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Abstract—A stable marriage problem (SMP) of size n involves
n men and n women, each of whom has ordered members of
the opposite gender by descending preferability. A solution is
a perfect matching among men and women, such that there
exists no pair who prefer each other to their current spouses.
The problem was formulated in 1962 by Gale and Shapley, who
showed that any instance can be solved in polynomial time, and
has attracted interest due to its application to any two-sided
market. Still, the solution obtained by the Gale-Shapley algorithm
is favorable to one side. Gusfield and Irving introduced the
equitable stable marriage problem (ESMP), which calls for finding
a stable matching that minimizes the distance between men’s
and women’s sum-of-rankings of their spouses. Unfortunately,
ESMP is strongly NP-hard; approximation algorithms therefor
are impractical, while even proposed heuristics may run for
an unpredictable number of iterations. We propose a novel,
deterministic approach that treats both genders equally, while
eschewing an exhaustive exploration of the space of all stable
matchings. Our thorough experimental study shows that, in con-
trast to previous proposals, our method not only achieves high-
quality solutions, but also terminates efficiently and repeatably
on all tested large problem instances.

I. INTRODUCTION

The stable marriage problem (SMP) [1], [2] pertains to

matching the agents in two sets of size n, where each agent

maintains a preference ranking over those in the other set.

Variants of the problem appear in any two-sided market, as

in matching doctors to hospitals [3], [4], students to schools

[5], or sailors to ships [6]. In the classic formulation, the two

sets consist of men and women in a marriage market, while

the problem calls for matching men and women to each other

in such a way that there exist no two people who would both

rather be married to each other than to their assigned spouses.

When no such pair exists, the whole matching is said to be

stable. The problem was formulated by Gale and Shapley [7],

who proved that a stable solution can always be arrived at by

an O(n2) algorithm.

Unfortunately, the Gale-Shapley Stable Marriage Algorithm

(SMA) only yields highly satisfied men and dissatisfied

women, or vice versa, namely a male optimal or female

optimal solution [8]; therefore it is inappropriate for most

real-world applications, which require matchings to be not

only stable, but also equitable [1], [9]. Thus, the equitable
stable marriage problem (ESMP) has attracted attention on its

own [10]–[15]. The ESMP calls for finding a stable matching

that satisfies a notion of equity between the two sides of

the examined market. Such equity implies avoiding unequal

degrees of happiness among the two sides. At the same time,

equity and overall happiness are not necessarily compatible,

thus, equity should not be achieved at the cost of sacrificing the

overall happiness. A solution that achieves equity by yielding

equally miserable men and women would not be attractive.

Unfortunately, the problem of optimizing equity alone is

NP-hard [10]. Recent research has provided approximation

algorithms [11] or heuristics [12]–[15] for this problem. Still,

to date there is no practical algorithm that efficiently yields

equitable stable matchings for large problem instances.

In this paper, we provide an efficient and practical solution

for the ESMP. We eschew an exhaustive search over stable

matchings, and instead build on the Gale-Shapley algorithm

in a manner that treats both sides equitably and still achieves

stable solutions. Achieving such equity is a nontrivial problem.

We conduct a thorough experimental study of our techniques

on much larger data than those of previous studies, compared

against a recent alternative [15] that does not always terminate,

as well as to the Gale-Shapley algorithm.

II. BACKGROUND AND RELATED WORK

An instance I of the stable marriage problem (SMP)

consists of n men and n women, where each person has a

preference list that strictly orders all members of the opposite

gender. If a man m prefers w1 to w2, we write w1 �m w2; a

similar notation is applied to women’s preferences. A perfect
matching M on I is a set of disjoint man-woman pairs on I .

When a man m and a woman w are matched to each other

in M , we write M(m) = w and M(w) = m. A man m and

a woman w are said to form a blocking pair for M (or to

block M ) when: (i) M(m) �= w; (ii) w �m M(m); and (iii)
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m �w M(w). A matching M is unstable if a blocking pair

exists for M , and stable otherwise. The SMP calls for finding

a stable matching M .

A. The Gale-Shapley Algorithm

The standard algorithm for solving the SMP, proposed by

Gale and Shapley [7], goes through a series of iterations.

