8/5)}. If we group each 3 points along

the direction of 4dd1  we have the following partitioning:

4

4

d
d1,B = {(-2, 1), (-8/5, 4/5), (-6/5, 3/5)} →

41,B d = {(0, 3), (0, 4), (0, 5)},

…
4

45,Bd
d = {(14/5, -7/5), (16/5, -8/5)} →

45,B d = {(4, 0), (4, 1)}.

Figure-4 shows partitioning and mapping according to
Chain Grouping method.

B5,d4
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�

Figure 4. The partitioning of the projected base set k

k
B d

d

along the projected grouping vector d1.
�

4. Method Comparison

In this section we compare the three methods in terms
of performance on certain criteria, considering various
sizes of iteration spaces and dependence sets. We focus
on evaluating communication cost, total execution time
and algorithm complexity. It is important to clarify that an
objective comparison requires 2-dimensional problems,
where all three methods project to a 1-dimensional space
(mapping onto a linear processor array). Nevertheless, for
the sake of completeness, we further elaborate on meth-
ods' behavior in iteration spaces with dimension greater
than two.

4.1. SC Method

As above analyzed in method presentation, the n-
dimensional index space is projected onto a line to form a
1-dimensional projected structure. A projection space � =
span(P) is chosen, such that the projected line will lead to



a partitioning with low communication overhead. For this
reason set P contains as many dependence vectors as pos-
sible (Rule-1). If possible, these vectors should be of
small length (Rule-2), since the amount of data communi-
cation caused by small vectors is larger.

This method, generally, performs well in terms of
communication minimization, especially when P con-
taining more than n-1 dependence vectors (|P| > n-1) and
n > 2. However, if the dependence set contains the unitary
vectors (a fact that is quite common in nested loops) and
|P| = n-1, method's performance decreases dramatically
(compare examples 5.1-5.3 with 5.6-5.8). In addition, this
method does not take into consideration the optimal exe-
cution of iterations on time, thus it does not exploit all
inherent parallelism. However, one can claim that clus-
tering together iterations, which belong to the same time
hyperplane, may increase the grain of parallelism and be
efficient for multiprocessors. What really happens is that,
the different groups are closely related and have continu-
ous data exchange (fine graining).

Consequently, SC neither achieves the optimal paral-
lelization time nor does improve the communication cost,
than the other two algorithms as we will see further on
(see example in CG method presentation).

As far as the algorithm projection complexity is con-
cerned, it doesn't perform so well, due to the calculation
of set P and the traversing of the whole index space on
projection (the other two methods avoid traversing whole
space by defining certain base sets). The method involves

calculating all candidate ⎟⎟⎠

⎞
⎜⎜⎝

⎛
k

m
 P sets, where k = m-1. If

rank(mat(P)) ≠ n-1, calculation continues for k = m-2,
etc., until k = n-1, thus O(m3·n). Space traversing com-
plexity is O(|Jn|).

An indubitable advantage of this method is that, no
matter what the initial dimension is, it always performs a
mapping onto a linear array of processors. In other words,
we have processor dependent mapping (linear array), no
matter how big the loop's dimension is.

4.2. ST Method

In this method, the n-dimensional index space is pro-
jected onto a (n-1)-dimensional space that is perpendicu-
lar to the hyperplane vector �� In other words, the
performed projection does not take into consideration the
dependence set.

Communication reduction is achieved by grouping
neighboring chains of iterations. The grouping factor is
derived from the coordinates of the projected dependence
vectors. The projected space is Null(�) and grouping is
performed along this space. As far as execution time is
concerned, this method behaves quite well, as it preserves
the optimal hyperplane time schedule along �.

Method's projection involves grouping and auxiliary
grouping vector selection, as well as base set computa-
tion. Grouping vector selection is of O(m·n) complexity,
while selection of auxiliary grouping vectors is of O(m·n2)
complexity. Base set can be computed efficiently, as
shown in [5].

As far as the algorithmic model is concerned, this
method introduces the idea of the base set. This technique
avoids whole space traversing on index space projection,
which means that O(|Jn|) complexity is avoided. When
projecting, it suffices to project only the base set and all
other points are derived from it.

