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Abstract SQL-on-Hadoop, NewSQL and NoSQL
databases provide semi-structured data models (typ-
ically JSON based) and respective query languages.
Lack of formal syntax and semantics, idiomatic (non-
SQL) language constructs and large variations in syn-
tax, semantics and actual capabilities pose problems
even to database experts: It is hard to understand, com-
pare and use these languages. It is especially tedious to
write software that interoperates between two of them
or an SQL database and one of them.

Towards solving these problems, first we formally
specify the syntax and semantics of SQL++. It con-
sists of a semi-structured data model (which extends
both JSON and the relational data model) and a query
language that is fully backwards compatible with SQL.
SQL++ is “unifying” in the sense that it is explicitly
designed to encompass the data model and query lan-
guage capabilities of current SQL-on-Hadoop, NoSQL
and NewSQL databases.

Then, we itemize fifteen SQL++ data model
and query language features and benchmark eleven
databases on their support of the multiple options as-
sociated with each feature, leading to feature matri-
ces and commentary. Each feature matrix is the re-
sult of empirical validation through sample queries.
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Since SQL itself is a subset of SQL++, the SQL-aware
reader will easily identify in which ways each of the
surveyed databases provides more or less than SQL.
The eleven databases are Hive, Jaql, Pig, Cassandra,
JSONiq, MongoDB, Couchbase, SQL, AsterixDB, Big-
Query and UnityJDBC. They were selected due to their
market adoption or because they present cutting edge,
advanced query language abilities.

Finally, we briefly discuss the use of SQL++ as
the query language of the FORWARD virtual database
query processor, which executes SQL++ queries over
SQL and non-SQL databases and the use of SQL++ in
the FORWARD application framework, which enables
rapid development of live reports and interactive appli-
cations on SQL and non-SQL databases. FORWARD
provides a proof-of-concept of SQL++’s applicability
as a unifying data model and query language.

1 Introduction

Numerous databases marketed as SQL-on-Hadoop,
NewSQL [30] and NoSQL have emerged to catalyze Big
Data applications. These databases generally support
the 3Vs [11]. (i) Volume: amount of data (ii) Velocity:
speed of data in and out (iii) Variety: semi-structured
and heterogeneous data. As a result of differing use
cases and design considerations around the Variety re-
quirement, these new databases have adopted semi-
structured data models that vary among each other.
Their query languages have even more variations. Some
variations are due to superficial syntactic differences.
Some variations arise from the data model differences.
Finally, other variations are genuine differences in query
capabilities.



2 Kian Win Ong et al.

In this setting, even researchers and practitioners
with many years of SQL database experience face prob-
lems in two areas:

1. Comprehension: Significant effort is needed to un-
derstand, compare and contrast the semi-structured
data models and query languages of these novel
databases. The informal (and often underspecified)
syntax and semantics of the provided query languages
make comprehension even harder or impossible, as it
becomes apparent from the avalanche of syntax and
semantics questions in online forums.

2. Development: It is difficult to write software that re-
trieves data from multiple such databases, given the
different data models, different query syntaxes and
the (often subtly) different query semantics. These
interoperability issues occur frequently in practice,
for example, whenever an organization adopts one
of these new databases and then builds applications
that need integrated access to data stored in the new
database and in its existing SQL databases.

Towards solving the above problems, we formally
specify the syntax and semantics of SQL++, which is
a unifying semi-structured data model and query lan-
guage that is designed to encompass the data model
and query language capabilities of NoSQL, NewSQL
and SQL-on-Hadoop databases. The SQL++ semantics
stands on the shoulders of the extensive past work from
the database R&D community in non-relational data
models and query languages: OQL [2], the nested rela-
tional model and query languages [15,28,1] and XQuery
(and other XML-based query languages) [27,10,5].

SQL++ is an extension to SQL and is backwards-
compatible with SQL. This choice was made in order
to facilitate the SQL-aware audience in two aspects:
First, since many surveyed databases do not support
the entirety of standard SQL capabilities, the provided
comparisons explain the extent to which each surveyed
database supports the SQL capabilities. Second and
most importantly, the reader will understand in what
ways semi-structured data models and query languages
extend SQL’s capabilities, understand in which ways
these extensions may relate to each other, and obtain
an overview on which surveyed databases support these
extensions.

Then we itemize fifteen SQL++ data model
and query language features and benchmark eleven
databases on their support of the multiple options as-
sociated with each feature. For this benchmark, we
cover the most popular SQL-on-Hadoop, NoSQL and
NewSQL databases from DB-Engines [8] (a popularity
tracker for database engines) and industry surveys [12,
17]. We have also selected research-oriented databases

that push the agenda on query languages for JSON or
JSON-like data, as these databases gravitate towards
more sophisticated and complete query capabilities.

The benchmark’s results are presented through
fifteen feature matrices and additional analy-
sis/commentary that classify each database’s data
model and query language capabilities as a subset of
SQL++. The matrices further decompose each feature
into as many as eleven constituent sub-features and
options, in order to facilitate fine-grained comparisons
across different data models and languages. Besides
providing information on supported and unsupported
features and options, the matrices also qualify capa-
bility differences that cut across individual features,
such as the composability of various query language
features with each other. For readability, we interleave
the SQL++ specification sections with the respective
benchmarking (capability classification) sections.

The approach of outlining the differences between
the various databases using SQL++ achieves two ben-
efits: First, SQL++ offers the reader a formal specifica-
tion of the discussed features and capabilities. Second,
by understanding each database’s capabilities in terms
of SQL++, the reader can focus on the fundamental
differences of the databases without being confused by
syntactic idiosyncracies of various query languages and
superficial differences in the documented descriptions
of their semantics.

The relatively immature state of query language
documentation of the surveyed databases leaves many
questions unanswered. We dealt with this problem us-
ing a hands-on approach: Each feature matrix has been
empirically validated by executing sample queries on
the surveyed databases. A benchmark comprising sam-
ple queries, empirical observations, as well as links to
supporting documentation and bug reports is available
at http://forward.ucsd.edu/sqlpp.

The feature matrices of this survey paper classify
many capabilities of semi-structured data models and
query languages. The most prominent capabilities are:

– What kinds of data values are supported by each
database?

– What kind of schemas and constraints are supported?

– How does the query language access and construct
nested data?

– How is missing information represented and handled?

– What are the options and semantics for equality on
non-scalar and heterogeneous values?

– What are the options and semantics for ordering on
non-scalar and heterogeneous values?

– Is aggregation supported?

http://forward.ucsd.edu/sqlpp
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– Is join supported?

– Are extensions (such as UDFs) provided to circum-
vent limitations?

We expect that some of the results listed in the
feature matrices will change in the next years as the
surveyed databases will release newer and better im-
plementations. The arXiv/CoRR version of this paper
[24] and the benchmark will be updated to reflect these
changes.

Despite the forthcoming changes, we expect SQL++
and the comparison methodology followed by this sur-
vey to remain a standing contribution. Besides its value
to developers, SQL++ can also assist the query lan-
guage designers in the NoSQL, NewSQL and SQL-on-
Hadoop space towards (1) producing formal versions of
the syntax and semantics of their query languages (2)
aligning with SQL syntax and semantics (whenever pos-
sible) and (3) expanding beyond SQL in semantically
consistent ways.

Notice that this survey focuses on data model and
query language capabilities exclusively: it does not dis-
cuss performance or scalability. Furthermore, we do not
opine on the business or technical importance of the fea-
tures that are present (or absent) from each surveyed
database.
SQL++ as the Query Language of the
FORWARD Virtual Database: Towards aiding
the development of software that retrieves data
from these new databases, we provide the FOR-
WARD processor (Figure 1). (Additional information
at http://forward.ucsd.edu/sqlpp) Conceptually,
each database (be it SQL or non-SQL) appears to the
client as a set of SQL++ virtual views. In the sim-
plest case, the client issues a SQL++ query over the
data of a single database, and FORWARD translates
the query into the underlying database’s native query
language. Since SQL is a subset of SQL++, this use case
captures the case where an SQL-based report writer is-
sues an SQL query on a non-SQL database. FORWARD
will translate the SQL query into the native language.
In other more complex cases, given a SQL or SQL++
query that is not directly supported by the underly-
ing database, FORWARD will decompose the SQL or
SQL++ query into one or more native queries that are
supported. Subsequently, FORWARD will combine the
native query results and compensate in the middleware
for any semantics or capabilities discrepancies between
SQL++ and the underlying database. Finally, in yet
more complex cases, the client issues a SQL or SQL++
query that integrates the data of two or more databases;
the typical use case being a SQL database and a non-
SQL database.
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Fig. 1: The SQL++ based FORWARD Virtual
Database Query Processor

Due to space limitations, this paper focuses on
the language aspects of SQL++ and the comparison
of NoSQL, NewSQL and SQL-on-Hadoop databases,
rather than the implementation of SQL++ in FOR-
WARD. Nevertheless, the applicability of SQL++ as a
unifying data model and query language is practically
tested in the FORWARD project.
SQL++ in FORWARD’s Live and Interactive
Visualizations and Applications: The FORWARD
project (http://forward.ucsd.edu) also enables the
rapid development of live, interactive visualizations and
small database-driven applications. The developer sim-
ply provides (1) the SQL++ that compiles the dy-
namic data of the page from the underlying SQL
databases, non-SQL databases and application main
memory (e.g., session data) and (2) the visualization
markup. FORWARD automatically takes care of the
AJAX/incremental update of the page when changes
in the underlying data occur. For example, Figure 30
(Appendix B) shows a page that accesses a cars collec-
tion in a database and displays corresponding markers
on the map. Figure 31 shows the page’s complete source
code. As the data are updated (i.e., as the cars move)
the markers correspondingly move on the page, with-
out the need of any additional page update code by the
developer.

Since visualization components (e.g. Google Maps)
have been assigned enriched JSON models by FOR-
WARD, SQL++ provides an excellent fit for reports

http://forward.ucsd.edu/sqlpp
http://forward.ucsd.edu
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and visualizations, thanks to its richness, document
orientation and JSON compatibility. 14 academic and
commercial applications have been built using the
FORWARD visualization and application development
framework.1

Roadmap: Section 2 presents preliminaries, includ-
ing the databases surveyed, and background consid-
erations for the design of SQL++. Section 3 presents
the SQL++ data model and compares databases on
data modeling features. Section 4 presents the SQL++
query language and compares the databases’ query lan-
guage capabilities. Section 5 presents query language
extensions that can be used to circumvent limitations
in query capabilities. Section 6 discusses future work
beyond features covered in this survey. Finally, Ap-
pendix A shows an example of how the FORWARD
middleware query processor executes and translates
SQL++ queries, and Appendix B shows an example
of FORWARD live visualizations and corresponding
source code.

2 Preliminaries

2.1 Benchmarked Databases and Query Languages

The databases and query languages surveyed typically
appear across different product categories in the popu-
lar press:

1. Hadoop (or SQL-on-Hadoop): We survey Apache
Hive [31], IBM Jaql [4] and Apache Pig [23]. Our
discussion of Hive also applies to Cloudera Impala
[6], since Impala is designed to be highly compatible
with Hive.

2. NoSQL: Although NoSQL databases initially pro-
vided only APIs for accessing data, several have
matured to also provide query languages. We sur-
vey Apache Cassandra (CQL) [18], MongoDB [21],
Couchbase (N1QL) [7] and JSONiq [13].
We have omitted key-value stores such as Redis [26]
and Amazon Dynamo [9] from this survey, since they
provide only low-level programmatic APIs instead of
query languages. We also exclude graph databases
such as Neo4j [22] and RDF stores, as their distinctly
different data models are beyond the scope of this
survey, i.e. databases at the intersection of relational
and JSON-based data modeling.

3. Relational Databases: Since RDBMSes provide com-
prehensive coverage of the SQL specification, we con-
sider standard SQL as a single database / query lan-
guage.

1 Commercialization site: http://app2you.com

Database Version
A Hive 0.10.0
B Jaql 0.5.1
C Pig 0.11.0
D CQL (Cassandra) 3.1.5
E JSONiq 1.0.11
F MongoDB 2.4.7
G N1QL (Couchbase) dev.preview 2
H SQL SQL:2011
I AQL (AsterixDB) 0.8.3 beta
J BigQuery Released Mar 25 2014
K Mongo JDBC 4.2.316

Table 1: Versions Used for Experimentation

4. NewSQL [30]: NewSQL databases, such as Google F1
[29], VoltDB [33] and MemSQL [20], also implement
the SQL standard. We do not distinguish between the
SQL standard compliance of respective databases,
and refer to their query languages in aggregate as
SQL.

5. We also survey AsterixDB’s AQL [3], Google Big-
Query (aka Dremel [19]) and Mongo JDBC [32].
The latter is a JDBC driver provided by the Uni-
tyJDBC middleware that allows Java programs to
issue SQL statements over a MongoDB database
(above). Mongo JDBC translates the SQL statements
to MongoDB’s API, thereby augmenting MongoDB’s
query capabilities (e.g. even though MongoDB can-
not execute joins, the middleware can simulate some
joins) but also altering query semantics (e.g. the
middleware may transform the query result so that
it conforms to a relational schema as required by
JDBC).

Table 1 tabulates the specific versions of each
database that are used to run the experimentation
queries for all feature matrices.

2.2 Background of SQL++ Design

SQL++ has been based on SQL, so that its syntax
and semantics will be familiar to the vast majority of
researchers and developers. The SQL++ data model
is an extension of both the relational model and of
JSON, which is the dominant semi-structured data
model among emerging databases. The SQL++ query
language extends SQL with semi-structured capabilities
paralleling those of surveyed languages.

We also note how SQL++ and the surveyed
databases and languages relate to OQL [2] and XQuery
[27]. Indeed, the reader will observe that OQL has
greatly inspired and influenced the syntax of SQL++,
which can be seen as OQL restricted to literal values
(i.e. non-objects), but extended with semi-structured
features such as optional schemas and data heterogene-
ity. Moreover, JSON is much closer to OQL’s data
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Fig. 2: Example of a SQL++ Value

model than XML’s. Since both OQL and JSON distin-
guish between collections versus tuples, we established
a straightforward isomorphic mapping between JSON
and OQL’s data model, whereas an isomorphic map-
ping between JSON and XML’s ordered labeled trees
would be significantly more complicated.

3 Data Model

The data models of the surveyed databases reside on the
spectrum between the rigidly structured SQL relational
model and the semi-structured JSON.2 On SQL’s end,
a database has a fixed schema comprising flat tables,
where a table is a bag of homogeneous tuples and each
tuple is a set of scalar attributes. On JSON’s end: (i)
there is no fixed schema, (ii) values include object lit-
erals (i.e. records) and arrays, which can be nested to
arbitrary depth (iii) array elements can be heteroge-
neous with respect to each other.

The SQL++ data model is designed as a superset of
both SQL’s relational tables and JSON, based on the
observation that the surveyed databases use concepts
that are similar across both data models: A JSON array
is similar to a SQL table with order, a SQL tuple to a
JSON object literal, and a SQL string/integer/boolean
to the respective JSON scalar.

Section 3.1 presents the SQL++ data model and
then surveys the data model feature support of the
surveyed databases. Section 3.2 presents the SQL++
schema features and then surveys accordingly.

3.1 Databases and Values

The syntax of the SQL++ data model follows and ex-
tends JSON. Figure 2 shows an example of a database
with a single SQL++ value named sensors. The value

2 JSON-alike models are also called document oriented.

1 value → defined value
2 | missing
3 defined value → [id ::] scalar value
4 | [id ::] complex value
5 | [id ::] null
6 complex value | tuple value
7 | collection value
8 | map value
9 scalar value → primitive value

10 | enriched value
11 primitive value → ’ string ’
12 | number
13 | true
14 | false
15 enriched value → type ( primitive value , ...)
16 tuple value → { name : defined value , ...}
17 collection value → array value
18 | bag value
19 array value → [ value , ...]
20 bag value → {{ value , ...}}
21 map value → map( value : defined value , ...)

Fig. 3: BNF Grammar for SQL++ Values

provides semi-structured sensor readings that measure
enviromental pollutants. It will be used as the paper’s
running example. The top-level value is a tuple with
attributes location (line 2) and readings (lines 3-
13). The latter is an array of two tuples, and the tuples
are heterogeneous because: (i) each tuple has a differ-
ent set of attributes (lines 5-7 vs 10-12), and (ii) the
ozone attribute maps respectively to values of different
types across different tuples (line 6 vs 11). Each time
attribute maps to a timestamp value (lines 5,10), which
is an extension over JSON, as described next.