At iteration i, each single man proposes to his most highly

preferred woman to whom he has not yet proposed, who may

or may not be already engaged; subsequently, each woman

considers all proposals she received from suitors, as well as

her current fiancé, if such exists, and accepts (or retains) an

engagement to the most preferable among them. This process

goes on until all men (and, in consequence, all women)

become engaged. At that point all marriages are final and

stable [1].

The Gale-Shapley algorithm terminates successfully after

a quadratic number of steps (yet linear in the input size of

preference lists). During its operation, once a woman becomes

engaged she remains engaged, while she may improve her

position by rejecting one fiancé for another. On the other hand,

an engaged man may be abandoned by his spouse and become

single again. A woman’s status changes only once from single

to engaged, and thereafter her ranking of her spouse can only

improve, while a man’s status may change back and forth

multiple times, while the ranking of his assigned spouse can

only worsen. A bachelor m never has to look back to a

woman w who has already rejected him; once w rejects m,

she will never prefer him to than any future spouse. Thus,

the algorithm is characterized by a monotonicity of men’s

and women’s rankings of their assigned fiancés. Nevertheless,

even though women can reject one fiancé for another, women

passively react to men’s proposals, while men actively make

proposals on their own. In effect, the algorithm caters to the

well-being of men and not to that of women; in the matching

it generates, each man gets the highest, and each woman the

lowest, preference they could get in any stable solution; this

matching is male-optimal and female-pessimal [8].

B. Quality Metrics and Previous Solutions

Even while the matching returned by the Gale-Shapley al-

gorithm is an extreme proposer-optimal solution, any instance

I of the problem may admit many different stable matchings.

One can reasonably try to achieve a matching that is not only

stable, but also judged to be good by some quality metric.

Past research has defined three quality criteria. Let prm(w)
(respectively, prw(m)) denote the position of woman w in

man m’s preference list (respectively, of m in w’s list). The

regret cost r(M) of a stable matching M is:

r(M) = max
(m,w)∈M

max{prm(w), prw(m)} (1)

On the other hand, the egalitarian cost c(M) is:

c(M) =
∑

(m,w)∈M

prm(w) +
∑

(m,w)∈M

prw(m) (2)

Finally, the sex equality cost is defined as:

d(M) =

∣∣∣∣∣∣
∑

(m,w)∈M

prm(w)−
∑

(m,w)∈M

prw(m)

∣∣∣∣∣∣
(3)

Gusfield and Irving [1] formulated the optimization prob-

lems of finding stable matchings that minimize each of these

quality metrics. These are tough problems, as admissible stable

matchings grow exponentially in the problem instance size

[16]. Nevertheless, Gusfield [17] proposed an O(n2) algorithm

for the minimum-regret SMP, while Irving et al. [18] provided

a O(n4) solution for the minimum-egalitarian SMP, later

improved to O(n3) by Feder [19]. These algorithms exploit

a lattice represented by a polynomial-size rotation poset [20],

containing all stable matchings. In contrast, there is no known

polynomial-time solution for minimizing the sex equality cost.

Kato [10] proved that this problem is strongly NP-hard, while

Iwama et al. [11] provided an O
(
n3+ 1

ε

)
approximation algo-

rithm that obtains a stable matching M such that d(M) ≤ εΔ,

for a given constant ε, where Δ = min{d(M0), d(Mz)}, M0

the man-optimal and Mz the woman-optimal stable matching;

a O
(
n3+2 1+ε

δ

)
variant bounds both d(M) and c(M) in terms

of ε and δ. Gelain et al. [12], [21] provided a local search

algorithm that finds an arbitrary stable marriage other than

the male-optimal or female-optimal ones for small problem

sizes, yet did not provide any results on quality metrics.

Aldershof et al. [22] have shown how to refine the set of

linear inequalities that describe the stable matching polytope

and proposed a randomized procedure that results in stable

matchings that do not favor one group over the other, yet does

not attempt to optimize a cost metric. In [23], Roth and Vande

identified that starting from an arbitrary matching and allowing

randomly chosen blocking pairs to match, the final matching

will be stable with probability equal to one. This interesting

approach examines the idea of transforming a possibly not

stable matching and transforming it into a stable matching.

