COCCUS: Self-Configured Cost-Based Query Services in
the Cloud

loannis Konstantinou* Verena Kantere?

*CSLAB, National
Technical University of Athens

ABSTRACT

Recently, a large number of pay-as-you-go data services are
offered over cloud infrastructures. Data service providers
need appropriate and flexible query charging mechanisms
and query optimization that take into consideration cloud
operational expenses, pricing strategies and user preferences.
Yet, existing solutions are static and non-configurable. We
demonstrate COCCUS a modular system for cost-aware
query execution, adaptive query charge and optimization
of cloud data services. The audience can set their que-
ries along with their execution preferences and budget con-
straints, while COCCUS adaptively determines query charge
and manages secondary data structures according to various
economic policies. We demonstrate COCCUS ’s operation
over centralized and shared nothing CloudDBMS architec-
tures on top of public and private IaaS clouds. The audience
is enabled to set economic policies and execute various work-
loads through a comprehensive GUL. COCCUS ’s adaptabil-
ity is showcased using real-time graphs depicting a number
of key performance metrics.

Categories and Subject Descriptors

H.2.4 [Database Management|: Systems—Distrib. databases

Keywords

Cloud computing, Economy, Amortization

1. INTRODUCTION

The IT industry has widely adopted the cloud computing
paradigm in order to benefit from its prominent characteris-
tics, such as the ’pay-as-you go’, i.e., the ability to rent and
utilize only the required resources for as long as they are
needed. This feature is also offered for cloud data services:
Whether they are low-level generic PaaS services like Mi-
crosoft’s Azure [1] and Google’s AppEngine [2] or high-level
query processing frameworks like Google’s BigQuery [3] and
Infochimps [4], they are offered on the basis of charging a
small fee per transaction or hourly operation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD’13, June 22-27, 2013, New York, New York, USA.

Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$10.00.

“Institute of Services Science
University of Geneva
{ikons,nkoziris}@cslab.ece.ntua.gr verena.kantere@unige.ch

Nectarios Koziris*

'Department of Informatics
lonian University
dtsouma@ionio.gr

Dimitrios Tsoumakost

Cloud providers need to tackle two challenges to offer
data services: first, they need appropriate and flexible query
charging mechanisms to ensure their economic viability, while
offering competitive prices; second, they need to manage ef-
ficiently the life-cycle of secondary data structures, like in-
dexes, materialized views, etc, to offer low query response
time. Both query charging and data-structure management
need to consider operational expenses, incurred by query
execution and, building and maintaining data structures,
respectively. Yet, most data service providers offer a flat
charging policy which does not take into account such cloud
expenses, at least in a fine-grained and dynamic manner.

Existing data service providers offer limited support for
query optimization based on automatic data-structure build-
ing and maintenance: usually, the user is enabled to define
some data optimizations through a GUI or configuration
files. Yet, it is necessary to provide through the cloud full
DBMS capabilities self-tuned w.r.t. cost and response-time
constraints. Naturally, traditional DBMSs that offer fully
fledged query optimization, lack the incorporation of the
notion of cost in building and maintaining data structures.

Along the lines for cloud data management [11], we present
COCCUS, a system for self-COnfigured, Cost-based Cloud
qUery Services. COCCUS takes as input user queries and
preferences and executes the queries in a DBMS hosted in a
TaaS provider. COCCUS self-tunes dynamically query per-
formance and query charge to the user preferences and the
pricing scheme of the IaaS provider. COCCUS features:

o Cost-aware query execution: COCCUS incorporates
the notion of cost in query planning and execution.

e Adaptive query charge and optimization: COC-
CUS calculates query charge and schedules data-structure
building and maintenance on-the-fly by considering user
budget constraints and system-specific economic policies.

e Cloud economy abstraction: COCCUS is a generic
modular system that can be installed on top of different
cloud DBMS architectures. Currently, it supports central-
ized and shared-nothing architectures.

This demonstration enables the audience to examine the
behavior of COCCUS by varying the: (i) cloud setup: allows
a choice of DBMS architectures and query provider’s eco-
nomic policies (ii) workload: allows customization of work-
load skewness, query arrival rates, data update frequencies
and various user preferences.