3.1.1 Syntax and Semantics

A SQL++ database generally contains one or more
SQL++ named top-level values. A name, such as the
name sensors of Figure 2, is a string and is unique.
Figure 3 shows the BNF grammar for SQL++ values. A
value is a missing value (explained below) or a defined
value, i.e. a scalar, complex or null (lines 3-5). A com-
plex value is either a tuple, collection or map (lines 6-8).
A scalar value is either primitive or enriched (lines 9-
10). Primitive values are the scalar values of the JSON
specification, i.e. strings, numbers or booleans (lines 11-
14). Enriched values (such as dates and timestamps)
are extensions over JSON, and are specified using a
type constructor over primitives (line 15). For exam-
ple, the value timestamp(‘2014-03-12T20:00:00’)
(Figure 2, line 5) is an enriched value.

A tuple is a set of attribute name/value pairs, where
each attribute name is a unique string within the tu-
ple (as in SQL). Each attribute value can be scalars
and null, as well as complex values (line 16), thus ex-
tending beyond SQL’s flat tables. Since SQL++ follows
JSON’s syntax, tuples are denoted by {...}. For ex-
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ample, lines 4-8 of Figure 2 show a tuple with attributes
time, ozone and no2.

A collection is an array or a bag (lines 17-18). Both
may contain duplicate elements. An array is ordered
(similar to a JSON array) and each element is acces-
sible by its ordinal position. (See specifics of access by
position in Section 4.3.) In contrast, a bag is unordered
(similar to a SQL table) and its elements cannot be ac-
cessed by ordinal position. Following JSON’s syntax, ar-
rays are denoted with [...], whereas following AQL’s
syntax, bags are denoted with {{...}}. An array/bag
contains tuples (as in SQL), as well as missing, null,
scalars and complex values (lines 19-20), therefore ex-
tending beyond SQL’s tables. Furthermore, unlike SQL
which requires tuples within a table to be homogeneous
with respect to each other, elements of a SQL++ ar-
ray/bag can be heterogeneous. That is, there are no
restrictions between the elements of an array/bag. For
example, lines 4-8 and 9-13 of Figure 2 show respec-
tively two tuples within an array that are heterogeneous
with respect to each other. Another kind of collection
is lists, i.e., collections whose elements are ordered but
are not accessible by position. Due to their functionality
overlap with arrays and their use by a single surveyed
database, SQL++ does not include lists.

A map contains mappings, where each mapping
maps a left value to a right value, and each left value
is unique within the map (line 21). A subtle point to
note is the similarities and differences between maps
and tuples. In effect, both a map and a tuple are sets of
name/value pairs where names are unique. However, a
map allows the left value of each mapping to be any ar-
bitrary value, whereas a tuple restricts attribute names
to strings (as in SQL). For the purpose of classification,
the SQL++ data model includes both tuples and maps,
since most databases support tuples but not maps.

The special value missing (line 2) is utilized (in
addition to null) for representing the result of a path
navigation that fails. For example, given tuple t with
a single attribute a, the path t.b fails to navigate into
a defined value. We formalize the connection between
path navigation and missing in Section 4.3.

Finally, any SQL++ value may be associated with
an optional id (see lines 3 to 5 of Figure 3), which is
a string or a number and is unique across the whole
database. Id’s are commonly used in the surveyed
databases for efficiently finding a value in the database.
(They are often referred to as keys.) In particular, given
an id k, the associated value is obtained by the call
find(k). The id k of a value v is syntactically denoted
in the BNF by k::v. For example, Figure 2 shows the
key 135 of the tuple value of lines 9 to 13 and the key
’135t’ of the scalar value of line 10. Notice that id’s

are optional. Indeed, in the case of elements of arrays,
values in maps and attribute values of tuples an appli-
cation can achieve reasonably similar efficient random
access by synthesizing its own id’s. For example, con-
sider the tuple 1::{... a: 2:: v}, which is identified
by 1 and has an attribute a whose value is identified by
2. It is easy to see that the attribute’s value could also
be uniquely identified by the sequence of the id 1 and
the attribute name a, i.e., by knowing the id of the tuple
and the attribute name associated with this attribute
value. It is easy to see that the same technique also
applies to the elements of arrays and values in maps.
It can also apply recursively. For example, if the tuple
1 itself is an attribute value of an enclosing identified
tuple 0, then it can be indirectly identified using the id
0. 3

SQL++ extensions over JSON and SQL: In
summary, the SQL++ data model extends JSON
with missing (line 2), enriched values (line 15), bags
(line 20) and maps (line 21). SQL++ extends SQL with
missing (line 2), arrays (line 19) and maps (line 21).
Furthermore, SQL++ extends SQL with arbitrary
composition of complex values and heterogeneity. An
example of the composition extension is that SQL
requires attribute values to be only scalars, whereas
SQL++ allows an attribute value to be any arbitrary
value. We further elaborate on composability in Sec-
tion 3.1.2. An example of the heterogeneity extension
is that SQL requires all tuples of a bag to have the
same attributes with the same types, whereas SQL++
has no such restriction. Indeed, a SQL++ array/bag
may contain heterogeneous elements comprising a mix
of tuples, scalars, and nested bags/arrays/maps.

3.1.2 Classifying Values

Next we list the feature dimensions according to which
we classify and benchmark the data models of the sur-
veyed databases. In Table 2, full support is denoted
with X, lack of support with ×, and partial support
with j. We consider both the query input (i.e. the
database and also literal constants and subqueries that
may appear in a query) and the query output when
classifying the SQL++ values each database supports.

1. Composability: In the SQL data model, the
top-level value is restricted to be a bag, which in turn

3 Notice that id’s and names could be merged into a single
concept, since names are strings that uniquely identify an object.
SQL++ keeps the two concepts distinct since names are expected
to be semantically meaningful strings (e.g., sensors) while keys
may be automatically generated strings or numbers.
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A Hive Bag/tuples × X × j X X
B Jaql Any Value X X × × X X
C Pig Bag/tuples j × j j X X
D CQL Bag/tuples × j × j × X
E JSONiq Any Value X X × × X X
F MongoDB Bag/tuples X X × × X X
G N1QL Bag/tuples X X × × X X
H SQL Bag/tuples × × × × × X
I AQL Any Value X X X × X X
J BigQuery Bag/tuples × × × × X X
K Mongo JDBC Bag/tuples X X × × X X

Table 2: Feature Matrix for Values

contains tuples (H1). In that sense, the SQL data
model is not composable. The majority of the sur-
veyed databases follow SQL’s restriction to composabil-
ity (A1, C1, D1, F1, G1, J1, K1). The top-level bag
of tuples is a special citizen in the sense that an ar-
ray/map/tuple/scalar must reside as an attribute of a
tuple, and not as a top-level value by itself. Further-
more, these databases only support a bag at the top-
level, and an attribute’s value cannot be a bag. Notably,
Jaql, JSONiq and AQL support the top-level to be any
arbitrary value (B1, E1, I1), thus providing a compos-
able data model.

2. Heterogeneity: Jaql, JSONiq, MongoDB,
N1QL, AQL and Mongo JDBC fully support hetero-
geneous collections/maps (B2, E2, F2, G2, I2, K2).
Conversely, Hive, CQL and BigQuery follow SQL in re-
stricting collections/maps to be homogeneous (A2, D2,
H2, J2).

Pig partially supports heterogeneity (C2): the input
of a query can contain collections/maps with heteroge-
neous values. However, if the query’s projection requires
any computation on these values, such as function calls
(e.g. SELECT x+1), Pig implicitly coerces the hetero-
geneous values into values of the same type (e.g. all
x values will be coerced into numbers), and the query
outputs homogeneous collections/maps.

Columns 3-7 classify which values are supported.
For databases that treat the top-level as a special citi-
zen (Column 1), these columns ignore the special citizen
and indicate which are valid values within attributes of
the bag of tuples. For example, SQL supports neither
bags nor tuples as attributes of the top-level tuples (H4,
H6). The following distinction of collections into arrays
and bags in the following classification is based on the
availability (or lack thereof) of access by ordinal posi-
tion. Unlike SQL++ where arrays are ordered collec-
tions and bags are unordered, the surveyed databases

also utilize bags that are implied lists. Given a bag, a
database generally supports a method next that allows
a program to obtain the elements of the bag, one at a
time - as is the case in SQL. A bag is an implied list
when a sequence of next calls returns elements accord-
ing to a determinitic order. The list is implied in the
sense that there is no data model feature (or API) that
distinguishes between a list and a bag. Rather, it is the
programmer’s responsibility to know whether she ac-
cesses a bag that is an implied list versus a “plain" bag
with no deterministic order. Conversely databases that
use arrays may output arrays whose order is nondeter-
ministic, i.e., random. Section 4.10.2 will classify cases
of implied lists and arrays with nondeterministic order,
which pertain to the use (or non-use) of ORDER BY in
queries.

3. Arrays: Hive, Jaql, JSONiq, MongoDB, N1QL,
AQL and Mongo JDBC fully support arrays (A3 B3,
E3, F3, G3, I3, K3). CQL has partial support as it
restricts an array to only contain scalar values, and not
to exceed 65535 elements (D3).

Pig, SQL and BigQuery do not support arrays (C3,
H3, J3). In particular, BigQuery uses Protocol Buffers4

as its data model, which does not support arrays but
provides repeated attributes as a workaround. Within
Protocol Buffers, a tuple does not have unique attribute
names, thus multiple attributes with the same name can
respectively map to different values. This is reminiscent
of XML, where each element can have one or more child
elements with the same tag name.

4. Bags: Only AQL fully supports bags (I4). No-
tably, AQL is the only database that fully supports
both arrays and bags. Pig supports bags, but restricts
the bag elements to be tuples (C4).

5. Maps: Maps are supported only in Hive, Pig and
CQL, but all with restrictions (A5, C5, D5): a Hive
map contains only scalar keys, a Pig map contains only
string keys, and a CQL map contains only 65535 map-
pings that have scalar keys and scalar values.

6. Tuples: All databases fully support tuples, ex-
cept for CQL and SQL both of which do not support
a tuple being nested within the top-level bag of tuples
(D4, H4). In CQL however, one workaround is to use
maps to simulate tuples, but since maps are homoge-
neous (above), all the attribute values must have the
same type.

7. Primitives: Each database fully supports all 3
primitives. Moreover (not shown in table), a few sup-
port additional enriched values such as binary (Jaql,
JSONiq, MongoDB, SQL etc.) and date (JSONiq,
MongoDB, N1QL, SQL etc.). Since number is a double-

4 A data interchange format widely used in Google for RPC
protocols and storage formats [25]
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precision floating-point, databases also support values
with more efficient representations, such as integer,
long and float.

Using the matrix, we also note that three databases
support the entire JSON-subset of the SQL++ data
model: Jaql, JSONiq and AQL. I.e., they support com-
posability, heterogeneity, arrays, tuples and primitives
(B1-3,6-7, E1-3,6-7, I1-3,6-7).

3.2 Schemas

In databases, schemas provide a type system that can
restrict the type and structure of the values and declares
acceptable names. For example, a SQL schema dictates
table names, attribute names and attribute types. Sim-
ilarly a XML Schema or a XML DTD declares element
names and also restricts the sub-element structure of
valid XML documents. Schemas also enforce seman-
tic constraints, such as uniqueness and referential in-
tegrity/foreign keys. Given the focus of this paper on
semi-structured data, it focuses on the type system of
SQL++ (and of the surveyed databases) without dis-
cussing the details of semantic constraints.

Schemas are used to validate data before they are
stored. They are also used to statically check that a
query is meaningful. For example, a SQL query proces-
sor checks that a given query refers to table and at-
tribute names declared in a schema, before the query is
actually evaluated on the data. Furthermore, schemas
are useful when optimizing storage and queries for per-
formance. Finally, schemas explain the intention of
a database, even before any data are added to the
database.

At one extreme, SQL databases require schemas
that impose a rigid structure. At the other extreme,
schemaless databases do not support any aspect of
schemas. Between the two extremes, the SQL++
schema language (and to various degrees some surveyed
databases) enables the specification of rigid structures
when the structure is known and regular, while it can
gracefully degrade towards schemaless (1) when the de-
veloper sees no value in declaring and restricting the
structure of the data or (2) when the data are not char-
acterized by a regular structure.

Formally, a schema S allows a set allow(S) of pos-
sible states of the database, while other states are not
allowed. In contrast, any state is allowed in a schema-
less database, as long as it conforms to the data model.
Schema languages can be formally compared by their
ability to describe allowed sets of states: A schema lan-
guage S is less expressive than a language S′ if for ev-
ery schema S that can be expressed with S there is an

equivalent schema S′ that can be expressed with S′,
where equivalence means that allow(S) = allow(S′). S
is strictly less expressive than S′ if there is at least one
schema S′ expressible in S′ such that there is no equiv-
alent schema S expressible in S. Practically, the schema
language comparisons are explained in Section 3.2.2 in
terms of supported features, where each feature is es-
sentially a way to constraint the set of allowed states.

3.2.1 SQL++ Type System

1 type | plain type
2 [allow null]
3 [allow missing]
4 allow null → null|not null
5 allow missing → missing|not missing
6 plain type → any type
7 | union type
8 | scalar type
9 | complex type

10 complex type → tuple type
11 | collection type
12 | map type
13 any type → any
14 union type → type | ...
15 scalar type → primitive type
16 | enriched type
17 primitive type → string
18 | number
19 | boolean
20 enriched type → date
21 | ...
22 tuple type | { open type }
23 | { closed type }
24 open type → attr , ... , *
25 closed type → attr , ...
26 attr → required attr
27 | optional attr
28 required attr → name : type
29 optional attr | name ? : type
30 collection type → array type
31 | bag type
32 array type → [ type ]
33 bag type → {{ type }}
34 map type → map( type : type )

Fig. 4: BNF Grammar for SQL++ Types

Figure 4 shows the BNF for declaring SQL++ types.
Intuitively, a primitive / enriched / tuple / array /
bag / map type (lines 17, 20, 22, 32-34) constraints
correspondingly the primitive / enriched / tuple / ar-
ray / bag / map values presented in Section 3.1. A
type has a plain type, and optional allow-null/allow-
missing clauses (lines 1-3). An allow-null clause indi-
cates whether the type allows null values: null allows
nulls, not null indicates otherwise (line 4). The allow-
missing clause is analogous (line 5). The any type is
the > (i.e. universal supertype) of the type system [35],
i.e., it allows all values (line 13). If each type ti allows
set of values Vi, then the union type t1| . . . |tn allows the
set of values V1∪. . .∪Vn (line 14). A tuple type is either
open or closed : whereas an open type allows a tuple to
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any

{ location: string, * }

{ 
location: string, readings: [ 
{ 
time: timestamp, ozone: number|string, 
no2?: number, co?: number 

} 
]

}

Fig. 5: Examples of SQL++ Types

contain additional attributes beyond those enumerated,
a closed type does not (lines 22-25). Each attribute in
a tuple type is either required or optional (lines 26-29).
For example, the tuple type { x? : string } indi-
cates that attribute x is optional in the allowed tuples,
but if present x must be a string value. A collection
type is the array type or the bag type (lines 30-33). In
particular, a collection type containing the any type
or the union type allows heterogeneous elements in the
collection value. Lastly, the map type specifies a type
for all keys, and a type for all values (line 34). Figure
5 shows 3 examples of SQL++ types that allow the
SQL++ value in Figure 2.
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A Hive X × j × × × -
B Jaql X X X X X j -
C Pig X × × × × × -
D CQL X × × × × × -
E JSONiq × -
F MongoDB × -
G N1QL × -
H SQL X × × × × X -
I AQL X × × X X × -
J BigQuery X × × × × X -
K Mongo JDBC × -

Table 3: Feature Matrix for Types

3.2.2 Classifying Type Support

The SQL++ schema language is strictly more ex-
pressive than the schema languages of the surveyed
databases. It supports a superset of the schema lan-
guage features of the surveyed databases, which allows
us to use SQL++ to classify the schemas of the different
databases.

Table 3 classifies the databases by the typing fea-
tures each supports. Column 1 classifies whether the

surveyed databases support static type checking of a
query, by retrieving the types of a query’s input through
either of two mechanisms: (1) In a database that uses
schemas to constraint named values (such as SQL,
which stores data in typed tables), the static type
checker uses the types of the named values. (2) In a
database where named values are not constrained by
schemas (such as Hive and Pig, both of which physi-
cally store data as untyped byte arrays in HDFS), the
developer is required to provide functions in the FROM
clause (or equivalent) to parse these named values and
assign types to them, before they can be used as query
input. When either mechanism is supported to provide
types for the query input, Columns 2-7 further classify
whether a database supports the any type, union type,
open tuple type, optional attribute, not null clause
and not missing clause. Partial support is denoted as
j, whereas - denote that typing features are not appli-
cable. Based on these columns, the surveyed databases
can be grouped into three categories.