However, there exist no guarantees regarding the equality

aspect of the matching, since the choice of blocking pairs must

be random and also the execution time of this methodology

may be prohibitive for big data sizes. Furthermore, in [24],

Ma demonstrated that not all possible stable matchings are

reachable from any random starting position.
Most recently, Everaere et al. [14], [15] proposed heuristics

that achieve equitable stable marriages, culminating in Swing
[15], a deterministic algorithm that allows both sides to

repetitively issue proposals; yet, unfortunately, Swing invests

a O(n2) time complexity per iteration, and may run for an

unpredictable number of such iterations even on small data

sizes. Thus, no efficient algorithm that provides a solution

of low sex equality cost exists. Swing++ [25] tries to solve

the non-termination problem of Swing by detecting repetitive

patterns of proposals and isolating the responsible agents;

unfortunately, it constitutes a step backward rather than a step

forward from Swing: it still does not guarantee termination,

while it also burdens the algorithm’s runtime with elaborate
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cycle-detection and stability-checking mechanisms. Similarly

in [26] the problem is represented in the form of a “marriage

table” and the proposed algorithm named ZigZag, targets

to compromise global satisfaction, sex equality and stability.

This approach guarantees termination, but does not guarantee

stability. We strive to provide such algorithms that achieve

both equity, i.e., low d(M) and high overall happiness, i.e.,

low c(M). Other works have studied variants of the SMP

in the presence of preference ties and incomplete preference

lists [27], [28], agents having incentives to misreport their

preferences [29]–[31], partially ordered preferences [32], and

weaker notions of stability [33].

III. EQUITABLE STABLE MARRIAGE

We now set out to devise an algorithm that provides an

equitable solution to the SMP. As discussed, the Gale-Shapley

algorithm assigns two strictly defined and mutually exclusive

roles to the problem’s two sides. One side is designated as

proposers, assuming an active role, while the other side is

relegated to the role of acceptors, expecting and reacting to

the proposers’ initiatives. In consequence, the outcome of the

algorithm is proposer-optimal and acceptor-pessimal. In an

extreme case, assume that each man mi ranks woman wi

as his first preference: prmi(wi) = 1, while wi ranks mi

as her last preference: prwi(mi) = n, for i ∈ [1, n]. Then,

the outcome of the algorithm will be a stable matching M
where M(mi) = wi, i ∈ [1, n]; thus, all women obtain

their last choice, while all men obtain their first choice. We

reason that, in order to obtain a more equitable solution to

the SMP, the algorithm should treat both sides in an equitable

and non-discriminatory manner. Ideally, the algorithm should

be gender-blind, and the roles of the two sides interchangeable

with each other. Thus, we allow both genders (groups) to act

as both proposers and acceptors. In particular, at each iteration

of the algorithm, we should assign the role of proposer to the

one side and that of acceptor to the other. In the following we

analyze the mechanics of this approach and the dilemmas it

raises, and show how a stable matching can still be obtained

in this setting.

A. A Gender-Neutral Proposal

To render our discussion gender-neutral, we present it in

terms of two groups of size n, A and B, where ai ∈ A and

bi ∈ B for i ∈ [1, n]. Let �ai be the preference list of agent ai
and �bi that of bi; each preference list holds the desired spouses

of each agent ordered by their rank. For instance, �b4 [10] = a2
means that a2 is the 10th preference of b4. We express the

same relationship as prb4 [a2] = 10. If ai prefers bj with rank c,
then �ai [c] = bj and prai [bj ] = c. We postulate that the role of

proposers can be assumed by either group at a given iteration.

It follows that an agent in either group, say ai ∈ A, can issue

proposals towards the members of the opposite group, starting

out from its first preference and moving to a subsequent

one at each iteration. Moreover, members of both groups can

exhibit both the behavior characteristic of men as well as that

of women in the Gale-Shapley algorithm. In particular, if a

proposal issued by agent ai ∈ A is accepted by its recipient

bj ∈ B, then ai is engaged to bj and has no reason to issue

other proposals, as men do in Gale-Shapley’s algorithm. In

that case, we say that ai is content with its current partner,

as it has already exhausted all options to get engaged with a

more highly preferred member of B. However, as both sides

issue proposals, ai may later receive a proposal from an agent

bk ∈ B, such that prai [bk] < prai [bj ], meaning that ai prefers

bk to its current fiancé bj . Then ai will break its engagement

to bj and become engaged to bk instead, as women do in

Gale-Shapley’s algorithm. Thereafter, bj becomes single and

resumes proposing to other members of A.