COCCUS is the prototype system that implements the
work in [13]. The latter proposes a prediction model for cost
amortization of query services and develops a cloud economy
for offering and charging query services. The work in [15]

Input Run queries
preferences - Pay charges
COCCUS
laa$S pricing Query
l scheme ¢ User prefs stats
Cost > Cloud Economy Regression
module Cost module module
estlmatlonoue e ost Queny trends
amorti2agion
Query plans ma;;d (il]ats ' -
and stijuctures 4 ‘t ance Amortization
module

Cached ==
data Created structures CPU

/
Sclcctivcda&@ 9 9

transfer External sources

Figure 1: The COCCUS Architecture

-

deals also with the problem of cost amortization of data op-
timizations. Complementary to [13], this approach considers
users to be selfish players, who need to input a possibly false
valuation. This solution focuses on cost-recovery and truth-
fulness at the expense of efficiency. The work in [14] is a the-
oretic approach that computes the price of a query based on
given prices for a set of views. This is orthogonal to [13], in
which query execution cost and, building and maintenance
cost for data structures is computed directly based on the
cost of the cloud infrastructure involved in these operations.

Employing economic notions and methods to manage cloud
services has become a trend. For example, Scarce [§] is a
framework that manages rental of computing resources, mi-
gration and replication, based on their ‘economic fitness’ in
order to perform cost-effective resource allocation. More-
over, the introduction of the notion of cost in cloud data
management has given rise to research on cost models. The
work in [12] proposes such models for the materialization,
maintenance and storage of data views in order to perform
static optimization of cost and response time.

2. ARCHITECTURE

COCCUS operates on top of an IaaS provider and runs
user queries on data that reside in external data sources or
in the cloud. COCCUS may either belong to the cloud IaaS
provider, or to a separate query service provider that uses
services from the underlying IaaS provider. The architec-
ture of COCCUS is illustrated in Figure 1. COCCUS takes
as input user queries and preferences for query execution
and cost, and outputs the query result and execution cost
charged to the user. The goal of COCCUS is to (i) execute
queries in the best possible way according to user prefer-
ences and cloud economic policies, (ii) accelerate query ex-
ecution by gradually building and maintaining appropriate
data structures, and (iii) keep query cost low by amortizing
the building and maintenance cost of data structures to a
large number of queries that employ them for execution.

The query is executed in CloudDBMS, which stores cached
data along with data structures in a typical data-store (rang-
ing from single-machine to fully distributed key-value store)

on top of a IaaS provider, like Amazon’s EC2. The query
execution cost and the cost of building and maintaining
data structures is estimated by the Cost module by utilizing
the charging policy of the underlying IaaS provider. The
Cloud economy module takes as input the query cost esti-
mation along with the user preferences and selects the query
plan to be executed, as well as manages the lifetime of data
structures in CloudDBMS. The Regression module analyzes
query traffic, and estimates future query trends. The Amor-
tization module receives query trends along with cost es-
timation for building and maintaining data structures and
predicts the number of prospective queries in which this cost
should be amortized. The amortized cost of data structures
is fed to the Cost module. In detail:

Cloud DBMS: This module contains cached data, in-
dexes, materialized views and a number of reserved CPU
processors for parallelizing query traffic. It consists of both
the software (i.e., the DBMS) and the hardware (i.e., the re-
served cloud storage and computation infrastructure). The
demonstration system supports various DBMS architectures
ranging from typical single-machine centralized solutions to
fully distributed shared-nothing systems running on top of
different TaaS providers.

Cloud Economy module: This module determines both
the query plan to be executed and the schedule of building
new data structures, according to user preferences and cloud
economic policies. User preferences include a coarse-grained
selection between short execution time or small query cost.
Economic policies refer to the prioritization of the general
economic goal of the query service provider, which can range
from satisfying individually each user query, accelerating
overall query execution and increasing cloud profit (see Sec-
tion 3). Generally, the module selects a plan for execution
from a pool of alternative query plans that can be executed
right away; moreover, it consults a pool of what-if alterna-
tive query plans in order to decide which new data structures
to build and when to build them.