1. Schemaless databases do not assign types to query
input, as denoted by× in Column 1, and - in Columns
2-7. These databases are JSONiq, MongoDB, N1QL
and Mongo JDBC (E1, F1, G1, K1).

2. Fixed schema databases assign only primi-
tive/enriched/tuple/array/bag/map types to query
input, and do not have typing features that further
relax these types. In particular, these databases
constraint a collection’s elements to be (deeply)
homogeneous with respect to each other. These
databases are denoted with X in Column 1 and ×
in Columns 2-5, namely Hive, Pig, CQL, SQL and
BigQuery (A2-5, C2-5, D2-5, H2-5, J2-5). Hive is in
this classification because the current version only
partially supports the union type (A3), which has
been implemented as an enriched type that many
of Hive’s underlying algebraic operators do not yet
handle.

3. Flexible schema databases are those where values can
either be constrained by schemas or unconstrained5.
These databases are denoted by X in Column 1, and
one or more X in Columns 2-5, namely Jaql and AQL
(B2-5, I2-5).

Both SQL and BigQuery support the not null fea-
ture (H6, J6). Jaql partially supports the not null fea-
ture, as non-null clauses and plain types are mutually
exclusive (B6). For example, one can specify a non-null
type or a string type, but a non-null string type is not
supported. If Jaql had fully supported the not null

5 Unconstrained values are specified by a trivial schema: any
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1 query → sfw query
2 | expr query
3 sfw query → config...( sfw query )
4 | SELECT [DISTINCT] select clause
5 [FROM from item ...]
6 [WHERE expr query]
7 [GROUP BY group item ...]
8 [HAVING expr query ...]
9 [(UNION|INTERSECT|EXCEPT)
10 [ALL] sfw query]
11 [ORDER BY order item ...]
12 [LIMIT expr query]
13 [OFFSET expr query]
14 select clause → [TUPLE] select item ...
15 | ELEMENT expr query
16 select item → expr query [AS attribute]
17 from item → from single
18 | from join
19 | from flatten
20 from single → expr query AS element var
21 [AT position var ]
22 from join → from item
23 (LEFT|RIGHT|FULL) OUTER|INNER
24 JOIN from item ON expr query
25 from flatten → (OUTER|INNER) FLATTEN(
26 expr query AS element var,
27 expr query AS element var)
28 group item → expr query [AS grouping var ]
29 order item → expr query [ASC|DESC]
30 expr query → config...( expr query )
31 | ( sfw query )
32 | named value
33 | variable
34 | function name (expr query...)
35 | EXISTS( sfw query )
36 | path step
37 | value
38 variable → element var
39 | position var
40 | grouping var
41 path step → expr query . name
42 | expr query [ integer ]
43 | expr query -> value
44 config → @tuple nav path params
45 | @array nav path params
46 | @map nav path params
47 | @group by group by params
48 | @order by order by params
49 | @eq equal params
50 | @lt less than params
51 | @bag op bag op params

Fig. 6: BNF Grammar for SQL++ Queries

feature, its schema language would be strictly more ex-
pressive than the other surveyed schema languages.

The not missing feature is inapplicable in all sur-
veyed databases: they are either schemaless databases
(E7, F7, G7, K7), or their data models do not support
the missing value (A7, B7, C7, D7, H7, I7, J7).

4 Query Language

Figure 6 shows the BNF grammar for SQL++ queries.
SQL++ extends SQL in three ways:

1. Semi-structured: Lines 8, 14-29, 32-34, 37, 39-43
correspond to extensions over SQL’s syntax to sup-
port new semi-structured query capabilities.

2. Composability: Any type of value can be con-
structed by an SQL query or subquery. Furthermore,
SQL++ queries are closed under composition, which
implies that any query input can equally well be
stored data or be a subquery’s result. In particular,
a SQL++ query (lines 1-2) is either an SFW query
(i.e. SELECT-FROM-WHERE) or expression query (for
brevity, expression). Unlike SQL expressions, which
are restricted to outputting tuples of scalars, SQL++
expression queries output arbitrary values (lines 30-
43), and are fully composable with SFW queries
(lines 16, 20, 24, 26-29). Furthermore, SQL++ sup-
ports the top-level query to also be an expression
query, not just a SFW query as in SQL.

3. Configuration parameters Lines 3, 30, 44-51 in-
dicate SQL++’s novel scheme of config parameters,
which formally and systematically capture the se-
mantics differences of path navigation, group-by, or-
dering, bag/set operator, equality and inequality
comparison semantics among the surveyed databases.
The configuration parameters allow SQL++ to
morph into any of the surveyed query languages.
Furthermore, database query language designers can
treat the values of configuration parameters as their
space of options when they formalize the semantics
of various operations.

Section 4.1 formalizes query evaluation environ-
ments, i.e. how the free variables of a query are instanti-
ated/bound during evaluation. Section 4.2 connects the
generation of environments with the evaluation order of
query clauses in SFW queries.

Each of the next subsections first defines the syn-
tax and semantics of a SQL++ query feature. Then
it utilizes the SQL++ feature definition to systemati-
cally classify each database’s query capabilities in fea-
ture matrices. Section 4.3 formalizes path navigation
in tuples, arrays and maps (lines 36, 41-43) and classi-
fies the support for such navigation in each database.
Section 4.6 defines the FROM clause (lines 5, 17-27) and
classifies according to a database query language’s abil-
ity to iterate over subqueries, joins, flattened collec-
tions (i.e. unnesting) and ordinal positions of itera-
tions. The section shows that not all databases have
achieved parity with SQL: iterating over subqueries
and joins are not fully supported by some of them.
Section 4.7 describes the WHERE clause (line 6), focus-
ing on ternary logic and subqueries. Section 4.8 de-
scribes the SELECT clause (lines 4, 14-16) and cap-
tures related SQL extensions such as outputting tu-
ples that contain non-scalars (including nested collec-
tions) and outputting results that are not collections
of tuples. Section 4.9 describes the GROUP BY (line 7)
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and classifies databases on their capabilities to group
on non-scalar/heterogeneous values and to construct
nested collections via grouping. Section 4.10 describes
the ORDER BY (lines 11, 29) and classifies databases
on ordering on non-scalar/heterogeneous values, auto-
matic order preservation abilities and the relationship
between the output type and the presence (or absence)
of ORDER BY. Section 4.11 describes bag/set operators
(such as UNION ALL, lines 9-10) and classifies bag/set
operations on non-scalar and heterogeneous values. Sec-
tion 4.12 describes the = equality function and provides
config parameters that classify the behavior of equality
on non-scalar and heterogeneous values. Similarly, Sec-
tion 4.13 describes the < less-than function and classifies
accordingly.

The feature matrices focus on language expressive-
ness and omit discussions on performance and present
system limitations. For example, MongoDB supports
two different query APIs: a basic API restricted to fil-
tering values, versus an advanced API that supports
aggregation but has the system limitation of restricting
output data to 16 MB. When classifying MongoDB’s
query capabilities, we focus on the latter API, which
provides a more expressive language.

4.1 Named Values and Variable Bindings as Query
Evaluation Environments

Each SQL++ query q is evaluated within an environ-
ment Γ that is a variable binding tuple (for brevity,
binding tuple) 〈x1 : v1, . . . , xn : vn〉 where each xi is
a variable and each SQL++ value vi is the binding of
xi.6 The notation Γ ` q → v denotes that the SQL++
query q evaluates to the value v within Γ, i.e. when ev-
ery free variable of q is instantiated by its binding in Γ.
For example, 〈x : 5, y : 3〉 ` (x + y)/2→ 4.

Before a SQL++ (sub)query is evaluated, the
SQL++ semantics produce the variable-binding pairs
of the query’s environment Γ in two steps. First, for
each named value of the database, where the name is
n and the value is v, the environment includes the pair
n : v. Second, similar to SQL’s tuple variables, the eval-
uation of a SQL++ FROM clause produces additional
variable-binding pairs.7

Given two binding tuples b and b′, their concate-
nation is denoted as b||b′. In order to define variable
scoping later, we require that if variable x is mapped

6 Notice that a binding tuple is an SQL++ tuple. The charac-
terization “binding" pertains to its use in the semantics, rather
than structural differences.

7 Indeed, GROUP BY clauses also produce additional variable
bindings during query evaluation, as explained in the respective
sections.

in both b and b′, b||b′ retains only the mapping of x in
b. Hence each variable remains unique within a binding
tuple.

For an example of environments, Figure 7 shows the
SQL++ query SELECT s.error * scale AS x FROM
sensors AS s, which multiplies the error margin of
each sensor by a scaling factor. The query is evaluated
on a database that has two named values: the collection
named sensors and the number named scale. The
evaluation of the query and its constituent queries pro-
ceeds as follows. First, the query sensors is evaluated
in the context of Γ0 (which includes the sensors and
scale variables), and the result is the sensors collec-
tion value. The FROM clause outputs one binding tuple
bi = 〈s : vi〉 for each element vi where i = 1, . . . , n

of the sensors collection. For each binding tuple bi, the
SELECT clause evaluates the constituent query s.error
* scale within the environment Γi = bi||Γ0 = 〈s :

vi, sensors : . . . , scale: 1.4〉, outputting a result
value ri. The query result is the bag {{r1, . . . , rn}}. Fig-
ure 8 shows the first evaluation of s.error * scale
within the environment Γ1 = b1||Γ0.

Notice, query evaluation treats each value named n

identically to a FROM variable named n. For example,
the query of Figure 7 could be a nested query where
scale and sensors are variables defined in the FROM
clause of the parent query. The origin of scale and
sensors does not matter to the query’s evaluation.

Notice also that SQL++ supports both names and
variables to be arbitrary values. This is in contrast to
SQL which restricts named values to flat tables (e.g.
CREATE TABLE, WITH), and tuple variables to flat tu-
ples. SQL++’s blend of names and variables enables
full composability, and opens the door to the query pro-
cessing of arbitrarily structured SQL++ values.

In the following sections, we may denote Γ ` q →
v simply as q → v, when the environment is im-
plied. When v is a collection (resp. scalar/boolean),
q is simply referred to as a collection query (resp.
scalar/boolean query).

4.2 SFW queries

Similar to SQL semantics, the clauses of an SFW query
(lines 3-13 of Figure 6) are evaluated in the following or-
der: FROM, WHERE, GROUP BY, HAVING, ORDER BY, LIMIT
/ OFFSET and SELECT. For example, Figure 9 shows an
SFW query that finds the top 2 readings below 1.0, and
illustrates how each clause inputs/outputs binding tu-
ples. For the purpose of illustration, the SELECT clause
is shown at the bottom since it is the last clause to be
evaluated.
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Fig. 7: Environment Γ0 has variables corresponding to named val-
ues
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Fig. 8: Environment Γ1 has both kinds
of variables
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Fig. 9: Evaluating Clauses of an SFW Query

When evaluating a SFW query, the FROM clause first
outputs a bag of binding tuples Bout. In each binding
tuple of Bout, each variable of the FROM clause is bound
to a value. For example in Figure 9, each binding tuple
binds r to a scalar value. Most subsequent clauses input
a bag of binding tuples Bin and output a bag of binding
tuples Bout. For example, the WHERE clause (which typ-
ically follows the FROM clause) inputs the bag of binding
tuples that have been output by FROM, and outputs the
subset thereof that satisfies the condition expression of
the WHERE clause.

In an evaluation pattern that is followed by most
clauses, the constituent expression e of the WHERE clause
(i.e., the condition expression e, which may itself con-

tain nested SFW queries) is evaluated once for each
binding tuple bj of WHERE’s input bag Bin. The envi-
ronment of each evaluation of e is bj‖Γ, where Γ is the
environment of the SFW query. For example in Fig-
ure 9, the WHERE condition r < 1.0 is evaluated once
for each of the four input binding tuples in B.

The pattern of “input bag, evaluate constituent ex-
pressions of the clause, output bag" has a few ex-
ceptions, each of them exemplified in Figure 9: First,
the ORDER BY clause inputs a bag of binding tuples
and outputs an array of binding tuples. Second, a
LIMIT/OFFSET clause need not evaluate its constituent
expression for each input binding tuple. Finally, the
SELECT clause inputs a bag (resp. array, if ORDER BY
is present) of binding tuples, and outputs the SFW
query’s result, which is a bag (resp. array) with exactly
one element for each input binding tuple.

Finally, notice that the above discussion of
SFW queries did not capture set operators (UNION,
INTERSECT and EXCEPT). As is the case with SQL se-
mantics as well, the coordination of ORDER BY with the
set operators is treated as a special case, which is de-
scribed in Section 4.10.

SQL++ variables versus SQL attributes:
Consider the query SELECT x.a, x.b FROM c AS x,
where c is a SQL table (i.e. a bag of tuples) with at-
tributes a and b. SQL semantics dictate that the FROM
clause outputs (binding) tuples with attributes a and
b. In contrast, the SQL++ FROM clause outputs bind-
ing tuples, each of which binds a single variable x to a
tuple with attributes a and b. SQL++ has introduced
an additional level of tuple nesting, which is necessary
for two reasons: First, unlike SQL, in SQL++ we can-
not assume knowledge of schema, which is required in
order to produce the SQL binding tuples. Second, in
SQL++ a collection can contain elements beyond tu-
ples, thus SQL++ requires a general approach to bind
variables to non-tuple elements.
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4.3 Path Steps

Since SQL’s data model is flat, there are only paths t.a,
which navigate from a tuple variable t (i.e., a variable
bound to a tuple) to a scalar attribute a. In contrast,
SQL++ provides paths where the navigation initiates
from a variable v that may be bound not only to a tuple
but possibly to a map or an array. Furthermore the
navigation may return complex values, such as tuples,
arrays and maps.

The semantics of the SQL++ paths also have to ac-
count for the semistructured nature of SQL++. Unlike
SQL where static type checking of the query guarantees
that every path navigation t.a is meaningful when the
query runs (i.e., static checking guarantees that every
tuple bound to the tuple variable t indeed has an at-
tribute a), the runtime evaluation of an SQL++ path
expression has to produce a result even in the case
where the path fails to find the target of the naviga-
tion. There are more than one legitimate options that
a language’s designer may take (and, indeed, design-
ers have taken) on what such a path should evaluate
to. For example, given tuple t with a single attribute
c, some surveyed databases evaluate the path step t.b
into null and some return missing (which is distinct
from null). To encompass such options and to enable
systematic classification, SQL++ uses config parame-
ters to systematically represent all possible options of
navigation semantics. In the classification, one of the
configurations options is the “error", which captures the
inability of some databases to deal with failure to find
a path’s target.

4.3.1 SQL++ Syntax and Semantics

The basic semantics of SQL++ path describe the cases
where the path step navigates from the appropriate
source and finds a target:

1. A tuple path step t.a navigates from tuple t into
its attribute a (Figure 6 line 41).

2. An array path step a[i] navigates from array a into
its i-th element (line 42).

3. A map path step m->k navigates from map m into
the right value of the mapping g that has left value
k (line 43).

Figure 10 shows examples of tuple path steps
(line 1), array path steps (line 2) and map path steps
(line 3). A path expression with multiple path steps
can navigate deeply into complex values (line 4). Note
that each path step navigates into a unique value.
This is identical to SQL’s behavior, but different from
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Fig. 10: Using Path Steps to Navigate into Complex
Values

1 path params →
2 {
3 [absent : (null|missing|error) ,]
4 [type mismatch : (null|missing|error) ]
5 }

Fig. 11: BNF Grammar for Path Config Parameters

t.a →



v if t is a tuple that
maps a to v

@tuple nav.absent if t is a tuple that
does not map a

@tuple nav.type mismatch otherwise

a[i] →



v if a is an array with
i-th element as v

@array nav.absent if a is an array with n
elements ∧ (i < 1 ∨ i > n)

@array nav.type mismatch otherwise

m.k →



v if m is a map that
maps k to v

@tuple nav.absent if m is a map that
does not map k

@tuple nav.type mismatch otherwise

Fig. 12: Semantics for Path Navigation and Its Config
Parameters
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Fig. 13: Using Path Config Parameters to Specify Path
Navigation Semantics

XQuery/XPath’s behavior where each path step may
return a set of one or more nodes8.