Later, bk may receive a more tempting proposal from

another member of A. Then bk breaks up with ai, hence ai
resumes proposing to members of B. The interesting question

that arises then is at which position in ai’s preference list this

resumption should be directed to. One might be tempted to

think that the resumption can occur at prai [bj ], the last rank

to which ai has already proposed. Yet if that were to happen,

ai would miss the opportunity to propose to potential spouses

whom it may have rejected while it was engaged to bk, i.e.,

spouses of rank r ∈ [prai
[bk], prai

[bj ]]. Such opportunities

should not be missed; thus, ai should resume its proposals

from rank prai [bk]. Thus, when an agent resumes proposing

after a forced breakup, the resumption should not commence

from the point in its preference list it had previously reached,

but from the rank of the eloping partner. Each agent ai
maintains two indices on its preference list:

• nai
, the next target to whom ai will propose; and

• mai , the current fiancé of ai.

When ai is single, then mai = ∞. When ai has to issue

a proposal, it should propose to �ai
[nai

]. If ai breaks up

with bj in order to accept a proposal from bk, then it sets

nai
= mai

+ 1 = prai
[bk] + 1. Later, after bk breaks up with

ai, it sets mai = ∞, since ai is now single and proposes

to �ai [nai ], its next preference after bk, and proceeds until

it becomes engaged. On the other hand, ai may receive a

proposal from bj , where prai
[bj ] > nai

, while being single.

In such circumstances, ai accepts bj’s proposal, as a woman

would do in the Gale-Shapley algorithm, even though there

are still unexplored options more preferable than bj in its

preference list; ai will then be motivated to keep proposing to

those unexplored members of the opposite group.

From our discussion it follows that an agent can be in one

of three states, shown in the table below: At the beginning,

all agents are single, with m = ∞ and n = 1. When agent

a receives a proposal from b, where pra[b] = k > na, and

accepts, then ma = k. As a has not yet reached position ma

of its preference list in terms of proposals, it is motivated
to keep proposing to its unchecked preferences between na

and ma. After such proposals yield no positive response, na

reaches ma, hence a becomes content and ceases proposing.

Status single motivated content
index m = ∞ m > n m = n
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We now present the methods by which an agent evaluates

and issues proposals (functions EVALUATE and PROPOSE
respectively). Function M(ai) returns ai’s current partner, i.e.,

�ai [mai ]. For the sake of readability, we do not distinguish the

case when ai is single in this expression.

1: function EVALUATE(a, b) � a: acceptor, b: proposer
2: old = M(a)
3: if a.m ==∞ or pra[b] < a.m then
4: old.m =∞ � Break up with old
5: a.m = pra[b] � Engage with new
6: if a.n > pra[b] then
7: a.n← pra[b] + 1

8: else
9: return false

10: return true

1: function PROPOSE(a)
2: old = M(a)
3: if a.n < a.m then
4: b = �a[a.n]
5: if EVALUATE(b, a) then � b accepted a
6: old.m =∞ � Break up with old
7: a.m = a.n � Engage with new
8: else
9: a.n = a.n+ 1 � b rejected a

Algorithm 1 shows our methodology; its input is two

groups, wherein each member agent a comes with its pref-

erence list and its inverse (�a and pra, respectively). At each

iteration, one group is chosen to act as proposers, while the

other acts as acceptors. Each proposer agent then issues its

next proposal. The groups exchange roles across iterations for

the sake of equity. We discuss more on this exchange later.

The process goes on until all agents become content. In our

approach, an agent’s next target index n does not increase

monotonically, as in Gale-Shapley’s algorithm. In other words,

the monotonicity that characterizes Gale-Shapley’s algorithm

and guarantees its termination to a stable solution is lost. Al-

gorithm 1 does not provide an intrinsic termination guarantee.