Cost module: This module takes as input a query plan
(ready to be executed or what-if) or a data structure and
outputs the cost estimation, depending on the network traf-
fic, I/O operations, CPU time and storage needed to execute
the plan or build (or maintain) the data structure, respec-
tively. The module takes into account the pricing scheme of
an laaS provider like Amazon, RackSpace or GoGrid.

Regression module: This module takes as input the
past query workload and implements a novel regression method
that fits this workload in probability distributions of the lo-
cality of data request and update. The method creates a
time series input to a training procedure that is executed
periodically and fits the results into a Poisson distribution.

Amortization module: This module amortizes the cost
of building and maintaining data structures into prospec-
tive future queries that will be executed using these struc-
tures. It takes as input the probability distributions output
by the Regression module and implements a novel prediction
model. The latter balances two opposite tends: short-term
and long-term cost amortization. The former aims at fast
pay-off, but leads to expensive query plans that may not be
selected for execution because of the existence of cheaper
alternative plans; the latter aims at small individual pay-
ments, but leads to prolonged amortization that runs the
risk of remaining incomplete due to change of data request
locality or structure invalidation because of data update.

The prediction model estimates the lifetimes of data struc-
tures based on survival analysis techniques [10] and breaks
the building cost into a number of queries which are expected
to occur in the structure’s lifetime.

3. CLOUD ECONOMY

In this section we summarize the functionality of the query
service provider. For details the reader is referred to [13].
Overall functionality: The user inputs a query to the
query service provider as well as preferences for query exe-
cution. User queries are charged in order to be served and
query performance is measured in terms of execution time.
The user preferences with respect to query execution con-
sists of (i) optionally, a preference between fast and cheap
execution and, (ii) optionally, a specific budget as a func-
tion of time. The provider receives the query and the user
preferences and produces alternative query plans. The cost
of these plans is estimated and juxtaposed to the user pref-
erences. If there are plans that are in the budget and pref-
erences, the provider chooses the most appropriate one of
them, w.r.t. an economic policy. The provider has an ac-
count where user payments are deposited and money is in-
vested in new inventory, i.e. structures for faster execution.
The latter are indexes, materialized views, cached columns
and parallelization of execution on multiple processors.

The investment in structures is based on the notion of re-
gret. The provider cannot offer services that employ struc-
tures not yet built. A built structure can benefit execution
of some queries, either in terms of time or cost. The regret
for not offering services because a structure is not built is
accumulated and monitored; if the regret for the absence
of a structure becomes substantial, the provider decides to
invest in the construction of this structure.

The regret is the incentive for the improvement of the
query services. The cost of new inventory is paid from the
provider’s account. The cost is amortized to prospective
users that receive services which include the new inventory.
The aim of amortization is to reduce the individual cost of
the services. Cost reduction increases the potential that the
user’s budget covers the cost of the offered services.

The provider maintains a structure pool relevant to the
recent past queries. Upon receiving a query, it considers
a set of plans that include only existing structures and a
plan set that includes also possible new structures. It de-
termines the optimal plan than can be executed right away
and the investment in new structures. From the implemen-
tation point, the cloud finds structures it can use to execute
a query. First, it requires the column information for all the
tables included in the query. Second, it determines the in-
dex sets that are possibly beneficial by analyzing the query
structure. Queries are parallelized using bushy plans.

Query execution cost: The execution cost of a query
plan is estimated based on the I/O, CPU, network and disk
that it utilizes, according to a pre-defined price list. This
estimation is based on statistics maintained in the cloud
DBMS for similar queries and depends on the cloud infras-
tructure architecture. In this demonstration we focus on
two architecture types, namely a centralized and a shared-
nothing DBMS. For each architecture, we have executed a
number of representative queries and we have collected their
infrastructure resource utilization.

Cost prediction and amortization: The user pays for
each query service the cost of query execution and part of

the building cost of data structures employed in execution.
The building cost of a new structure is amortized to future
query services that employ this structure. A novel prediction
model outputs the extent in time and number of prospec-
tive queries for cost amortization. In case the structure is
evicted because of data update or storage cost exceeding
the building cost, the provider bears the non-amortized cost.
The predictions are based on observation of past workload.
A novel regression method provides input to the prediction
model. The regression transforms statistics on query traffic
into estimations for the lifetime of potential structures from
the building to eviction time.