8 Since each XPath path step returns a node-set, XPath fur-
ther defines equality between two node-sets as true if and only
if there is a node in the first node-set that equals a node in the
second node-set. Consequently, equality becomes a non-transitive
relation within XPath. Such is not the case in SQL++ or any of
the surveyed databases.
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The different options for a path step that fails to
navigate are specified through SQL++ config parame-
ters, which are presented in Section 4.5, after we have
first the general aspects of configuration parameters in
Section 4.4.

4.4 SQL++ Configurations

Generally config parameters are used to specify the dif-
ferent options of SQL++ query language features. The
configured query @c t (q) is a config c with config tu-
ple t on a query q (Figure 6, lines 3, 30). Each config
tuple {p1 : o1, . . . , pn : on} maps each parameter pi
to a parameter option oi, where each option is either
an SQL++ value or a special value, such as the spe-
cial value error. In either case, a parameter option is
statically specified: it cannot be the result of another
query. Suppose @c t (q) is evaluated in environment Γ.
Then q is evaluated in environment < @c : t > ‖Γ. That
is, q is evaluated in the context of config @c. Generally,
a parameter option that is an SQL++ value v is used
to dictate that v will be the result of an SQL++ query
under conditions specified in the semantics. The special
value error dictates that query processing fails in these
conditions. A concrete use case of config parameters
appears next, in the semantics of SQL++ paths.

4.5 SQL++ Path Configurations

The semantics of path navigation are specified by a path
config (Figure 6, line 44-51). Figure 11 lists the path
config parameters and their possible options. Figure 12
shows the semantics of path navigation using the path
config parameters. The absent parameter specifies the
returned value when a path step fails because an at-
tribute/element/mapping is absent: null, missing, or
throw an error (line 3). The type mismatch parameter
specifies whether to return null, missing, or throw an
error when a tuple/array/map path step is invoked on
a non-tuple/array/map (line 4).

For example in Figure 13, the @tuple nav config
specifies that navigating into an absent attribute re-
turns missing, and navigating from a non-tuple re-
turns null. As another example, SQL’s semantics for
path navigation is specified with the following con-
fig: @tuple nav {absent: error, type mismatch:
error}9.
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A Hive e e n e n e
B Jaql n e n e -
C Pig e e - n e
D CQL e e - -
E JSONiq m m m m -
F MongoDB m m - -
G N1QL m m m m -
H SQL e e - -
I AQL n e n e -
J BigQuery e e - -
K Mongo JDBC mj mj - -

Table 4: Feature Matrix for Path Navigation

4.5.1 Classifying Tuple, Array and Map Navigation

Table 4 classifies each database’s semantics for path
navigation in terms of a SQL++ path config. For con-
ciseness, each cell shows only the first letter of a param-
eter option. Partial support is denoted with j, whereas
inapplicability is denoted with -. For example, SQL is
denoted with - for array/map config parameters (H3-6),
since it lacks support for array/map navigation and its
semantics never utilize these config parameters.

1-2. Tuple Navigation: JSONiq, MongoDB and
N1QL return missing for both absent attributes and
type mismatches during tuple navigation (E1-2, F1-2,
G1-2). Hive, Pig, CQL, SQL and BigQuery throw errors
for both absent attributes and type mismatches (A1-2,
C1-2, D1-2, H1-2, J1-2). Jaql and AQL return null for
absent attributes but throw errors for type mismatches
(B1-2, I1-2).

Finally, since Mongo JDBC utilizes MongoDB for
query processing, it uses missing for intermediate re-
sults, but replaces missing with null in the final out-
put in order to conform to a relational schema as re-
quired by JDBC (K1, K2). Furthermore, Mongo JDBC
behaves differently for type mismatches based on where
tuple navigation is executed. If tuple navigation is del-
egated to MongoDB, null is returned as previously de-
scribed. However, if tuple navigation is executed in the
UnityJDBC middleware, an error will be thrown.

3-4. Array Navigation: In Jaql, JSONiq, N1QL
and AQL, array navigation behaves consistently with
tuple navigation (B1-4, E1-4, G1-4, I1-4). For Hive, ar-
ray navigation returns null for absent elements, which
is more lenient than its tuple navigation which throws
an error for absent attributes (A1,3).

9 Since a SQL database has fixed schemas, these errors are
caight by static type checking.
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5-6. Map Navigation: In Hive and Pig, map navi-
gation returns null for absent mappings, and throws an
error for type mismatches (A5-6, C5-6). For Pig, map
navigation on absent mappings is more lenient than its
tuple navigation, which throws an error for absent at-
tributes (C1,5).

Three subtle quirks warrant further discussion:

1. Recall from Section 3.1 that CQL (partially) sup-
ports arrays/maps. Despite so, CQL does not sup-
port array/map navigations, and restricts that ar-
rays/maps be retrieved in their entirety (D3-6).

2. When Jaql encounters a type mismatch (B2, B4),
a soft error is thrown at runtime: the value is dis-
carded from the current set being processed, but
query processing continues for other values. Thus, it
is not possible to tell from the query output whether
type mismatches have occurred during query evalu-
ation.

3. JSONiq does not always preserve missing values.
For example, the equivalent JSONiq query of Fig-
ure 13 returns a result with the two missing values
omitted. Since JSONiq has its roots in XQuery pro-
cessing, it has inherited certain XQuery’s seman-
tics. In particular, each JSONiq query inputs and
outputs a sequence of values, which is denoted with
parentheses, i.e. (...). A SQL++ missing value
is encoded as a JSONiq empty sequence (). More-
over, similar to XQuery processing, nested JSONiq
sequences are recursively concatenated into a sin-
gle flat sequence. For example, ((1, 2), (), 3) is
concatenated to become (1, 2, 3). Thus, missing
values are lost in these cases.

4.6 FROM clause

The SQL++ FROM clause provides features that allow
the variables to range over semi-structured data, unlike
the SQL FROM clause variables that range over tuples
only. The SQL++ variables can range over heteroge-
neous elements and over nested collections (a feature
also known as unnesting in nested relational algebras
[15,28]). Furthermore, FROM clause variables can reg-
ister the order of input elements, which is useful for
order-aware queries.

The surveyed databases vary in their level of sup-
port of such SQL++ semi-structured abilities. They
also differ in their support of classical SQL capabili-
ties, such as iterating over the results of subqueries and
joining multiple collections.

4.6.1 SQL++ Formalism

The FROM clause specifies FROM items (Figure 6, line 5),
where each FROM item is an expression (e.g. a named
value, a SFW subquery, etc), JOIN/OUTERJOIN clause
or a FLATTEN clause (lines 17-19), and outputs a bag of
binding tuples Bout.10 For ease of exposition, we first
present the semantics for FROM clauses with a single
FROM item, thereafter extend the semantics to clauses
with multiple FROM items.

1. A FROM item with a single expression/sub-query is:
FROM e AS x [AT y] (Figure 6, lines 20-21). x is an
element variable, and y is a position variable. As in
SQL, e can be a subquery or a named value (lines 31-
32). SQL++ extends beyond SQL towards full com-
posability, as e can also be a variable, function call,
path or value literal (lines 33-37). Since an SQL++
collection comprises elements that may be tuples (as
in SQL) but also arrays, bags and scalars, SQL’s
tuple variable in the FROM clause is generalized to
SQL++’s element variable. Furthermore, the posi-
tion variable is also an extension over SQL.
Let e → c, where c is a collection (i.e., bag or ar-
ray) with n elements v1, . . . , vn.11 For each vj , j =

1 . . . , n, the FROM clause outputs a binding tuple
bj ,where bj = 〈x : vj , y : uj〉 and uj is the ordi-
nal position of vj in c when c is an array, or the
sentinel value −1 when c is a bag, where the −1 sig-
nifies that c was not an array and hence positions are
meaningless. As in SQL, the FROM clause iterates over
collections in non-deterministic order. An output or-
der may be later imposed by ORDER BY.
For example, Figure 14 shows a SQL++ query that
uses a position variable to obtain ordinal positions
of an array, and outputs the array in reverse order.
The FROM clause defines the element variable r and
the position variable p, and outputs binding tuples
b1, b2 and b3 that bind r and p to scalar values. The
ORDER BY clause uses the variable p to sort the bind-
ing tuples in descending order of their original ordinal
positions in the array.

2. Next consider a FROM clause involving a single join
or a single outerjoin. (The following semantics gen-
eralize in a straightforward way to a join/outerjoin
expression with multiple joins and/or outerjoins.) In
the single join/outerjoin the FROM clause syntax is:
FROM l AS xl [AT yl] J JOIN r AS xr [AT yr] ON e

(Figure 6, lines 23-25), where l and r are expres-
sions/subqueries, xl and xr are element variables,

10 We will see that the FLATTEN and JOIN clauses are not strictly
necessary, since they can be emulated by sequences of expressions.
11 If c is not a collection, then e→ {{c}}.
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Fig. 14: Using AT (Position Variable) to Obtain Ordinal
Positions for Input Order

yl and yr are position variables, J is the join type
(LEFT/RIGHT/FULL OUTER join or INNER join) and e

is an expression that may involve any of xl, xr, yl, yr
and returns a boolean.
Suppose the enclosing query is evaluated in environ-
ment Γ. Let us call Bl the bag of binding tuples
that would result from the single FROM item clause
FROM l AS xl AT yl and respectively call Br the bag
of binding tuples that would result from FROM item
clause FROM r AS xr AT yr. Then the inner join
FROM clause outputs all binding tuples bl‖br, bl ∈
Bl, br ∈ Br for which bl‖br‖Γ ` e → true, i.e.,
the result of joining Bl and Br on the condition e.
A left outer join FROM clause outputs all the bind-
ing tuples that the inner join outputs, plus for each
bl that did not match a br, it outputs a binding tu-
ple bout = bl‖〈xr : null, yr : null〉12. The analogous
applies for right/full outer joins.

3. A FROM item with a FLATTEN clause is a SQL++
extension (Figure 6, lines 25-27). Consider first the
FROM clause
FROM(OUTER|INNER) FLATTEN(e AS x, x.p AS y),
where OUTER/INNER is the flatten type, e is the
parent expression, x is the parent element variable,
x.p is the child path and y is the child element
variable. Notice that the child path x.p is rooted at
x.
Suppose the expression e evaluates into a collection
c. The INNER FLATTEN clause outputs all binding tu-
ples 〈x : u, y : v〉, such that u ∈ c and v ∈ u.p, i.e., v
is a descendant of u by following the path p.

12 Notice that, instead of the SQL-compliant null, the seman-
tics could have introduced missing or choose to not have at-
tributes xr and yr in a subset of the binding tuples, which would
be acceptable since SQL++ does not require homogeneity.

Analogous to outer joins, the OUTER FLATTEN clause
outputs the same binding tuples as INNER FLATTEN,
plus for each u ∈ c where u.p is the empty collection,
outputs a binding tuple 〈x : u, y : null〉. Again,
instead of the null, the semantics could have intro-
duced missing or produce a binding tuple that does
not have the variable y.
For example, Figure 15 shows a SQL++ query
that uses INNER FLATTEN to unnest nested bag
readings. In the FROM clause, for each parent ele-
ment s, the child path s.readings evaluates to a
bag of two scalar elements. Thus, the FROM clause
outputs binding tuples b1 . . . b4, each of which bind
variables s and r. The WHERE clause outputs b′1 and
b′2, which satisfy the expression r > 0.2.

Finally, consider a FROM clause with multiple items
f1 . . . fn. Whereas SQL only supports FROM items that
are independent of each other, SQL++ further sup-
ports correlated FROM items. The expression(s) of fi
can utilize any variables output by the preceding items
f1 . . . fi−1. Consider FROM items f1, . . . , fi, i ≤ n. The
result of the FROM is defined inductively: Assume that
the clause FROM f1, . . . , fi−1, where i < n outputs bind-
ing tuples Bi−1. Then the FROM f1, . . . , fi outputs all
binding tuples bi−1‖bi, such that bi−1 ∈ Bi−1, bi ∈ B′,
where B′ is the set of binding tuples resulting from the
evaluation of FROM fi within bi−1‖Γ.

Relationship between types of FROM items Notice that
the INNER FLATTEN feature does not increase the ex-
pressiveness of SQL++, as it can be easily simulated.
For example, the FROM clause of the query of Fig-
ure 15 can be written simply as FROM sensors AS s,
s.readings AS r. Similarly, the JOIN (but not the
right/left/full OUTER JOIN) can also be simulated by
moving the join condition to the WHERE clause.

4.6.2 Classifying FROM abilities

Table 5 classfies each database’s semantics for itera-
tions. Partial support is denoted with j, whereas inap-
plicability is denoted with -.

1. Iterating over Subqueries: CQL, MongoDB,
N1QL and Mongo JDBC support a subset of SQL++
where a FROM item is restricted to be a named collection
(D1, F1, G1, K1). In particular, a FROM item is never a
subquery, causing queries to be non-composable in the
FROM clause.

2. Joins: CQL, MongoDB and N1QL do not sup-
port joins (D2, F2, G2). They support a subset of
SQL++ where there is no JOIN clause, and the FROM
clause can only contain a single item (i.e. there is no
Cartesian product).
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Fig. 15: Using INNER FLATTEN to Unnest Collections
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A Hive X j X X X
B Jaql X j × X X
C Pig X j X × X
D CQL j × × × -
E JSONiq X X X × X
F MongoDB j × X × -
G N1QL j × X × -
H SQL X X × × X
I AQL X X X × X
J BigQuery X j × X X
K Mongo JDBC j X × × -

Table 5: Feature Matrix for Iterations, Joins, Unnesting
and Ordinal Positions (FROM clause)

A few databases syntactically restrict join condi-
tions: Hive, Jaql, Pig and BigQuery support only equi-
joins, i.e. a join with the condition restricted to a
conjunction of equalities (A2, B2, C2, J2). To sim-
ulate an inner join with an arbitrary condition, one
workaround is to use true as the join condition and
place the actual arbitrary condition in the WHERE clause,
but this workaround does not apply for left/right/full
outer joins. Furthermore, BigQuery does not support
right/full outer joins.

Lastly and notably, Mongo JDBC augments Mon-
goDB by simulating joins in its middleware (K2).

3-4. Unnesting: Hive, Pig, JSONiq, MongoDB,
N1QL and AQL support unnesting that is equivalent
to INNER FLATTEN (A3, C3, E3, F3, G3, I3), whereas
Hive, Jaql and BigQuery support unnesting that is
equivalent to OUTER FLATTEN (A4, B4, J4). Notably,
Hive supports both semantics for unnesting.

Also, note that unnesting collections is supported
by MongoDB but not Mongo JDBC (F3, K3), thus the
limitation is of the UnityJDBC middleware.

5. Ordinal Positions: Both JSONiq and AQL sup-
port obtaining ordinal positions for input order in the
same way as SQL++: by specifying a position variable
in a FROM item (E5, I5). Hive, Jaql, Pig, SQL and Big-
Query also support obtaining ordinal positions, albeit
through the projection of a new attribute that captures
the ordinal position (A5, B5, C5, H5, J5). The new at-
tribute is constructed by enumerate() in Jaql, RANK
in Pig, and the ROW NUMBER window function in Hive,
SQL and BigQuery. Note that Hive, Pig, SQL and Big-
Query support obtaining ordinal positions from bags,
since these databases support deterministic order on a
bag as long as the bag is output by a subquery with an
ORDER BY. (Section 4.10.2 further classifies determinis-
tic ordering in output collections.)

Finally, CQL, MongoDB, N1QL and Mongo JDBC
are denoted with - (D5, F5, G5, K5). In each of these
databases: (i) FROM items are restricted to named col-
lections (D1, F1, G1, K1) (ii) named collections are al-
ways bags. Effectively, these limitations cause a query
to always iterate over an unordered collection, thus ob-
taining ordinal positions is inapplicable.

4.7 WHERE clause

4.7.1 SQL++ Formalism

As in SQL, the WHERE clause is a boolean expression e

(Figure 6, line 6), which may include an EXISTS sub-
query (line 35). The WHERE clause inputs a bag of bind-
ing tuples Bin, and outputs a bag of binding tuples
Bout. For each b ∈ Bin, the WHERE clause outputs b if
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Database 1. Selection
A Hive j
B Jaql X
C Pig X
D CQL j
E JSONiq X
F MongoDB j
G N1QL j
H SQL X
I AQL X
J BigQuery j
K Mongo JDBC j

Table 6: Feature Matrix for Selection

b‖Γ ` e → true, where Γ is the environment of the
enclosing query. I.e., if b satisfies the condition e.

4.7.2 Classifying Selection

Table 6 classifies each database’s semantics for selec-
tion, and partial support is denoted with j.