The following theorem shows that, if the algorithm terminates,

then it terminates to a stable solution.

Algorithm 1 Equitable SMA

Input: A,B
Output: A stable matching w

1: w = ∅
2: k = 0
3: while not (everyone is content) do
4: k+ = 1
5: P = PICK PROPOSERS(A,B, k)
6: for all p ∈ P do
7: PROPOSE(p)

8: for all a ∈ A do
9: w = (a,M(a))

10: return w

Theorem 1: If Algorithm 1 terminates, it finds a stable

matching.

Proof: The proof is by reductio ad absurdum. Assume

the algorithm is executed for groups A and B and terminates,

yet the final matching M is unstable. Then M must contain

at least two unstable couples (ai, bj), (ak, b�) and a blocking

pair (ai, b�), where ai prefers b� to bj and b� prefers ai to

ak, prai
[b�] < prai

[bj ] and prb� [ai] < prb� [ak]. Since both

ai and b� are eventually content, they must have issued at

least two proposals to each other (once by ai and once by

b�), which were rejected. Without loss of generality, assume

ai rejected b�’s proposal as it was engaged to a more preferred

option, bf . However, since ai has ended up paired to a less

preferred partner, bf must have broken up with ai. Then ai
must have proposed to, and been rejected by, b�. However, b�
cannot have rejected that proposal and ended up content with

ak afterwards. A contradiction.

Example 1: Assume three men, m1, m2, and m3, and three

women, w1, w2, and w2, have the following preference lists:

• m1: w2, w1, w3 w1: m1,m2,m3

• m2: w1, w2, w3 w2: m3,m2,m1

• m3: w1, w3, w2 w3: m2,m1,m3

Assume each side gets a chance to propose in every

second iteration. In the first iteration, all men propose to

their first preference. After women respond, we get pairs

(m1, w2), (m2, w1), while m3 and w3 remain single. In Step

2, each woman proposes to her first preference. While m1

and m2 reject the proposals from w1 and w3, respectively,

m3 accepts the proposal from w2. Then the formed pairs

are (m2, w1), (m3, w2). In Step 3, men propose again; m2

is content with his current fiancé, yet m1 (single) and m3 (not

content with w2) propose to their next preferences, w1 and

w3, respectively; both accept, as w1 prefers m1 to m2 and w3

is single. Then the engagements become (m1, w1), (m3, w3).
In Step 4 it is the women’s turn; w1 is content, but w2,

being single, proposes to m2, who accepts; w3 also issues

a proposal to m1, who rejects her. The engagements now

become (m1, w1), (m2, w2), (m3, w3). Now all agents are

content, hence the algorithm terminates. The achieved scores

are c(M) = 12 and d(M) = 0. Gale-Shapley’s algorithm,

applied on the same problem instance, terminates at the stable

solution (m1, w2), (m2, w1), (m3, w3), with c(M) = 12 and

d(M) = 4. Notably, our solution achieves better (lower) sex

equality cost with the same egalitarian cost.

This simple yet powerful methodology achieves more equal

results, allowing each agent to continue negotiations until

a state is reached where each agent has achieved the best

possible outcome for themselves. The agents keep proposing

and evaluating offers from others, until they are no longer

motivated to continue proposing, exactly as in the Gale-

Shapley algorithm. However, the big difference in our case is

that an agent may be acting as a proposer and as an acceptor

in different algorithm steps, while in SMA each agent retain

their role throughout the algorithm’s execution. The idea that if

agents of opposing groups behave similarly, more equal results

will be achieved is commonly found in the literature (e.g. [14],

[15]). However, as we will analyze in the following section,
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this approach may create a non-termination problem, since

the repeatability of some preferences may lead to the endless

repetitions of the algorithm’s states. To this end, several

approaches exploit the traditional algorithm to find a male-

optimal stable solution and transform this matching in order

to deliver more fair results (e.g. [12]). From our experience,

the monotonic property retained by SMA, is essential both

for the correctness and the termination of the algorithm. Any

approach that tries to provide “fair” features to the problem

while violating this monotonic property may either lead to not

stable solutions and/or may not terminate. However, as we are

discussing in the following section, we tackle these challenges

by employing a simple aperiodic proposer picking function

that breaks the repetitions in all tested problem instances.