A disadvantage of this method (as well as of CG
method too) is that it requires a (n-1)-dimensional proces-
sor array to apply the mapping onto, which means that in
large dimension problems (n > 4) this method is of no
practical interest.

4.3. CG Method

Chain grouping resembles ST method; it projects onto
a (n-1)-dimensional space, by choosing a projection vec-
tor from the dependence matrix D. The criterion used to
select the projection vector from set D, is maximizing the
so called, grouping factor r. As one can see from its defi-
nition, this method takes into consideration both the algo-
rithm time flow and the dependence vectors. In other
words, mapping is both time and space dependent.

This method performs very well in terms of low com-
munication especially when r > 1. In 2-dimensional
problems, where all three methods can be fairly com-
pared, this method has clearly the best performance. In
larger dimensions, is still indubitably better than ST
method, but cannot follow the performance of SC in terms
of overall communication overhead. This is normal, since
SC maps to quite fewer processors than the other two
methods. This means that the iterations that are clustered
together by SC are more than in CG and ST. However,
the need for communication with the other processors is
as often as in CG, thus also requiring for frequent syn-
chronization among neighboring processors. This in-
creases dramatically the overall completion time and
makes the overall communication reduction an impracti-
cal asset.

This method preserves the optimal time schedule,
����� �� ��	
�� � ��� ��� ��� ����� ��
������ �� ��� ��
complexity is concerned, this method has the same, rela-
tively low complexity, as ST method.

5. Examples

In this section, we compare the performance of three
methods, in terms of communication cost, using examples
with specific multi-dimensional iteration spaces. We have
developed a tool, called LOOPDEP, which takes as input



either concrete iteration spaces or randomly generated
ones. For both ST and CG methods, the optimal hyper-
plane vector � is computed according to method pre-
sented in [8]. Random dependence set generator produces
different vectors according to several constrains, like
number of vectors and maximum coordinate value. We
focused mainly on 2-dimensional iteration spaces since,
as we have mentioned before, all three methods map onto
a linear processor array. The example algorithms have
been selected to be as realistic as possible, with depend-
ence vectors similar to those actually met in practice.

To calculate the communication cost, we apply all
three methods and count all crossings of group bounda-
ries, for all dependence vectors, thus representing com-
munication requirements.

Example 5.1.

Consider again the algorithm A(J2, D) used in the exam-
ples of Section-4.
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Figure 5. SC along d1.

The index space is J2 = {(j1, j2) | 0 ≤ j1 ≤ 4, 0 ≤ j2 ≤ 5},
and the set of dependence vectors is D = {d1, d2, d3, d4},
where d1 = (0, 1), d2 = (1, 0), d3 = (1, 1), and d4 = (1, 2).
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Figure 6. �� ����� �� Figure 7. CG along d4.

The communication cost of the three methods is:
SC: 60, ST: 32, CG: 30.

In Figures 5-7 we show the mapping according to the
three methods, as well as the calculation of the total
communication cost, by counting the number of depend-
ence vectors that cross the boundaries. �

Table 1. Communication cost in specific
2-dimensional problems with size 10×10.

Comm. Cost
No set D �

SC ST CG
5.2 (0, 1) (1, 0) (1, 1) [1, 1] 171 90 90
5.3 (0, 1) (1, 0) (1, 1) (1, 3) [1, 1] 234 153 130
5.4 (0, 1) (1, 0) (1, 2) [1, 1] 162 126 90
5.5 (0, 1) (1, 0) (1, 3) [1, 1] 153 153 90
5.6 (1, 1) (1, 2) (1, 3) [1, 0] 135 216 135
5.7 (1, 1) (1, 2) (2, 1) [1, 0] 144 225 117
5.8 (1, 1) (1, 3) (3, 1) [1, 0] 126 226 117
5.9 (1, 2) (1, 3) (2, 1) (3, 1) [1, 0] 198 270 162
5.10 (1, 1) (1, 3) (1, 2) (3, 1) [0, 1] 198 279 144

5.11
(1, 0) (0, 1) (1, 2) (2, 4)

(1, 3)
[1, 1] 243 237 132

We first applied LOOPDEP in several specific 2-
dimensional iteration spaces, presented in the following
Table-1.