Hive, CQL, MongoDB, N1QL, BigQuery and
Mongo JDBC provide only partial support for selection
(A1, D1, F1, G1, J1, K1). Hive supports selecting on
subqueries where correlation occurs only in the WHERE
clause conditions of the subqueries, or selecting on sub-
queries that are uncorrelated. CQL, MongoDB, N1QL,
BigQuery and Mongo JDBC do not support any sub-
queries in the WHERE clause.

CQL further restricts the WHERE clause as follows
(D1). Each named collection stored in the database has
a mandatory primary key comprising one or more at-
tributes of the collection, and the stored tuples are clus-
tered based on the primary key. The WHERE clause only
supports a conjunction of conditions such that (i) each
condition is a comparison between an attribute and a
literal (ii) the attribute is part of the primary key, or a
secondary index is defined on it (iii) the tuples selected
by the WHERE clause are contiguous in the clustering
order.

4.8 SELECT clause

The SQL++ data model supports collections contain-
ing more than flat tuples (see Section 3.1). For example,
a collection’s tuple can contain other nested collections.
Moreover, a collection can contain directly (i.e. with-
out intervening tuples) any arbitrary value, including
scalars, collections, maps, null and missing. Respec-
tively the SELECT clause of SQL++ can create such
structures. The surveyed databases support varying ca-
pabilities for creating values other than collections of
tuples.

4.8.1 SQL++ Formalism

1. For creating tuples, the SELECT TUPLE clause speci-
fies a list of SELECT items (Figure 6, lines 4, 14, 16):
SELECT [TUPLE] e1 AS a1, . . . , en AS an
For backwards-compatibility with SQL, the TUPLE
keyword is optional in SQL++. Each SELECT item
comprises an expression ei and an output attribute
ai. The SELECT TUPLE clause inputs a bag (resp. ar-
ray, if ORDER BY is present) of binding tuples Bin and
outputs a bag (resp. array) of tuples. For each in-
put binding tuple b ∈ Bin, the SELECT TUPLE clause
outputs a tuple t = {a1:v1, . . . ,, an:vn}, where
b‖Γ ` ei → vi, 1 ≤ i ≤ n, and Γ is the environment
of the enclosing query.
Figures 16 and 17 show an example of using SELECT
TUPLE to create tuples containing nested collections.
In Figure 16, the SELECT TUPLE clause inputs bind-
ing tuples b1 (resp. b2), and outputs a tuple with
attributes sensor and readings. Notice that the
inner query (which outputs the nested collection
readings) is parameterized by the outer query’s s
element variable in the WHERE clause. Figure 17 shows
the first evaluation of the inner query within the en-
vironment Γ1 = b1||Γ0.

2. For creating arbitrary values (i.e. tuples and non-
tuples), the SELECT ELEMENT clause specifies an ex-
pression e (Figure 6, line 15). Similar to SELECT
TUPLE, the SELECT ELEMENT clause inputs a bag
(resp. array, if ORDER BY is present) of binding tu-
ples Bin and outputs a bag (resp. array) of val-
ues. For each input binding tuple bj ∈ Bin, the
SELECT ELEMENT clause outputs a value vj , where
bj‖Γ ` e → vj , and Γ is the environment of the en-
closing query.
Figure 18 shows an example of using SELECT
ELEMENT to project non-tuples. The SFW query in-
puts a bag of heterogeneous elements, and outputs
the identical bag.

SQL++ provides syntactic sugar for specifying col-
lection comprehensions [34]. {{ es | m:ef }} is a
shortcut that is equivalent to the following query:
SELECT ELEMENT es FROM ef AS m. Figure 19 shows
an example of a collection comprehension and its equiv-
alent query.

4.8.2 Classifying Projection

Table 7 classifies each database’s semantics for projec-
tion, where partial support is denoted with j.

1. Projecting Tuples Containing Nested Col-
lections: Jaql, JSONiq and AQL fully support project-
ing tuples containing nested collections (B1, E1 and I1).
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Fig. 16: Using SELECT TUPLE to Project Tuples Containing Nested Collections (outer query)
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Fig. 17: Using SELECT TUPLE to Project Tuples Containing Nested Collections (inner query)
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Fig. 18: Using SELECT ELEMENT to Project Non-Tuples

!"#"$%&%'(#"!!
!!"#"$%"&'(!
!!)!
!!!!!"#"$%&"#")"*%!!
!!!!!!!!!!!*+,-.)'#/&(!01!
!!!!+,-)!!!"#'$234%5"!.!!'!
!!1!.!!266'&78/&!
+,-)!"$%"&'"!.!!"!

!"#"$%!%'(#"&
!!"#"$%"&'(!!
!!//!!
!!!!*+,-.)'#/&(!01!!
!!!!0!'!1!"#'$234%5"!!
!!22&.!!266'&78/&!
+,-)!"$%"&'"!.!!"!

Fig. 19: Syntactic Sugar vs Equivalent Query for Col-
lection Comprehension

Database 1. Projecting 2. Projecting
Tuples Containing Non-Tuples
Nested Collections

A Hive j ×
B Jaql X X
C Pig j ×
D CQL × ×
E JSONiq X X
F MongoDB j j
G N1QL j j
H SQL × ×
I AQL X X
J BigQuery × ×
K Mongo JDBC × ×

Table 7: Feature Matrix for Projection

Hive, Pig, MongoDB and N1QL are denoted with
j (A1, C1, F1, G1), as they support a subset of
SQL++ where SELECT TUPLE is restricted to comprise
only paths and collection comprehensions, but not sub-
queries. This is a limitation since a subquery supports
various clauses such as JOIN, GROUP BY, UNION etc.
whereas a collection comprehension does not. Moreover,
Hive and MongoDB further restrict a collection com-
prehension such that its output (i.e. es) comprises only
paths, but not arbitrary expressions such as functions
(e.g. ROUND in Figure 19).

Recall from Section 3.1 that BigQuery supports re-
peated attributes in lieu of supporting nested collec-
tions. Due to this data model limitation, BigQuery is
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denoted with × for projecting tuples containing nested
collections (J1). Nonetheless, BigQuery supports path
expressions over repeated attributes, which effectively
behave like the collection comprehensions supported by
Hive and MongoDB.

Finally, notice that list comprehensions are sup-
ported in MongoDB, but not Mongo JDBC (F1, K1).

2. Projecting Non-Tuples: Jaql, JSONiq and
AQL have full support for projecting non-tuples (B2,
E2 and I2). In contrast, Hive, Pig, CQL, SQL, Big-
Query and Mongo JDBC only project tuples (A2, C2,
D2, H2, J2 and K2). Finally, MongoDB and N1QL are
denoted with j, as they support a subset of SQL++
where the expression of SELECT ELEMENT is restricted
to be only a path or collection comprehension, but not
a subquery.

4.9 GROUP BY clause

In SQL, the GROUP BY clause partitions its input tuples
into groups. SQL++ and certain surveyed databases
are more general than SQL in the use of the resulting
groups: They allow the explicit use of the groups in
the SELECT, HAVING and ORDER BY clauses, which po-
tentially perform complex computations on the groups,
leading to results of any type (e.g. nested collections).
In contrast, SQL always provides the groups to one or
more aggregation functions that output scalar results.

In SQL, two tuples are in the same group if their
group-by attributes are equal or, more generally, if
their grouping expressions (line 7 of Figure 6) are
equal. However, GROUP BY uses a grouping equality
function, called IS NOT DISTINCT FROM, which differs
from the = equality function (discussed in Section 4.12):
Whereas null = null evaluates to null, null IS
NOT DISTINCT FROM null evaluates to true. Conse-
quently, two tuples with null as attribute a will be
placed in the same group with GROUP BY a. For brevity,
we use ≡ to denote IS NOT DISTINCT FROM, and re-
fer to it as the identity test since it returns true when
its two arguments are identical and false otherwise.
SQL++ and the surveyed databases analogously use
the identity test (rather than the = equality function)
as the grouping equality function. Unlike SQL, the
SQL++ identity test must also compare complex val-
ues, values of different types and missing. The sur-
vey observes that the identity checks of many surveyed
databases are incomplete, in the sense that they throw
errors when comparing certain values.

4.9.1 SQL++ Formalism

The syntax of the GROUP BY clause is
GROUP BY e1 AS x1, . . . , em AS xm
where each ei is a grouping expression and each xi is a
grouping variable. In SQL, each ei evaluates to a scalar
or null expression. SQL++ extends ei to also evaluate
to a complex or missing. In addition, a grouping ex-
pression ei can evaluate to values of different types (i.e.
heterogeneous values) across the equivalence groups,
unlike SQL which restricts each ei to always evaluate
to homogeneous values across equivalence groups.

Similar to SQL semantics, the SQL++ GROUP BY
clause utilizes the identity test. The bag of input bind-
ing tuples Bin are partitioned using ≡ into the minimal
number of equivalence groups B1 . . . Bo such that any
two binding tuples b, b′ ∈ Bin are in the same equiv-
alence group if and only if every expression ei evalu-
ates to the identical value vi given b and given b′, i.e.,
b||Γ ` ei 7→ vi and b′||Γ ` ei 7→ vi, where Γ is the en-
vironment of the query. For each Bk (1 ≤ k ≤ o), the
GROUP BY clause outputs a binding tuple bk =

〈x1 : v1, . . . , xm : vm, group : Bk〉.
The grouping variables x1 . . . xm and group can be

utilized in subsequent HAVING, ORDER BY and SELECT
clauses. For SQL-compatibility, SQL++ also supports
the syntactic sugar of allowing the use of an ei in
lieu of xi in these three clauses and omitting xi in
the GROUP BY clause. Therefore, the two SFW queries
below are equivalent:
(1) SELECT f(xi), . . . (2) SELECT f(ei), . . .

FROM . . . FROM . . .
GROUP BY ei AS xi, . . . GROUP BY ei, . . .
HAVING f ′(xi, . . .) HAVING f ′(ei, . . .)
ORDER BY f ′′(xi), . . . ORDER BY f ′′(ei), . . .

The group variable, which binds to each group, can
be used in expressions (including SFW subqueries) of
the HAVING, ORDER BY and SELECT clauses. In combi-
nation with functions that input collections and out-
put scalars (i.e., aggregate functions such as sum(),
max() etc.) SQL++ supports the aggregation function-
ality of SQL. In addition, SQL++ also supports com-
plex transformations on group before providing it to
an aggregate function. For example, Query 1 of Fig-
ure 20 groups readings by respective sensors, and out-
puts for each sensor (1) its id, (2) a nested bag of its
readings, (3) the number of readings, (4) the average
of its carbon monoxide (i.e. co) readings. The query’s
GROUP BY clause inputs three binding tuples (b1, b2, b3),
partitions them into two equivalence groups (sensors 1
and 2), and outputs two binding tuples (b′1, b′2). No-
tice that the nested bag readings is produced by a
conventional SFW subquery, whose FROM clause binds
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Fig. 20: Using GROUP BY and Aggregation Functions

g to each tuple of group, and outputs the c.co of
each tuple. The number of readings is produced by the
count() function, which inputs a collection of elements
and returns an integer. In this example, the input col-
lection is group. Similarly, the average is produced by
providing to avg() the result of a nested query over
group13.

Unlike SQL, where the semantics of the aggrega-
tion functions are coupled with the GROUP BY clause,
the SQL++ GROUP BY is only responsible for creat-
ing equivalence groups. Nevertheless, in the interest of
syntactic compatibility with SQL, SQL++ introduces
the following syntactic sugar in the SELECT, HAVING
and ORDER BY clauses: Consider any of these clauses
having an expression f(e), where f is an SQL ag-
gregation function (such as sum(), avg()) and the
expression e directly refers to variables x1, . . . , xn of
the tuples of group. Then f(e) is syntactic sugar for
f(SELECT e′ FROM group AS g), where e′ results from
substituting each xi in e with g.xi

14. For the special
case where an aggregation function f (such as count())
needs the entire group as-is, we define that f(∗) stands
for f(group). For example, Query 2 of Figure 20 uti-
lizes these syntactic sugar, and has the aggregations

13 One may wonder why the tuples of group have the form
{ c: {sensor: . . .} } as opposed to the simpler form
{sensor: . . .}. This is because the FROM clause that precedes
GROUP BY may in the general case join multiple collections and
output more variables than just c.
14 SQL-compatibility also requires syntactic sugar for queries
such as SELECT avg(x.a) FROM c AS x, where it is implied
that all elements of c become a single group that is aggregated.

1 group by params →
2 {
3 [complex : (boolean|error) ,]
4 [type mismatch : (false |error) ,]
5 [null eq null : (true |error) ,]
6 [null eq value : (false |error) ,]
7 [missing eq missing : (true |error) ,]
8 [missing eq value : (false |error) ,]
9 [null eq missing : (false |error) ]
10 }

Fig. 21: BNF Grammar for Group-By Config Parame-
ters

count(*) and avg(c.co). Notice that c is not a top-
level variable in the input binding tuples of the SELECT
clause. Consequently, avg(c.co) is equivalent to:
avg(SELECT g.c.co FROM group AS g) (Query 1).

A group-by config (Figure 6, line 47) specifies
the identity test capabilities of various databases.
Figure 21 shows the BNF grammar of the 7 group-by
config parameters, and Figure 22 shows the semantics
of the ≡ identity test function with respect to these
config parameters. The complex parameter specifies
whether to return a boolean true/false or throw an
error when comparing two complex values (line 3).
The type mismatch parameter specifies whether to
return false or throw an error when comparing two
values of different types (line 4). The remaining 5
parameters specify the semantics when comparing
with null/missing values: null eq null when com-
paring two null values (line 5), null eq value when
comparing null to a value that is not null/missing
(line 6), missing eq missing when comparing two
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x ≡ y →



fscalar(x, y) if x and y are scalar
fcomplex(x, y) if x and y are complex
@group by.type mismatch if x (resp. y) is scalar ∧ y (resp. x) is complex
@group by.null eq null if x and y are null

@group by.missing eq missing if x and y are missing

@group by.null eq missing if x (resp. y) is null ∧ y (resp. x) is missing

@group by.null eq value if x (resp. y) is null ∧ y (resp. x) is not null/missing

@group by.missing eq value if x (resp. y) is missing ∧ y (resp. x) is not null/missing

fscalar(x, y) →
{
fsql(x, y) if x and y are strings (resp. numbers / booleans)
@group by.type mismatch if x and y are different types

fcomplex(x, y) →


error if @group by.complex is error

farray(x, y) if @group by.complex is boolean ∧ x and y are arrays
(resp. fbag, ftuple, fmap) (resp. bags, tuples, maps)
@group by.type mismatch if @group by.complex is boolean ∧ x and y are different types

farray(x, y) →
{
x[1] ≡ y[1] AND . . . AND x[n] ≡ y[n] if x and y each has n elements
false otherwise

fbag(x, y) →
{
v1 ≡ v1 AND . . . AND vn ≡ vn if x and y each consists of elements v1 . . . vn
false otherwise

ftuple(x, y) →
{
x.a1 ≡ y.a1 AND . . . AND x.an ≡ y.an if x and y each consists of attributes a1 . . . an
false otherwise

fmap(x, y) →
{
x->k1 ≡ y->k1 AND . . . AND x->kn ≡ y->kn if x and y each consists of keys k1 . . . kn
false otherwise

Fig. 22: Semantics for the GROUP BY Identity Test (≡) with respect to GROUP BY Config Parameters

missing values (line 7), missing eq value when com-
paring missing to a value that is not null/missing
(line 8), and null eq missing when comparing null
with missing (line 9). These parameters return
true, false or throw an error (lines 5-9). For exam-
ple, SQL’s semantics are specified with: @group by
{null eq null: true, null eq value: false}.
(Other parameters are not applicable since the SQL
data model does not support complex values, missing
values and heterogeneity.) Note that we will utilize the
same config parameters in Section 4.11 to specify the
equality used internally by the bag/set operators, and
Section 4.12 to specify the = equality function.

4.9.2 Classifying Grouping to Construct Tuples of
Nested Collections

Table 8 classifies each database’s support for grouping.
Hive, Jaql, Pig, JSONiq, MongoDB, N1QL and AQL
fully support using grouping to construct tuples con-
taining nested collections, in the same way as using the
GROUP BY clause and the group variable (A1, B1, C1,
E1, F1, G1, I1).

Both SQL and Mongo JDBC support the GROUP BY
clause but not the group variable (H1, K1), whereas
CQL does not support GROUP BY altogether (D1).

