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A really cloudy world...

Cloud deployments are gaining ground against traditional
computing.

Reduce administrative costs

Pay-as-you-go billing

Elasticity

Achieving elasticity entails knowledge about the application!!
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Application models

Application models: estimate the application performance under
different conditions:

Utilized Resources

Application Level configuration

Application Load

The application model expresses how is performance affected when
the parameters change their values.
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Challenges

How can I extract an application model?
Obvious solution: capture the application performance for all the
parameters’ values (and their combinations).
Assumption: Deploying the same configuration will result in
(approx) the same performance
Not practical for complex applications:

Deployment time

Deployment cost
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Problem formulation

Web Application example:

Web Server: {1,2,4,8} cores and {1,2,4,8,16}G of RAM.

Database Server: {1,2,4,8,16}G of RAM and disk
{HDD/SSD}.

|{1, 2, 4, 8}| · |{1, 2, 4, 8, 16}| · |{1, 2, 4, 8, 16}| · |{HDD,SSD}| = 200
Deployment space:

D = d1 × d2 × ..× dn

Application Load:

discretized (if continuous)

increases D’s dimensionality
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Performance Function

Application performance:

p : D → P

Approximating p:

p̂ : D → P

sample D and deploy application

obtain performance point for sample

function approximation approaches

objective: keep |p − p̂| for all d ∈ D minimum
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Function Approximation

Require: application A, deployment space D, models M
Ensure: model m

1: while not termination condition do
2: p ← SAMPLE(D)
3: d ← DEPLOY(A, p)
4: for m ∈ M do
5: m.train incrementaly(p,d)
6: end for
7: end while
8: return best model(M)
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Sampling

Samples: knowledge about the application performance

Static sampling

Uniform sampling
Random sampling

Adaptive sampling

Greedy Adaptive Sampling
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Greedy Adaptive Sampling algorithm

Require: input domain D, chosen samples L, number K
Ensure: sample s
1: if |L| < K then
2: s = borderPoint(D)
3: else
4: max = 0
5: for all t1 ∈ L do
6: for all t2 ∈ L do
7: a = find midpoint(t1, t2, D)
8: if |t1 − t2| > max and a 6∈ L then
9: max = |t1 − t2|

10: s = a
11: end if
12: end for
13: end for
14: end if
15: return s
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Models

Models:

Regression techniques

Classification

WEKA framework

Multiple instances trained concurrently
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PANIC Architecture

PANIC: Profiling Applications In the Cloud

Application Modeling Domain Sampler

Profiling Engine

Web UIPANIC

Deployment Tool Monitoring Tool

Cloud Provider

Profiling Engine synchronizes the system’s workflows.

Deployment Tool is generic and works in multiple cloud
providers.

Ganglia: application level metrics are reported as custom
metrics.
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Applications

Demo applications (deployed over ∼okeanos):

TeraSort (Hadoop Application)

PageRank (Hama Application)

SSSP (Hama Application)

Dimension Values
Nodes 2, 3, 4, 5, 6, 7, 8, 9, 10

Cores/node 1, 2, 4

Dataset size
Terasort (Millions of Key Values) 10, 20, 30, 40, 50
PageRank (Thousands of Nodes) 50, 60, 70, 80, 90, 100
SSSP (Thousands of Nodes) 50, 100, 200, 300, 400, 500

Accuracy metrics: R2 = 1−
∑
i
(yi−fi )

2∑
i
(yi−y)2

and MAE = 1
n

∑
i
|fi − yi |.

Performance metric: execution time
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Raw performance
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R2 vs Sampling Rate
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Mean Absolute Error vs Sampling Rate
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Conclusions

In this paper

Proposed a generic profiling approach applicable to any cloud
application

Proposed the Greedy Adaptive Sampling algorithm which
bases its functionality in identifying the steepest points of p

Achieved acceptable accuracy when only 10% of D was
investigated
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Thank you!

Questions?
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