Table 2. Average communication cost for CG, ST and
SC for 2-dimensional iteration spaces with size 10×10.

m
max
cord

CG ST SC

2 3 60 109 74
2 4 60 89 73
2 5 50 78 64
3 3 118 130 137
3 4 123 130 123
3 5 102 110 102
4 3 173 192 174
4 4 143 166 176
4 5 139 161 146

Table 3. Communication cost in
3, 4 & 5-dimensional problems.

Average Communication Cost
n m

SC ST CG
3 3 73 144 104
3 4 106 210 150
4 4 371 880 388
4 5 547 1119 894
5 5 3271 8498 6750
5 6 2897 10138 8679

For a general overview on higher dimension problems,
we applied LOOPDEP to various, randomly generated, 3,
4, 5-dimensional iteration spaces with different sizes,
number and size of dependence vectors and calculated the
communication cost for them in terms of intergroup links.



Table-2 summarizes the results. The values below are the
average of 10 repetitions for different instances of the
iteration spaces, having the specifications depicted on first
and second columns of the table. Table-3 summarizes
results for iteration spaces with dimension larger than 2.

Comments on the Results

1. In two-dimensional algorithms (examples 5.1-11) CG
method performs clearly better than the other two. This is
due to the fact that this method not only chooses the pro-
jection vector that results to minimum communication,
but also performs a time optimal grouping along the
grouping vector. Notice the results of example-4. CG
projects perpendicular to (1, 2), ST perpendicular to ����

1] and SC perpendicular to (1, 0). Apparently, the choice
of CG leads to mapping with the lowest communication
cost. Notice also the results of example-5.11. Both CG
and SC project perpendicular to (1, 2). CG performs a
grouping along (1, 0), which nearly halves the communi-
cation cost without extending the optimal execution time.
2. Notice the large communication cost of SC in exam-
ples 5.1-5 and 5.11. SC performs badly because of the
presence of the two unitary vectors, which due to their
size prevail in the selection phase as the possible projec-
tion vectors. Applying Rule-1 and 2 of the method we
project to a space perpendicular to (1, 0), only avoiding
the communication cost caused by this particular vector.
We thus ignore the other unitary vector (0, 1) and all other
vectors, which cause this large communication cost.
3. Communication minimization on ST depends on the
deviation of the hyperplane vector � from the direction of
the dependence vectors (compare example 5.2 with 5.7 &
5.10). Zero deviation (if dependence vectors are parallel
to �) results in independent groups, while large deviation
results in no communication reduction at all.
4. In larger dimensional problems it is obvious that SC
method outperforms the other two in terms of communi-
cation minimization. Low communication is achieved by
projecting perpendicular to a large number of vectors (to-
tally |P|), thus eliminating the effect of those vectors to
total communication cost. CG and ST project perpendi-
cular to one vector, eliminating the effect of this particular
vector only.
5. CG outperforms ST in larger dimensional problems, as
well, when only communication overhead is considered.
Note that if � � dk and r = 1, the two methods perform
identical mappings.

6. Conclusion

In this paper we presented and compared three meth-
ods for grouping loops based on orthogonal projection.
Examining every method’s steps, together with specific
results taken from experimental examples, we come to the

following conclusions. Concerning 2-dimensional algo-
rithms, CG method is undoubtedly the most efficient one.
It scores lower communication cost, optimal execution
time and relatively low complexity. In larger dimensional
problems, SC method indeed outperforms the other two in
terms of communication cost, without promising better
results in the total execution time (which is certainly at
least as much as the optimal execution time of the other
two methods). This is normal because, although overall
communication overhead is reduced, the frequency of
need for communication remains the same.

Another fact that should be taken into consideration,
when applying these methods in practice, is the underly-
ing processor architecture. SC maps onto a linear proces-
sor array whereas CG and ST map onto a (n-1)-
dimensional one.
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