Economic policies: The cloud economy is self-tuned to
the following policies: P; individual user satisfaction with
the received query services w.r.t. charging; P> increase of
overall quality of query services, and Ps cloud profitabil-
ity at all times. The self-tuning reflects on both the query
plan selection for execution and the decision for building
new structures. Appropriate decision making for building
new structures and appropriate selection of query plans for
execution can lead, eventually, to self-tuning to all three
policies. According to Pi, the provider selects the query
plan closest to the user preferences (e.g. the plan closer to
the user budget function) and charges the actual cost of the
query plan. Naturally, cloud credit increases gradually and
allows for gradual building of new structures. According to
P> the provider selects for execution the fastest query plan
within user preferences and takes decisions for building new
data structures based on low regret values. Query services
are improved and, in case of good data locality, individual
user payments are reduced, achieving both fast and cheap
service provision. According to Ps; the provider selects for
execution the query plan that allows for the largest cloud
profit and charges the query at the top of the user budget.
Cloud profit increases fast which allows decisions with low
regret and fast improvement of query services.

4. DEMONSTRATION DESCRIPTION

Demonstration scenarios: The demonstration includes
motivating scenarios that introduce the prototype system
and the research results that it implements, and interactive
scenarios that allow the audience to experience the system
functionality in various configurations.

(A) Motivating scenarios: Two motivating scenarios exhibit
the system operation in two situations. The first scenario
shows the operation of a startup IT company that offers
query services on a fully fledged cloud DBMS hosted in an
TaaS provider and the second shows the operation of an
academic query service provider. Naturally, these two en-
vironments follow different economic policies (e.g. the first
may prioritize cloud profit whereas the second may prioritize
query execution quality) and have to serve different query
workloads (e.g. the first may serve short one-time queries
from millions of users, whereas the second may serve long
running computationally intensive queries by few users). It
is shown that COCCUS (i) adapts its operation to the work-
load peculiarities and user preferences, (ii) ensures the qual-
ity of the primary economic policy, and (iii) gradually, en-
sures the qualities of the other economic policies, by schedul-
ing structure building and by amortizing their cost.

(B) Interactive scenarios: A range of dynamic interactive
scenarios exhibit the system’s ability to identify the best
query plans, accelerate query execution by building appro-

Running experiment with the following parameters:

‘Workload configuration: System configuration:
Query arrival rate: 10 queries/sec
Query skewness: Uniform

Update frequency: No updates

budget preference: short execution time

Pricing strategy: user satisfaction

CloudDBMS platform: Single server MySQL
TaaS cloud provider: okeanos public cloud

(===

- -
Browse long-term experiment results

shared-nothing_okeanos_user-satisfaction
10gpersec_skewed_NoUpdates_ShortExecutionTime
10gpersec_skewed_NoUpdates_SmallCost
30gpersec_uniform_NoUpdates_ShortExecutionTime

30qpersec_uniform_NoUpdates_SmallCost
9 cloud-profit.png

m

9| mean-cost-per-query.png

Query skewness: @ Uniform) Skewed ' Very skewed

Update frequency:

0%

W . Budget preference: @ Short execution time) Small cost

Run short-term workload | Long-term workioads

Progress:
Cloud profit Mean Cost per query
[E=N(EER
. Configure Workload | Configure System
Complete the following parameters
Vo, Query arrival rate:
o 10 queries/sec 100 queriesfsec

9| guery-response-time.png

¥ query-threughput.png
40gpersec_skewed_NoUpdates_ShortExecutionTime
an cleauad Mollndatar Smallcact

Configure Workioad | Configure System

Complete the following parameters
CloudDEMS platform: @ Single-server MySQL © Shared-nothing HBase
1235 Cloud provider: @ Private openstack cloud (2 Public okeanos cloud

Pricing policy: @ User satisfaction © Quality increase) Profit increase

Run short-term workload = Long-term workloads

Figure 2: COCCUS demo interface.

priate data structures while achieving low query cost, under
different workloads, user preferences, data-stores and cloud
infrastructures. The scenarios enable audience interaction
for the observation of (i) real-time and (ii) macroscopic re-
sults: (i) The attendee can launch a relatively small number
(e.g., around 1K) of queries and observe performance metrics
as the workload execution evolves (back-left graph, Figure
2), or (ii) she can browse macroscopic pre-compiled aggre-
gated results that show the system’s behavior in a big time
window, (back-right graph, Figure 2). The metrics include
latency and mean response time, the mean query cost and
the COCCUS’s profit.