Recall from Section 3.1 that BigQuery supports re-
peated attributes in lieu of supporting nested collec-

Database 1. Grouping to
Construct Tuples of
Nested Collections

A Hive X
B Jaql X
C Pig X
D CQL ×
E JSONiq X
F MongoDB X
G N1QL X
H SQL ×
I AQL X
J BigQuery ×
K Mongo JDBC ×

Table 8: Feature Matrix for Grouping

tions. Due to this data model limitation, BigQuery is
denoted with × (J1). Nonetheless, BigQuery supports
a similar form of GROUP BY / group which constructs
tuples containing repeated attributes.

4.9.3 Classifying Grouping on Non-Scalar and
Heterogeneous Values

Table 9 classifies each database’s semantics for group-
ing on non-scalar and heterogeneous values in terms of
a SQL++ group-by config. For conciseness, each cell
shows only the first letter of a parameter value. Partial
support is denoted with j, whereas inapplicability is
denoted with -. For example, SQL is denoted with - in
Column 1, since it lacks support for complex values, and
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A Hive b - t f -
B Jaql b f t f -
C Pig bj - t f -
D CQL -
E JSONiq e f t f t f f
F MongoDB b f t f t f f
G N1QL b f t f t f f
H SQL - - t f -
I AQL e e t f -
J BigQuery e - t f -
K Mongo JDBC e e t f t f j

Table 9: Feature Matrix for Grouping on Non-Scalar
and Heterogeneous Values

its semantics never utilize @group by.complex. CQL
is denoted with - as it does not support the GROUP BY
clause (row D), and we do not discuss it further.

1. Complex Values: Hive, Jaql, MongoDB and
N1QL are the only databases that fully support group-
ing on complex values (A1, B1, F1, G1). Pig only sup-
ports deep equality for maps and tuples, but not bags
(C1).

JSONiq, AQL and BigQuery throws an error when
grouping on complex values (E1, I1, J1).

Surprisingly, Mongo JDBC also throws an error
when grouping on complex values (K1), even though
MongoDB supports it (F1). The underlying reason is
because Mongo JDBC performs grouping in its middle-
ware, which has different semantics from grouping in
MongoDB.

2. Type Mismatch: Jaql, JSONiq, MongoDB and
N1QL group two values of different types into separate
equivalence groups (B2, E2, F2, G2), whereas AQL and
MongoJDBC throw an error (I2, K2).

Recall from Section 3.2.2 that Hive, Pig, SQL
and BigQuery are fixed schema databases. Since
these databases only support homogeneous collections,
grouping values of different types is not applicable, and
the databases are denoted with - (A2, C2, H2, J2).

For the same reasons described above, Mongo JDBC
deviates from MongoDB’s grouping semantics when
grouping values of different types (K2).

3-4. Null Values: All databases group null values
identically as SQL (H3-4): two null values are in the
same equivalence group, whereas a null value and a
value that is not null/missing are in different groups.

5-6. Missing Values: All 4 databases that support
the missing value, namely JSONiq, MongoDB, N1QL
and Mongo JDBC handle missing and null values in a

symmetrical fashion during grouping (E3-6, F3-6, G3-6,
K3-6).

7. Null and Missing Values: JSONiq, Mon-
goDB and N1QL group null and missing into dif-
ferent equivalence groups (E7, F7, G7). Only Mongo
JDBC has the confusing behavior of grouping null and
missing into the same equivalence group (K7).

4.10 ORDER BY clause

In SQL’s ORDER BY clause, the NULLS FIRST and
NULLS LAST keywords indicate whether a null value
is ordered before or after all other values. Unlike SQL,
the SQL++ ORDER BY also supports an order expres-
sion evaluating to heterogeneous values, complex values
and missing. The surveyed databases analogously sup-
port the SQL++ ORDER BY at various levels.

4.10.1 SQL++ Formalism

As in SQL, the ORDER BY clause syntax is:
ORDER BY e1 . . . em [ASC|DESC] (Figure 6, lines 11),
where e1 . . . em is a list of ordering expressions. In
SQL++ a SFW query with ORDER BY outputs an ar-
ray, whereas a SFW query without ORDER BY outputs
a bag. This is in contrast to SQL (and many surveyed
databases that do not support arrays), where the out-
put of ORDER BY is an implied list (see Section 3.1).

The ORDER BY clause sorts its input using the total
order function <o, i.e., <o returns true or false when
comparing any two values. Similar to SQL, the presence
of bag/set operators (such as UNION and UNION ALL) in
a SFW query results in different semantics for ORDER
BY as follows:

1. SFW without bag/set operators: The ORDER
BY clause inputs a bag of binding tuples Bin, thus
each ordering expression ei can utilize variables from
the preceding FROM or GROUP BY clauses. The ORDER
BY clause outputs an array of sorted binding tuples
Bout. Consider sorting in ascending order when T

specifies ASC. Let b1, . . . , bn be the binding tuples
in Bin, and for each bj ∈ Bin, let vj,1 . . . vj,m be
the evaluation of the ordering expressions e1 . . . em.
Given two input binding tuples bj and bk (i) bj ap-
pears before bk in Bout if vj,1 <o vk,1 is true (ii) bk
appears before bj if vk,1 <o vj,1 is true (iii) ties are
broken by comparing vj,2 and vk,2 otherwise, and so
on. If ties remain up till vj,m and vk,m, <o nondeter-
ministically outputs true or false, and the order
between bj and bk is nondeterministic. Sorting in
descending order is defined analogously.
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Recall from Section 4.2 that ORDER BY is evalu-
ated before SELECT. For SQL-compatibility, given
SELECT ei AS ai, SQL++ also supports the syn-
tactic sugar of using ai in lieu of ei in the ORDER
BY clause. Therefore, both SFW queries below are
equivalent:
(1) SELECT ei AS ai (2) SELECT ei AS ai

FROM . . . FROM . . .
ORDER BY ai ORDER BY ei

2. With bag/set operators: Consider SFW queries
of the form: q1 UNION q2 ORDER BY e1 . . . em T ,
where q1 and q2 are also SFW queries. As discussed
in Section 4.11, the UNION clause is evaluated af-
ter the SELECT and outputs a bag of values, which
is in turn input by ORDER BY. Thus, in the pres-
ence of bag/set operators, instead of binding tu-
ples, the ORDER BY clause inputs a bag of values
C = {{u1, . . . , un}} and outputs an array of
sorted values.
The ordering expressions e1 . . . em use the special
ELEMENT variable to refer to the elements (values)
of the input bag. Suppose the enclosing query q of
the ORDER BY clause is evaluated within environ-
ment Γ. For each u ∈ C, let v1 . . . vm be the eval-
uation of the ordering expressions e1 . . . em within
environment Γ′ = 〈ELEMENT : u〉||Γ. Given two in-
put element values uj and uk, the ORDER BY clause
orders them by comparing the results of the order-
ing expressions when evaluated in the environment
〈ELEMENT : uj〉||Γ with the results of the ordering
expressions in 〈ELEMENT : uk〉||Γ.
.
For SQL-compatibility, SQL++ allows the ELEMENT
variable to be omitted from ordering expressions
when the ELEMENT variable binds to a tuple u

(as is the case for SQL tables). Ordering expres-
sions e1 . . . em are evaluated within environment
Γ′ = u||〈ELEMENT : u〉||Γ. That is, u is treated as
a binding tuple, which binds the variables utilized
in e1 . . . em. Hence when u is a tuple one may or
may not use the ELEMENT.

Automatic order preservation SQL++ also provides
the ORDER PRESERVE clause in lieu of the ORDER BY.
The ORDER PRESERVE is applicable only in the absence
of GROUP BY. It orders the output elements according
to the order of the respective input elements, as is
formally explained by the equivalence of the two
queries below:

1 order by params →
2 {
3 [complex : (boolean |error) ,]
4 [type mismatch : (boolean |error) ,]
5 [null lt null : ( false|error) ,]
6 [null lt value : (true|false|error) ,]
7 [missing lt missing : ( false|error) ,]
8 [missing lt value : (true|false|error) ,]
9 [null lt missing : (true|false|error) ]
10 [type order : [ type name , ...] ]
11 }

Fig. 23: BNF Grammar for Order-By Config Parame-
ters

(1) SELECT * (2) SELECT *
FROM e1 AS v1 AT p1, FROM e1 AS v1,

. . . . . .

en AS vn AT pn FROM en AS vn
ORDER BY p1, . . . , pn ORDER PRESERVE

SQL++ allows an ordering expression ei to evaluate
to a scalar or null value (as in SQL), and extends it
to also evaluate to a complex or missing value. Fur-
thermore, ei can evaluate to values of different types
(i.e. heterogeneous values), unlike SQL which restricts
each ei to always evaluate to homogeneous values. The
semantics of <o with respect to complex, missing and
heterogeneous values is specified by an order-by config
(Figure 6, line 48).

Figure 23 shows the BNF grammar of the order-
by config parameters, and Figure 24 shows the seman-
tics of the <o function with respect to these order-by
config parameters. An order-by config has 8 parame-
ters, and the first 7 (Figure 23, lines 3-9) are analo-
gous to those of a group-by config (Section 4.9, Fig-
ure 21). A key difference is that type mismatch ac-
cepts boolean (instead of false). Unlike the ≡ iden-
tity test function which is symmetric, the <o func-
tion is a non-symmetric relation, thus boolean spec-
ifies that the function returns true/false based on
the relative ordering between the types of the argu-
ments. This ordering is specified in the 8th parameter
type order (line 10), which accepts a list comprising
shallow type names (e.g. array, tuple). For exam-
ple, a type order parameter with the following pat-
tern: [..., number, ..., string, ...], and the
type mismatch parameter set to boolean will result in
1 < ‘a’→ true. Finally, notice that null lt value,
missing lt value and null lt missing accepts
both true and false. For example, SQL’s semantics
for ORDER BY ... NULLS FIRST is specified with the
following order-by config: @order by {null lt null:
false, null lt value: true}. (Other parameters
are not applicable since the SQL data model does not
support complex values, missing values and heterogene-
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x <o y →



fscalar(x, y) if x and y are scalar
fcomplex(x, y) if x and y are complex
ftype(x, y) if x (resp. y) is scalar ∧ y (resp. x) is complex
@order by.null lt null if x and y are null

@order by.missing lt missing if x and y are missing

@order by.null lt missing (resp. @order by.missing lt null) if x (resp. y) is null ∧ y (resp. x) is missing

@order by.null lt value (resp. @order by.value lt null) if x (resp. y) is null

∧ y (resp. x) is not null/missing

@order by.missing lt value (resp. @order by.value lt missing) if x (resp. y) is missing

∧ y (resp. x) is not null/missing

ftype(x, y) →


error if @order by.type mismatch is error

true if @order by.type mismatch is boolean ∧ the type of x precedes the type of y in @order by.type order

false if @order by.type mismatch is boolean ∧ ¬(the type of x precedes the type of y in @order by.type order)

fscalar(x, y) →
{
fsql(x, y) if x and y are strings (resp. numbers / booleans)
ftype(x, y) if x and y are different types

fcomplex(x, y) →


error if @order by.complex is error

farray(x, y) if @order by.complex is boolean ∧ x and y are arrays
(resp. fbag, ftuple, fmap) (resp. bags, tuples, maps)
ftype(x, y) if @order by.complex is boolean ∧ x and y are different types

farray(x, y) →


x[j] <o y[j] if x and y are equal up to the first j − 1 elements and not equal on the j-th element

i.e. (∀1 ≤ i ≤ j − 1, x[i]=y[i]→ true) ∧ ¬(x[j]=y[j]→ true)

true if x has fewer elements than y ∧ x and y are equal up to all elements of x
false otherwise

fbag(x, y) →
{
farray(x

′, y′) where x′ (resp. y′) is an array constructed from x (resp. y) sorted in lexical order

ftuple(x, y) →


farray(x

′, y′) where x′ (resp. y′) is an array [a1, v1, . . . , am, vm]

such that a1 . . . an are the attribute names of x (resp. y) sorted in lexical order,
each ai maps to attribute value vi in x (resp. y)

fmap(x, y) is defined analogously as ftuple(x, y)

Legend:

1. SQL++ values are lexically ordered as follows: booleans ≺ numbers ≺ strings ≺ arrays ≺ tuples ≺ maps ≺ bags ≺ null ≺ missing.

Fig. 24: Semantics for the ORDER BY <o Function with respect to ORDER BY Config Parameters

ity.) Note that we will utilize the same config parame-
ters in Section 4.13 to specify the < less-than function.

4.10.2 Classifying Deterministic Ordering in Output
Collections

Unlike SQL++, where a query’s output is an array in
the presence of ORDER BY and a bag in the absence
thereof, in all surveyed databases a query’s output has
implicit order. In the presence of ORDER BY the sur-
veyed databases output bags that are implied lists. Re-
call from Section 3.1 that an implied list is a bag where
a sequence of next calls returns elements according to
a deterministic order. The list is “implied” in the sense
that there is no data model feature (or API) that dis-
tinguishes between a list and a bag. Rather, it is the
programmer’s responsibility to know when she accesses
a bag that is an implied list versus a “plain” bag with
no deterministic order. Unlike an array, an implied list
does not support random access by ordinal position,
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A Hive Bag (Implied List) Bag
B Jaql Array Array (random order)
C Pig Bag (Implied List) Bag
D CQL Bag (Implied List) Bag
E JSONiq Seq Seq
F MongoDB Bag (Implied List) Bag
G N1QL Bag (Implied List) Bag
H SQL Bag (Implied List) Bag
I AQL Array Array (random order)
J BigQuery Bag (Implied List) Bag
K Mongo JDBC Bag (Implied List) Bag

Table 10: Output of ORDER BY queries

neither allows the use of the elements’ ordinal positions
in subsequent queries. Therefore the order produced by
a subquery cannot be utilized by its enclosing query.
For example, if the SQL++ ORDER BY output implied
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lists (instead of arrays) the query:
SELECT x.a
FROM (SELECT t.a FROM t ORDER BY t.b)

AS x AT p
ORDER BY p
would have nondeterministally-ordered output. Simi-
larly, the order of a view cannot be utilized by queries
that use the view.

SQL outputs bags that are implied lists. Hive, Pig,
CQL, MongoDB, N1QL, BigQuery and Mongo JDBC
also output bags that are implied lists in the presence
of ORDER BY, as indicated in Table 10.

Conversely, Jaql and AQL always output an array
(B1-2, I1-2), even though the array’s order is nonde-
terministic (marked as “random" in Table 10) in the
absence of ORDER BY. Similarly, JSONiq queries al-
ways output JSONIQ sequences (as explained in Sec-
tion 4.5.1), even though the sequence’s order is nonde-
terministic when (i) the unordered flag is present and
(ii) the ORDER BY clause is absent.

JSONiq is the only database that supports auto-
matic order preservation.15 All other databases out-
put results with deterministic order when ORDER BY is
present, and nondeterministic order when ORDER BY is
absent.

Finally, we note a few classification subtleties.
Whereas Table 10 classifies values that are output by
a SFW query, Table 2 (Section 3.1.2) classifies values
that are input/output by any query (i.e. SFW query
or expression query). This results in Table 10 compris-
ing only arrays/bags, whereas Table 2 shows that Jaql,
JSONiq and AQL support the top-level value to be any
arbitrary value. This also explains why Table 10 shows
that an AQL query outputs only arrays, whereas Ta-
ble 2 shows that AQL supports both arrays and bags.
In AQL, bags are restricted to occur only in literals
and named values, not as the top-level value output by
a SFW query.

4.10.3 Classifying Ordering of Non-Scalar and
Heterogeneous Values

Table 11 classifies each database’s semantics for order-
ing on non-scalar and heterogeneous values in terms
of the SQL++ order-by config. For symmetry between
GROUP BY and ORDER BY with respect to non-scalar and
heterogeneous values, we shade a cell gray in Table 11

15 Indeed, due to JSONiq’s XQuery legacy, automatic order
preservation is the default. Nevertheless, JSONiq goes beyond
XQuery behavior by supporting an unordered flag that allows
one to disable the default order preservation and then the out-
put order is nondeterministic. Generally, nondeterministic order,
which in turn creates more opportunity for query optimization.
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A Hive b - f t - tA
B Jaql b b f t - tB
C Pig e - f t - tC
D CQL -
E JSONiq e e f t f f t tE
F MongoDB bj b f t f t f tF
G N1QL b b f t f t f tG
H SQL - - f t - tH
I AQL e e f t - tI
J BigQuery e - f t - tJ
K Mongo JDBC b b f t f t f tK

tA = tC = tE = tH = tI = tJ = [...]
tB = [array, tuple, boolean, string, number]
tF = [number, string, tuple, array, boolean]
tG = [boolean, number, string, array, tuple]
tK = [number, string, tuple, array, boolean]

Table 11: Feature Matrix for Ordering on Non-Scalar
and Heterogeneous Values

if it is identical to its corresponding cell in Table 9 (Sec-
tion 4.9.3), and focus the following discussion only on
non-shaded cells. For conciseness, each cell shows only
the first letter of a parameter value. Partial support
is denoted with j, whereas inapplicability is denoted
with -. CQL restricts an ORDER BY expression to be a
clustering attribute, i.e. an attribute that determines
the order of storage, which must comprise values that
are scalar, homogeneous and non-null. Therefore, it is
marked with - (row D) and we do not discuss it further.