B. The Problem of Circular Dependencies

We have established that, in case Algorithm 1 terminates,

it achieves a stable solution too. As the algorithm offers both

sides the opportunity to act as proposers, we expect such a

stable solution to achieve good quality in terms of c(M) and

d(M). However, it is not guaranteed that such a termination

will eventually arise.

The algorithm terminates once all agents are content. Such

contentment would be guaranteed to arise if all proposers’

next target indexes were monotonically increasing, as in Gale-

Shapley’s algorithm. However, in Algorithm 1, an agent may

return to the same target preference several times. If agents’

preference lists follow a circular pattern, an infinite loop may

arise, in which a group of agents continuously reissue the same

proposals to, and break up with, each other. We illustrate an

example of such circularity as follows.

Example 2: Assume two men, m1, m2, and two women

w1, w2, are placed in each other’s preference lists according

to the following pattern:

• m1 : . . . , w1, . . . , w2 w1 : . . . ,m2, . . . ,m1

• m2 : . . . , w2, . . . , w1 w2 : . . . ,m1, . . . ,m2

Assume originally the only pair is (m1, w1). At a subse-

quent iteration, w1 proposes to m2, who accepts, hence we

get (m2, w1). Later, m2 proposes to w2, who accepts. Hence

we get (m2, w2). While now w1 can return to m1, she is still

busy proposing to others. Later, m1, still single, proposes to

w2, who accepts, deserting m2. Hence we get (m1, w2). While

m2 can now return to w1, she is busy making other proposals.

Eventually, w1 proposes to m1, hence m1 rejects w2, and we

get (m1, w1) again. Later m2 proposes to w1, who leaves m1,

hence we get (m2, w1) again. Later w2 proposes to m2; the

whole process may continue in a cycle.

In the above, stable states do exist: both (m1, w1), (m2, w2)
and (m1, w2), (m2, w1) are stable as far as these four agents

are concerned. Moreover, we can obtain these stable states; for

instance, if m1 and m2 propose to w1 and w2, respectively, at

the same iteration, then we arrive at a stable state. The problem

arises not due to the pattern of preferences per se, but due to

the timing of agents proposing to each other across iterations.

This timing depends on which side acts as proposers at each

iteration. As long as the decision of who act as proposers is

made in a state-dependent way, then, once the system arrives

at a state in which it has previously been, it is guaranteed to

enter an endless cycle. The same circumstances will lead to

an endless repetition of the same chain of actions and back to

the same state. It follows that, in order to avoid such cycles,

we should devise a way to pick proposers in a manner defined

by factors unrelated to the current problem state.

One way would be to pick proposers in a randomized
fashion. Yet, in such a case, our experiments would not be

strictly reproducible, casting doubts on the veracity of results.

We then opt for picking proposers not as a function of the

problem state, but as a function of the algorithm iteration. To

guarantee fairness among the two sides, a periodic function

would be fit for that purpose; however, the very periodicity of

such a function is liable to lead to endless cycling in the state

graph as well, in case the number of iterations within a cycle

matches an integer number of periods. Therefore, we opt for a

function that is: (i) deterministic but not state-dependent, (ii)

leading to evenly distributed outcomes, and (iii) aperiodic. As

we describe in the following section, the desired properties are

provided by a composition of a trigonometric and a polynomial

function.

C. Assigning Proposers

Our Equitable Stable Marriage Algorithm (ESMA) uses

the PICK PROPOSERS function shown below. Proposers are

picked using the sign of the function sin(k2), where k is the

algorithm’s iteration counter, leading to repeatable and evenly

distributed, yet aperiodic sequences. If the sign of the function

is positive, then the first group is picked; else the second is

assigned as the proposer group.