The demonstration allows attendees to interact with COC-
CUS on two general axes: Workload and system configura-
tion. Interaction is enabled through a web interface, with
available options organized in two tabs:

Workload configuration: The options for workload con-
figuration are depicted in the front-left graph, Figure 2. It
consists of a TPC-H based query workload created by the
widely used YCSBJ9], Yahoo’s Cloud Serving Benchmark.

Attendees can configure query arrival rate choosing from
a range between 10 up to 100 queries/sec, and query’s skew-
ness between uniform and several skewness degrees. Also,
they can select the query update frequency, i.e., the work-
load percentage that performs data updates and, thus, in-
validates built data-structures. Finally, attendees can set
query execution preferences on time (i.e., fast query plans)
or cost (i.e. cheap query plans).

System configuration: The options for system configu-
ration are depicted in the front right graph, Figure 2. Atten-
dees can set the CloudDBMS platform on top of which COC-
CUS operates, by choosing among a single-server centralized
MySQL DBMS and HBase [5], a fully distributed NoSQL
store that utilizes sharding without replication. Also, they
can define the IaaS cloud on top of which they will deploy
the CloudDBMS choosing between a private OpenStack [6]
cloud and the [7] okeanos public cloud. The applied pricing
scheme translates resource usage to actual costs by utilizing

an Amazon EC2 price list. Finally, they can set the COC-
CUS ’s economic policy, choosing among user-satisfaction
(i.e., select query plans that best fits the user preferences),
query quality increase (i.e., aggressively invest margin in
building new data structures) and profit increase (i.e., exe-
cute the query plan that best ensures COCCUS ’s profit).

5. ACKNOWLEDGMENTS

This work was partially supported by the European Com-
mission in terms of the CELAR 317790 FP7 project (FP7-
ICT-2011-8).

6. REFERENCES

(1] http://www.windowsazure.com.

[2] http://appengine.google.com.

[3] http://cloud.google.com/bigquery.

[4] http://www.infochimps.com.

[5] http://hbase.apache.org.

[6] http://www.openstack.org.

[7] https://okeanos.grnet.gr.

[8] N. Bonvin, T. G. Papaioannou, and K. Aberer. Autonomic
SLA-Driven Provisioning for Cloud Applications. In
CCGRID, pages 434-443, 2011.

[9] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking Cloud Serving Systems with
YCSB. In SOCC, pages 143-154, 2010.

[10] D. Cox and D. Oakes. Analysis of Survival Data,
volume 21. Chapman & Hall/CRC, 1984.

[11] C. Curino, E. Jones, R. A. Popa, N. Malviya, E. Wu,

S. Madden, H. Balakrishnan, and N. Zeldovich. Relational
Cloud: A Database Service for the Cloud. In CIDR, 2011.

[12] L. D’Orazio, S. Bimonte, J. Darmont, et al. Cost Models
for View Materialization in the Cloud. In Proc. of
EDBT-ICDT/DanaC 2012), 2012.

[13] V. Kantere, D. Dash, G. Gratsias, and A. Ailamaki.
Predicting Cost Amortization for Query Services. In
SIGMOD, pages 325-336, 2011.

[14] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and
D. Suciu. Query-based Data Pricing. In PODS, pages
167-178, 2012.

[15] P. Upadhyaya, M. Balazinska, and D. Suciu. How to Price
Shared Optimizations in the Cloud. PVLDB, 2012.

http://www.windowsazure.com
http://appengine.google.com
http://cloud.google.com/bigquery
http://www.infochimps.com
http://hbase.apache.org
http://www.openstack.org
https://okeanos.grnet.gr

	1 Introduction
	2 Architecture
	3 Cloud economy
	4 Demonstration Description
	5 Acknowledgments
	6 References