1. Complex Values: Pig supports complex values
for grouping, but throws an error for ordering (C1).
Conversely, Mongo JDBC supports complex values for
ordering, but throws an error for grouping (K1).

MongoDB is denoted with bj (F1), as it returns
boolean results that are inexplicable across multiple ex-
periments.

2. Type Mismatch: Jaql, MongoDB and N1QL or-
ders two values of different types utilizing type order
(B2, F2, G2). This is consistent with grouping two val-
ues of different types into separate equivalence groups.

JSONiq supports type mismatches for grouping,
but throws an error for ordering (E2). Conversely,
Mongo JDBC supports type mismatches for ordering,
but throws an error for grouping (K2).

3-4. Null Values: All databases order null values
identically as SQL’s ORDER BY ... NULL FIRST (H3-
4).

5-7. Missing Values: JSONiq orders missing as
the biggest value (E5-7), whereas MongoDB, N1QL and
Mongo JDBC orders missing as the smallest value (F5-
7, G5-7, K5-7). This is consistent with grouping null
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1 bag op params →
2 {
3 [bag mismatch : (heterogeneous|error) ,]
4 [coerce null : (singleton bag|empty bag|error) ,]
5 [coerce missing : (singleton bag|empty bag|error) ,]
6 [coerce : (singleton bag |error) ,]
7 [complex : (boolean|error) ,]
8 [type mismatch : (false |error) ,]
9 [null eq null : (true |error) ,]

10 [null eq value : (false |error) ,]
11 [missing eq missing : (true |error) ,]
12 [missing eq value : (false |error) ,]
13 [null eq missing : (true |false|error) ]
14 }

Fig. 25: BNF Grammar for Bag-Op Config Parameters

and missing into separate equivalence groups. (Caveat:
Recall that Mongo JDBC confusingly groups null and
missing together.)

8. Type Order: Jaql, MongoDB, N1QL and Mongo
JDBC support a total order when ordering values of
different types (B8, F8, G8, K8).

Since Mongo JDBC delegates sorting to MongoDB,
it has the same total order as MongoDB (F8, K8).

4.11 UNION / INTERSECT / EXCEPT clauses

The surveyed databases support to varying degrees
SQL’s UNION ALL, INTERSECT ALL and EXCEPT ALL
bag operators, as well as their duplicate-eliminating
counterparts the UNION, INTERSECT and EXCEPT. While
SQL bag operators always input/output bags of flat,
homogeneous tuples, queries in the surveyed databases
input/output arbitrary values, such as collections of
nested heterogeneous tuples.

4.11.1 SQL++ Formalism

As in SQL, a bag operator16 is specified with: q S q′

(Figure 6, lines 9-10), which comprises a left query q,
the bag operator S and a right query q′. The bag oper-
ator S may be UNION, INTERSECT or EXCEPT and may
be optionally suffixed with ALL. Let q → v and q′ → v′,
where v and v′ are arbitrary values. The ALL variations
input bags and output a bag of values, which may have
duplicate values even if the input does not. Presence of
ALL specifies that the output may have duplicate ele-
ments, while absence requires duplicate elimination, in
which case the output is an implicit set.

The semantics of a bag operator is specified by
a bag-op config (Figure 6, line 51). Figure 25 shows
the BNF grammar of bag-op config parameters, and
Figure 26 shows the semantics of bag operators with re-
spect to bag-op config parameters. The bag mismatch

16 SQL’s bag operators are often referred to as set operators,
while the term set is mathematically incorrect.
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A Hive X × × × × ×
B Jaql X × × × × ×
C Pig X × × × × ×
D CQL × × × × × ×
E JSONiq X × × × × ×
F MongoDB × × × × × ×
G N1QL × × × × × ×
H SQL X X X X X X
I AQL × × × × × ×
J BigQuery X × × × × ×
K Mongo JDBC X X X × × ×

Table 12: Feature Matrix for Bag Operators

parameter is applicable when inputs v and v′ are bags,
and elements of v are heterogeneous with respect
to elements of v′ (Figure 25, line 3). It specifies
whether to output: a heterogeneous bag, or throw an
error. The coerce null parameter specifies how to
coerce null values for v and v′: singleton bag spec-
ifies coercing from null to {{ null }}, empty bag
specifies coercing to {{ }}, error specifies throwing
an error (line 4). The coerce missing parameter
analogously specifies how to coerce missing values
(line 5). The coerce parameter specifies whether to
coerce a scalar/tuple/map into a singleton bag, or
throw an error (line 6). Note that arrays for v and v′

are always coerced into bags by discarding ordinal po-
sitions. The remaining seven parameters (lines 7-13)
specify the equality semantics used internally by the
bag operator (i.e. @

= in Figure 26), and are identical
to the seven group-by config parameters (Section 4.9,
Figure 21). For example, the semantics for SQL’s
bag operators are specified with the following bag-op
config parameters: @bag op {bag mismatch: error,
null eq null: true, null eq value: false}.
(Other parameters are not applicable since the SQL
data model does not support complex values, missing
values and heterogeneity.)

4.11.2 Classifying Bag Operators on Non-Scalar and
Heterogeneous Values

Table 12 classifies each database’s support for bag oper-
ators independent of their semantics, whereas Table 13
classifies each database’s semantics for bag operators
on non-scalar and heterogeneous values in terms of a
SQL++ bag-op config. Any feature that is classified as
× in Table 12 is denoted as - (i.e. inapplicable) in the
corresponding columns of Table 13:

In Table 12:
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x BAGOP y →



fBAGOP(x, y) if x and y are bags, x ] y is homogeneous
fBAGOP(x, y) if x and y are bags, x ] y is heterogeneous, @bag op.bag mismatch is heterogeneous

error if x and y are bags, x ] y is heterogeneous, @bag op.bag mismatch is error

array to bag(x) BAGOP y if x is an array
x BAGOP array to bag(y) if y is an array
{{ x }} BAGOP y if x is a scalar/tuple/map, @bag op.coerce is singleton bag

x BAGOP {{ y }} if y is a scalar/tuple/map, @bag op.coerce is singleton bag

error if x is a scalar/tuple/map or y is a scalar/tuple/map, @bag op.coerce is error

{{ null }} BAGOP y if x is null, @bag op.coerce null is singleton bag

{{ }} BAGOP y if x is null, @bag op.coerce null is empty bag

x BAGOP {{ null }} if y is null, @bag op.coerce null is singleton bag

x BAGOP {{ }} if y is null, @bag op.coerce null is empty bag

error if x is null or y is null, @bag op.coerce null is error

{{ missing }} BAGOP y if x is missing, @bag op.coerce missing is singleton bag

{{ }} BAGOP y if x is missing, @bag op.coerce missing is empty bag

x BAGOP {{ missing }} if y is missing, @bag op.coerce missing is singleton bag

x BAGOP {{ }} if y is missing, @bag op.coerce missing is empty bag

error if x is missing or y is missing, @bag op.coerce missing is error

fUNION ALL(x, y) → x ] y

fINTERSECT ALL(x, y) →


{{ }} if x is {{ }}

{{u}} ] fINTERSECT ALL(x\{{u}}, y\{{v}}) if ∃u ∈ x, ∃v ∈ y, u @
= v is true

fINTERSECT ALL(x\{{u}}, y) if ∃u ∈ x, ∀v ∈ y, u @
= v is not true

fEXCEPT ALL(x, y) →


{{ }} if x is {{ }}

fEXCEPT ALL(x\{{u}}, y\{{v}}) if ∃u ∈ x, ∃v ∈ y, u @
= v is true

{{u}} ] fEXCEPT ALL(x\{{u}}, y) if ∃u ∈ x, ∀v ∈ y, u @
= v is not true

fUNION(x, y) → δ(fUNION ALL(x, y))

fINTERSECT(x, y) → δ(fINTERSECT ALL(x, y))

fEXCEPT(x, y) → δ(fEXCEPT ALL(x, y))

Legend:

1. BAGOP denotes one of: UNION, UNION ALL, INTERSECT, INTERSECT
ALL, EXCEPT, EXCEPT ALL.

2. x ] y denotes bag (multiset) union.

3. x\y denotes bag (multiset) difference.

4. x @
= y denotes:

@eq{
complex : @bag op.complex,
type mismatch : @bag op.type mismatch,
null eq null : @bag op.null eq null,
null eq value : @bag op.null eq value,
missing eq missing : @bag op.missing eq missing,
missing eq value : @bag op.missing eq value,
null eq missing : @bag op.null eq missing

}( x = y )

5. δ(b) denotes a bag b with duplicates removed using @
=

Fig. 26: Semantics for Bag Operators and their Config Parameters

1. UNION ALL: All surveyed databases support
the UNION ALL operator, except for CQL, MongoDB,
N1QL and AQL (D1, F1, G1 and I1). Note that the re-
spective equivalents of UNION ALL in Jaql and JSONiq
are order-preserving: the operator inputs arrays, and
output an array that is the concatenation of the input
arrays.

2-3. INTERSECT ALL, EXCEPT ALL: SQL and
Mongo JDBC are the only databases to support the
INTERSECT ALL / EXCEPT ALL operators (H2-3, K2-3).

4-6. UNION, INTERSECT, EXCEPT: SQL is the only
database that support the duplicate-eliminating oper-
ators (H4-6). An obvious workaround in the surveyed
databases is to combine UNION ALL, INTERSECT ALL

and EXCEPT ALL operators with a DISTINCT keyword
in the SELECT clause.

In Table 13:
Note that CQL, MongoDB, N1QL and AQL do not

support bag operators, and are denoted with - since the
config parameters are inapplicable (rows D, F, G, I).
For conciseness, each cell shows only the first one/two
letters of a parameter value.

1. Collection mismatch: When the two input val-
ues are collections and one is heterogeneous with re-
spect to the other, Jaql, Pig and JSONiq support out-
puting heterogeneous collections (B1, C1, E1). Con-
versely, Hive, SQL and BigQuery throw errors (A1, H1,
J1). Mongo JDBC partially supports outputting a het-
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Table 13: Feature Matrix for Bag-Op Config Parameters

erogenous bag (K1). When the two input bags contain
tuples with the same attribute names, and the tuples
are heterogeneous in the narrow sense that an attribute
name maps to values of different types across tuples,
Mongo JDBC supports outputting a heterogenous bag.
Otherwise, for all other hetereogeneous input, Mongo
JDBC throws an error.

2-4. Coercions: Both Jaql and JSONiq support co-
ercions, but with different semantics. Jaql coerces null
into an empty bag (B2), does not support missing (B3)
and throws an error when the input is a scalar/tuple
(B4). Whereas JSONiq coerces null, scalars and tuples
into a singleton bag (E2,4), and missing into an empty
bag (E3). Hive, Pig, SQL, BigQuery and Mongo JDBC
are denoted with - (A2-4, C2-4, H2-4, J2-4, K2-4) since
they do not support the missing value, or only sup-
port SFW queries as arguments to bag operators, and
these SFW queries always output collections (instead
of null, missing, scalars or tuples).

5-11. Equality config parameters: All bag op-
erators utilize equality internally, with the exception of
UNION ALL. But since only SQL and Mongo JDBC sup-
port bag operators beyond UNION ALL (Table 12), all
other databases are denoted with - for config param-
eters that correspond to equality. In SQL, the equal-
ity semantics for the bag operators are consistent with
that of the GROUP BY clause (H5-11), as the IS NOT
DISTINCT FROM function is used internally within both
the GROUP BY clause and the bag operators (see Sec-
tion 4.9.3, Table 9). In Mongo JDBC however, the
equality semantics for the bag operators are inconsis-
tent with those of the GROUP BY clause (K5-11). The
INTERSECT/EXCEPT bag operator is more lenient than
GROUP BY, as the bag operator considers two values of
different types to be non-equal (K6), whereas GROUP

1 equal params →
2 {
3 [complex : (boolean |error) ,]
4 [type mismatch : (false|null|error) ,]
5 [null eq null : (true |null|error) ,]
6 [null eq value : (false|null|error) ,]
7 [missing eq missing : (true |null|missing|error) ,]
8 [missing eq value : (false|null|missing|error) ,]
9 [null eq missing : (false|null|missing|error) ]
10 }

Fig. 27: BNF Grammar for Equality Config Parameters

BY throws an error when grouping values of different
types.

4.12 Equality

The = equality function in SQL only compares scalar
values, whereas the surveyed databases support (i)
comparisons between complex values (e.g. WHERE co
= [0.3, 0.4]) (ii) comparisons between values of
different types due to heterogeneous collections (e.g.
WHERE co > 0.4 OR co = ‘C’). To classify the dif-
ferent equality semantics, SQL++ extends SQL with
equality config parameters that specify the semantics
of the equality function.

4.12.1 SQL++ Formalism

The semantics of the = equality function is specified by
an equality config (Figure 6, line 49). Figure 27 shows
the BNF grammar of the equality config parameters,
which are reminiscent of group-by config parameters
(Section 4.9, Figure 21). The differences are:

1. x=y can be specified to return null when x and y

are different types (line 4).
2. x=null can be specified to return null (lines 5-6).
3. x=missing can be specified to return null or

missing (lines 7-9).

For example, SQL’s semantics for equality is
specified with the following equality config: @eq
{type mismatch: error, null eq null: null,
null eq value: null}. (Other parameters are not
applicable since the SQL data model does not support
complex or missing values.) The evaluation semantics
for the = equality function are virtually identical to
those of the ≡ identity test function (Section 4.9,
Figure 22) with two simple substitutions: (1) @eq
instead of @group by (2) = instead of ≡.

Notice the bottom four definitions for the equality
of complex values in Figure 22. Equality of two ar-
rays (resp. bags/tuples/maps) x and y is defined as
the conjunction (i.e. AND) of all pairwise = compar-
isons of their elements (resp. elements/attributes/keys).
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Ax Hive (=) e e n n -
Ay Hive (<=>) e e t f -
B Jaql b n n n -
C Pig bj e n n -
D CQL e e e fj -
Ex JSONiq (=) e e t f m m m
Ey JSONiq b f t f t f f

(deep-equal)
F MongoDB b f t f t f f
G N1QL b f n n m m m
H SQL - e n n -
I AQL e e n n -
J BigQuery e e n n -
K Mongo JDBC b f t f - f f

Table 14: Feature Matrix for Equality

Therefore, x=y will return null when one or more
pairwise comparisons return null/missing, as speci-
fied by SQL++’s ternary logic (Section 4.7). For ex-
ample, [1, null] = [1, null] → null given the
following equality config: @eq {complex: boolean,
null eq null: null}. This behavior is extrapolated
from SQL’s usage of null to denote an unknown value:
a complex value that contains one or more null values
is also considered unknown for the purpose of equality
comparisons.

4.12.2 Classifying Equality on Non-Scalar and
Heterogeneous Values

Table 14 classifies each database’s semantics for equal-
ity on non-scalar and heterogeneous values in terms of a
SQL++ equality config. Each database supports a sin-
gle = equality function, with notable exceptions Hive
and JSONiq: Hive supports both = and <=> (rows Ax,
Ay), whereas JSONiq supports both = and deep-equal
(rows Ex, Ey). Each equality function of each database
is classified separately.

We shade a cell gray in Table 14 if it is identical
to its corresponding cell in Table 9 (Section 4.9.3), and
comment on the inconsistencies of non-shaded cells. For
conciseness, each cell shows only the first letter of a
parameter value. Partial support is denoted with j,
whereas inapplicability is denoted with -. For example,
SQL is denoted with - in Column 1 (H1), since it lacks
support for complex values, and its semantics never uti-
lize @eq.complex.

1. Complex Values: Jaql, JSONiq (using
deep-equal), MongoDB, N1QL and Mongo JDBC are
the only databases that fully support deep equality on
complex values (B1, Ey1, F1, G1, K1). Pig only sup-

ports deep equality for maps and tuples, but not bags
(C1).