1: function PICK PROPOSERS(A, B, k)

2: if sin(k2) ≥ 0 then
3: return A
4: else
5: return B

The chosen function alternates due to its sin component, yet

progressively decreases its oscillation interval as the iteration

count k grows due to its quadratic component. The group

chosen as proposers depends on the sign of this function.
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Fig. 1. Difference of appearances among proposing groups
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It could be argued that, despite its oscillating nature, the

function may not guarantee a “fair” treatment of the oppos-

ing groups. To investigate this matter, we measure how the

deviation, defined as the difference between the times each

side has been chosen as proposers, divided by the number of

iterations k, evolves as a function of k. Figure 1 presents our

findings. As we see, absolute deviation stays below 0.5% in

the long run, while the favored side alternates as k grows.

The choice of a polynomial and a trigonometric function as

a proposer picking function leads all tested instances of the

problem to termination. In our experimentation, we identified

that the usage of a periodic function as a proposer picking

function leads the algorithm to endless loops, since the period

of the function may be synchronized with the repetition of the

problem states.

D. Performance Optimization

As we have seen, an agent a reiterates over its preference list

after a breakup using the next target index n. This provision

guarantees the stability of the state the algorithm terminates

at, yet it is also a computational burden. We discern that n
does not need to be upgraded to the position of an eloping

spouse. Assume n is the position of a’s target index when it

receives a proposal from b = �a[m], with m < n. Later, in

case b elopes, a does not have to re-propose to all preferences

between m and n. It suffices to propose to those suitors who

had proposed to a while it was engaged with b, and whom

it rejected as it was content; only those who have indicated

interest need to be probed. To achieve this effect, it suffices

to maintain a list of such suitors. This pruning of the proposal

target list speeds up the overall algorithm.

IV. EXPERIMENTAL EVALUATION

We now present our experimental study, which documents

that ESMA terminates on the tested large problem instances

and achieves good quality in terms of c(M) and d(M); in our

experiments, these metrics are normalized, i.e., divided by n.

The data sizes we employ greatly outnumber those used in

experimental studies of related works [10]–[15], which were

limited to n ≤ 200. We use sizes of up to 2000, while we

generate synthetic data of diverse skewness and type. Since

many real-world problems studied in the literature (e.g. the

Ministry of Education problem presented in [5]) entail a large

number of agents, we chose a problem size that could be

large enough to be realistic, yet leads Swing to terminate in a

reasonable.

All algorithms were implemented in Java and ran on an

Intel Xeon CPU at 2.00 GHz with 8GB RAM running Debian.

We compare ESMA’s performance in terms of the previously

presented equality costs against the classical Gale-Shapley

algorithm (SMA) and Swing [15]. Swing also allows both sides

to propose. Yet it issues redundant proposals, recapitulating

each agent’s preferences anew at each iteration, and works

in a simple alternating deterministic manner; thus, while

ESMA requires only linear time per iteration, Swing requires

quadratic time per iteration, and, moreover, easily falls into

non-terminating cycles, as Everaere et al. recognize. We found

that Swing does not terminate with 1% of 10, 000 randomly

generated data sets of any size, while ESMA never encoun-

tered such a problem. We chose to compare ESMA against

Swing because both algorithms guarantee that if termination

is reached, the solution is stable. We emphasize that all our

experiments are repeatable and our code is made available1 so

that any interested reader can try our algorithm on their own

data.

For the experimental evaluation, we generate synthetic pref-

erence lists following one of the following distributions: (i)

a Uniform distribution, creating preference lists by assigning

scores uniformly at random, (ii) a Gaussian distribution,

whereby preference lists are created starting from a default
order where ai has score(ai) = i, adding Gaussian noise

to those scores, and re-sorting and (iii) a distribution with

Discrete Regions, in which the agents are partitioned in two

disjoint sets of preferability: one set is annotated as the “hot

region”, indicating that the agents of this set are the most

desirable in the opposite group and the “cold region” which

is formed of the least desirable agents. In the Gaussian case,

noise is multiplied by a skewness factor S ≤ n. As S grows,

the produced distribution becomes more like the uniform one.

We use four datasets with S equal to 20%, 40%, 60% and 80%

of n. Factor S is reversely proportional to the data polarity: the

higher S is, the less polarized the data become. In the Discrete

Regions case the agents of the same group are uniformly

distributed in the preference lists of the opposing groups. We

create four datasets in which the Hot Region consists of the

20%, 40%, 60% and 80% of n. We produced data of 20

different sizes, from 100 to 2000 agents per group, with 5

variants per size, while dropping data on which Swing could

not terminate. The results we present for each data size are

the averages of those runs.