Surprisingly, Hive is more lenient for grouping than
equality for complex values (Ax1, Ay1): whereas group-
ing creates different equivalence groups for complex val-
ues, equality throws an error.

The semantics of JSONiq’s grouping are identical
to the equality semantics of its deep-equal function
(Ey2-7), except when comparing two complex values
(Ey1). Whereas deep-equal returns true/false, both
grouping and = (Ex1) throw an error.

Mongo JDBC mostly has the same equality seman-
tics as MongoDB (F1-4, F6-7, K1-4, K6-7), which is an
improvement over its grouping semantics which differ
from MongoDB’s.

2. Type Mismatch: Jaql, JSONiq (using
deep-equal), MongoDB, N1QL and Mongo JDBC are
also the only databases that do not throw an error when
comparing two values of different types, returning either
null (B2) or false (Ey2, F2, G2, K2).

Jaql’s equality semantics is nonetheless consistent
with its grouping semantics of grouping two values of
different types into separate equivalence groups (B2).

Hive, Pig, SQL and BigQuery throw an error when
comparing two values of different types (Ax2, Ay2, C2,
H2, J2). This is consistent with their non-support of
heterogeneous collections, and non-support of grouping
values of different types.

We also note a subtlety on the interaction between
the = equality function and the <> inequality function.
In N1QL, both x = y and x <> y return false when
x and y have different types. This breaks the equiva-
lence x <> y ≡ not(x = y), which is an equivalence
preserved in SQL and all other surveyed databases.

3-4. Null Values: Hive (using <=>), JSONiq, Mon-
goDB and Mongo JDBC return true when comparing
two null values (Ay3, E3, F3, K3), and false when
comparing null with a value that is not null/missing
(Ay4, E4, F4, K4).

Many other databases, namely Hive (using =), Jaql,
Pig, N1QL, AQL and BigQuery follow SQL in returning
null when one of the compared values is null (Ax3-4,
B3-4, C3-4, G3-4, H3-4, I3-4, J3-4). This is nonetheless
consistent with SQL’s grouping semantics.

CQL also returns false when comparing null with
a value that is not null/missing (D4), but only sup-
ports the equality function in the WHERE clause (instead
of all clauses). CQL throws an error during query com-
pilation for conditions of the form WHERE x = null
(D3).

5-7. Missing Values: Recall from Section 4.3 that
only JSONiq, MongoDB, N1QL and Mongo JDBC sup-
port the missing value, thus all other databases are
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1 less than params →
2 {
3 [complex : (boolean |error) ,]
4 [type mismatch : (boolean |null|error) ,]
5 [null lt null : ( false|null|error) ,]
6 [null lt value : (true|false|null|error) ,]
7 [missing lt missing : ( false|null|missing|error) ,]
8 [missing lt value : (true|false|null|missing|error) ,]
9 [null lt missing : (true|false|null|missing|error) ]

10 [type order : [ type name , ...] ]
11 }

Fig. 28: BNF Grammar for Less-Than Config Parame-
ters

denoted with -. MongoDB considers a missing value
to equal another missing value (F5) but not null and
other values (F6-7), whereas N1QL returns missing
when comparing missing with any value (G5-7). No-
tice that N1QL’s equality semantics is nonetheless con-
sistent with its grouping semantics.

JSONiq behaves like MongoDB when using
deep-equal (Ey5-7), yet behaves like N1QL when us-
ing = (Ex5-7). This is surprising as one would expect the
two equality functions to differ only on shallow versus
deep equality (Ex1-2, Ey1-2), and not when comparing
missing values.

Similar to MongoDB, Mongo JDBC also considers
missing to not equal null and other values (K6-7), but
limitations in the current version of Mongo JDBC pre-
vented us from testing the comparison of two missing
values (K5).

4.13 Less-Than Comparisons

Analogous to equality, SQL++ extends SQL with less-
than config parameters to specify the semantics of the
< less-than function.

4.13.1 SQL++ Formalism

The semantics of the < less-than function17 is speci-
fied by a less-than config (Figure 6, line 50). Figure 28
shows the BNF grammar of the less-than config param-
eters, which are reminiscent of order-by config param-
eters (Section 4.10, Figure 23). The differences are:

1. x<y can be specified to return null when x and y

are different types (line 4).
2. null<y can be specified to return null (lines 5-6).
3. missing<y can be specified to return null or

missing (lines 7-9).

For example, SQL’s semantics for less-than is
specified with the following less-than config: @lt

17 A less-than config is analogously applicable to the functions
>, <= and >=.
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A Hive e e n n - -
B Jaql bj n n n - -
C Pig e e n n - -
D CQL e e e e - -
E JSONiq e e f t f j j -
F MongoDB bj b f t f t f tF
G N1QL b bj n n m m m j
H SQL - e n n - -
I AQL e e n n - -
J BigQuery e e n n - -
K Mongo b b f t - t f tK

JDBC
tF = [number, string, tuple, array, boolean]
tK = [number, string, tuple, array, boolean]

Table 15: Feature Matrix for Less-Than Comparisons

{type mismatch: error, null lt null: null,
null lt value: null}. (Other parameters are not
applicable since the SQL data model does not support
complex or missing values.) The evaluation semantics
for the < less-than function are virtually identical
to those of the ORDER BY <o function (Section 4.10,
Figure 24) with two simple substitutions: (1) @lt
instead of @order by (2) < instead of <o.

Notice the farray definition in Figure 24, which
handles null within complex values in an analo-
gous fashion as equality comparisons (Section 4.12).
A less-than comparison of two arrays (analogously
bags/tuples/maps) x and y is defined as the corre-
sponding pairwise < comparison for the first pair-
wise = comparison that is not true. For exam-
ple, [1, null] < [1, null] → null given the
following less-than config: @lt {complex: boolean,
null lt null: null}. This behavior is extrapolated
from SQL’s usage of null to denote an unknown value:
a complex value that contains one or more null values
is also considered unknown for the purpose of less-than
comparisons.

4.13.2 Classifying Less-Than Comparisons on
Non-Scalar and Heterogeneous Values

Table 15 classifies each database’s semantics for less-
than comparisons on non-scalar and heterogeneous val-
ues in terms of a SQL++ less-than config. We shade a
cell gray in Table 15 if it is identical to its corresponding
cell in Table 11 (Section 4.10.3), and focus the following
discussion only on non-shaded cells.

For conciseness, each cell shows only the first letter
of a parameter value. Partial support is denoted with
j, whereas inapplicability is denoted with -.
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1. Complex Values: Surprisingly, Hive supports
ordering on complex values, but throws an error for
less-than comparisons (A1).

Jaql is denoted with bj (B1), as it returns boolean
results that are inexplicable across multiple experi-
ments. This is also surprising since Jaql provides or-
dering on complex values.

CQL throws an error for less-than comparisons of
complex values (D1). This is consistent with its non-
support of ordering on complex values.

2. Type Mismatch: Hive, Pig, CQL, SQL and Big-
Query throw an error on less-than comparisons of two
values with different types (A2, C2, D2, H2, J2). This is
consistent with their non-support of heterogeneous col-
lections, and non-support of ordering values of different
types.

Jaql returns null on less-than comparisons of two
values with different types (B2). This is consistent with
its support of ordering two values with different types.

N1QL is denoted as having partial support for type
mismatches (G2), as it exhibits the following inexpli-
cable behavior. For two values x and y with different
types, both x < y and y < x return false.

3-4. Null Values: Across all databases, the seman-
tics for less-than comparisons on null values are con-
sistent with that of ordering null values.

In addition, the semantics for less-than comparisons
on null values are also consistent with that of equality
comparisons on null values (Section 4.12.2). The only
exception is CQL (D4), which throws an error on less-
than comparisons between null and another value that
is not null/missing.

5-7. Missing Values: JSONiq is denoted as having
partial support for less-than comparisons on missing
values (E5-7), as it exhibits the following inexplicable
behavior. For any value of x, both x < missing and
missing < x return false.

N1QL returns missing for less-than comparisons
that involve missing (G5-7). This is consistent with
its ordering of missing values. It is also consistent
with its equality comparisons of missing values (Sec-
tion 4.12.2).

Limitations in the current version of Mongo JDBC
prevented us from testing the less-than comparison of
two missing values (K5).

8. Type Order: MongoDB and Mongo JDBC are
the only databases that support a total order between
values of different types for less-than comparisons. The
total order is denoted by tF and tK (F8, K8), which is
the same total order as when ordering values of different
types.

N1QL is denoted as having partial support, since it
returns true/false for type mismatches (G2), but the
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I AQL
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K Mongo JDBC

Table 16: Feature Matrix for Extensibility

total order between two values with different types is
inexplicable.

All other databases do not return true/false for
type mismatches (A2, B2, C2, D2, E2, H2, I2, J2), thus
the total order is inapplicable.

5 Extensibility

Beyond the query capabilities of each language, exten-
sibility features allow developers to workaround limi-
tations of the language and/or data model. Table 16
presents various extensibility features of the surveyed
languages. Nonetheless, the absence of X in a cell leaves
open the possibility of low-level APIs, undocumented
features, extensions from third-party vendors etc. Un-
like other languages that are yet to be standardized,
SQL has been implemented in multiple databases, thus
we use X to indicate a feature being supported by at
least one database (row H).

1. External Language: An external language such
as Java or Python is typically more expressive than a
query language, thus user-defined functions (UDFs) im-
plemented in an external language can augment query
capabilities of the host language. For example, Hive,
Jaql and Pig support Java (A1, B1, C1), whereas Pig
and MongoDB support JavaScript (C1, F1). As an ex-
ample of a SQL engine with wide support for external
languages (H1), Postgresql supports pgSQL, Tcl, Perl,
Python, Java, PHP, R, Ruby, Scheme, and sh.

2. MapReduce: We refer to the MapReduce pro-
gramming model as opposed to the eponymous system
of Google. Since Hive, Jaql and Pig queries are exe-
cuted in a Hadoop cluster, they also support running
map/reduce functions within the cluster (A2, B2, C2).
Parallel clusters other than Hadoop also support ex-
ecuting map/reduce functions. For example, SQL en-
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gines such as Teradata SQL/MR [14] support call-
ing map/reduce functions from a SQL query (H2),
whereas MongoDB provides a proprietary map/reduce
API (F2).

3. Functions (Built-in): Certain languages pro-
vide built-in functions for processing semi-structured
data, without expanding these capabilities to the entire
data model and/or query language. This is reminiscent
of SQL engines that provide limited support for XML
processing by storing XML as a custom data type, and
providing functions for XPath processing. Hive and Big-
Query support a subset of JSONPath [16], which adapts
the XPath syntax for JSON data (A3, J3). Similarly,
SQL engines such as Postgresql, VoltDB and MemSQL
also support arrays and JSON as custom data types,
and provide corresponding built-in functions to process
them.

4. Functions (Plugins): Due to its academic roots
and open source community, Postgresql is also well-
known for its extensibility through plugins (i.e. exten-
sions/modules) that are contributed by third-parties.
For example, the hstore plugin provide a key-value
store that is embedded within SQL, thus providing a
custom data type and corresponding functions to store
and query sparse, heterogeneous data.

Finally, we note that Table 16 focuses on features
that augment the expressiveness of each surveyed lan-
guage. We have intentionally omitted middleware (such
as the Mongo-Hadoop Connector or Cassandra/Hadoop
integration) that provide an alternative interface to
querying the underlying data, either by translations
to the surveyed language or bypassing it altogether
by utilizing a low-level API. Sections 3-4 have shown
that middleware (such as Mongo JDBC) can provide
both enhancements and limitations over its underlying
sources, and thus should be considered a language in
its own right with unique query capabilities.

6 Future Work

We expect SQL++ and the classification methodol-
ogy of this survey to be extensible for comparisons
of even more features of semi-structured query lan-
guages. Features that are well-known in mainstream
query languages can nevertheless interact with other
semi-structured data model / query language features,
thereby providing different design options for language
semantics. A few examples include:

– Aggregation Functions: Certain SQL databases
(e.g. Postgresql) support user-defined aggregate func-
tions. These aggregate functions can follow the SQL

specification of inputting only non-null values, or
they can be customized to input all values.

– Existential/Universal Quantification: SQL sup-
ports existential and universal quantifiers EXISTS,
IN, ANY and ALL.

– Window Functions: SQL 2003 supports window
functions, which are functions evaluated over a win-
dow frame subset of an input collection.

– Recursion SQL supports fixed-point computation
through recursive queries, whereas XQuery similarly
supports recursive functions.

– Coercion: SQL supports using parentheses to coerce
a table comprising a single row and single attribute
into a scalar value. Also, XQuery supports a rich set
of type conversion functions which are used exten-
sively in the language’s semantics.

– Transitive Path Steps: XPath supports the
descendant-axis path step that navigates transitively
through an unbounded number of collections.
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A FORWARD Query Processing Example

Figure 29 shows an example of how the FORWARD middleware
evaluates queries over different databases with varying capabili-
ties. Consider a PostgreSQL database and a MongoDB database,
where the PostgreSQL database contains a sensors table and
MongoDB contains a measurements array of JSON objects. The
FORWARD query processor presents to its clients the virtual
SQL++ views V1 and V2 of these databases. Notice that the
virtual view V2 of MongoDB is identical to its native data rep-
resentation. Since the views are virtual, FORWARD query pro-
cessor does not have a copy of the source data.

Suppose the client issues the federated query Q, which finds
the average temperature reported by any reliably functioning sen-
sor in a specific lat-long bounding box, where a sensor is deemed
reliable only if none of its measurements are outside the range
−40◦F to 140◦F. The query is decomposed into PostgreSQL
and MongoDB subqueries that are efficient and compatible with
the limited query capabilities of MongoDB. In particular, FOR-
WARD first issues to PostgreSQL the query Q1 that finds the
ids of the sensors in the bounding box. Then, for each id, FOR-
WARD issues to MongoDB the query Q2 that tests whether the
sensor is reliable and, if it is, it issues a second query Q3 that
finds the average of the temperature measurements. Notice that
if MongoDB had supported nested queries, it would have been
possible to issue a single MongoDB query for each id. Finally,
the coord to state() function, which inputs coordinates and
outputs the name of the corresponding state, is executed in the
middleware.

sensors: PostgreSQL

SQL++ Query Processor

measurements: [
{sid: 1, temp: 200, 
msg:"calib. err."},
{sid: 2, temp: 70.1},
{sid: 2, temp: 70.2} ]

Client

sensors: {{ 
{id:1, lat:32.8, lng:-117.1},
{id:2, lat:32.7, lng:-117.2} 
}}

SQL Wrapper

MongoDB
id lat lng
1 32.8 -117.1
2 32.7 -117.2

measurements: [
{sid:1, temp:200, 
msg:"calib. err."},
{sid:2, temp:70.1},
{sid:2, temp:70.2} ]

MongoDB Wrapper

SELECT
s.id,s.lat,s.lng

FROM sensors
WHERE (
s.lat>32.6 AND
s.lat<32.9 AND
s.lng>-117.0 AND
s.lng<-117.3)

db.measurements
.aggregate( {$match: 
{$and: [ {sid: @id}, 
{$or: [
{temp: {$gt: 140}},
{temp: {$lt: -40}} 

]}]}},
{$limit: 1})

SQL++ Virtual Database

db.measurements
.aggregate( 
{$match:{sid:@id}}, 
{$group: {
_id: "$sid",
avg: {$avg:"$temp"}

}})

FORWARD Middleware

SELECT coord_to_state(s.lat, s.lng), AVG(m.temp) AS avg_temp
FROM sensors AS s JOIN measurements AS m ON s.id = m.sid
WHERE (s.lat>32.6 AND s.lat<32.9 AND s.lng>-117.0 AND s.lng<-117.3)
AND NOT EXISTS (SELECT 1 FROM measurements AS me 

WHERE me.sid=s.id AND (me.temp>140 OR me.temp<-40))
GROUP BY s.id, s.lat, s.lng

Q1 Q2
Q3

Q

V1 V2

Fig. 29: FORWARD Query Processing Example

Internally, each query is translated into an algebraic plan,
which extends an SQL algebraic plan in ways commensurate to
the extensions of SQL into SQL++. Optimizing such a query plan
involves a query optimizer that decides whether it is beneficial to

first find the small set of sensor ids within the given bounding
box, and then proceed to find measurements from MongoDB.
Most interestingly, this optimizer must be aware of the limited
query capabilities of the involved databases (as described in the
feature matrices and configuration settings of this survey), so
that the subqueries sent to a database are compatible with its
capabilities.

B FORWARD Visualizations

Fig. 30: Screenshot of FORWARD Visualization
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Fig. 31: Complete Source Code for FORWARD Page
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