A. Performance Evaluation

Figure 2 presents our results for the Uniform case. In terms

of solution quality, Swing and ESMA perform similarly, as

indicated both by Egalitarian and Sex Equality costs. SMA,

on the other hand, achieves far worse quality in both metrics.

Both Swing and ESMA perform up to 3 times better than

SMA in terms of Egalitarian cost and up to 100 times better

performance in terms of Sex Equality cost. However, ESMA

outperforms Swing in terms of execution time; ESMA runs in

approximately the same time as SMA, whereas Swing needs

two orders of magnitude more time to complete. This result

is due to two factors: (i) each iteration of Swing is much

slower, as each agent reiterates proposals to all its preferences

from the first to the current one (or until it finds a match),

and (ii) the number of iterations Swing goes through is larger,

even when it terminates, as the requirement that each agent

aggressively reiterates proposals at each iteration leads to

repetitive rounds of matchings. ESMA, on the other hand,

does only one proposal per agent per iteration. To quantify this

1At https://github.com/equitable-stable-matching/esma/
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Fig. 2. Performance vs. data size, Uniform distribution
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Fig. 3. Performance vs. data size, Gauss distribution
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Fig. 4. Performance vs. data size, Discrete Regions distribution

difference, we measured that on 2000 agents, Swing needed

approximately 23000 iterations, whereas SMA and ESMA

completed in about 3000 steps. Figures are omitted due to

space constraints. Interestingly, ESMA is faster than SMA in

some cases (e.g. n = 1900). This can be attributed to the

reason that, by allowing both sides to propose, a stable solution

is reached in fewer iterations.

Figure 3 presents the performance of the three algorithms

on the Gaussian dataset. The depicted experiments refer to the

least polarized case (where S = 80%). We again notice that the

algorithms follow the same behavior, both in terms of equality

and in terms of the execution time, as in the Uniform case

(Figure 2). However, comparing Figures 2 and 3, we note that

SMA lowers its difference from Swing and ESMA for both

Egalitarian and Sex Equality cost. Furthermore, in Figure 4 we

provide the respective results for the Discrete Regions dataset,

in the case where the Hot Region covers 20% of n. We notice

that the behavior of the three algorithms is equivalent to the

Gaussian case. However, the difference of the equal algorithms

and SMA in terms of Egalitarian cost is further decreased in

this case, whereas in terms of Sex Equality cost both Swing

and ESMA achieve “fair” results.

Taking the above observation further, we evaluate the per-

formance of the algorithms on 2000 agents as the polarity of

the data increases (S decreases). Figure 5 shows our findings.

In terms of runtime, Swing is again the worst performer, while,

surprisingly, ESMA gains an advantage over SMA; this is

attributable to the fact that SMA may encounter difficulties

with highly skewed preference lists, as it gives the initiative

to one side only. Polarity affects the Egalitarian cost, with

all algorithm’s performance dropping as polarity grows. We

attribute this effect to the fact that, due to the skewness of

preference lists, some agents are universally more desirable,

and less desirable ones tend to get matched to each other;

thus global happiness worsens as skewness grows; on the other

hand, sex equality improves for SMA, as polarity allows for

more equity in a one-side-optimal matching, while it slightly

worsens for others, as more polarized data lead to less equity

compared to less polarized ones in a balanced matching.

V. CONCLUSION

This work revisited the NP-hard Equitable Stable Marriage

Problem. We devised a novel solution, granting both sides

the opportunity to propose in a minimalist and controlled
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manner, governed by an aperiodic, non-state-dependent func-

tion, so as to ensure repeatability in a machine-independent

way. Our experimental study demonstrates that ours is, to

our knowledge, the first practical algorithm that yields high-

quality equitable stable matchings and terminates on all tested

problem instances; it achieves performance similar to or better

than that of Swing, the only existing practical algorithm for

the problem, in terms of Sex Equality, whereas its execution

time is similar to that of the classical Gale-Shapley algorithm

that finds a solution biased in favor of one side.
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