
A Framework for Sharing Voluminous Content in
P2P Systems

Dimitrios Tsoumakos
Department of Computer Science

University of Maryland
College Park, MD 20742, U.S.A.

dtsouma@cs.umd.edu

Nick Roussopoulos
Department of Computer Science

University of Maryland
College Park, MD 20742, U.S.A.

nick@cs.umd.edu

Abstract— File-sharing applications remain today the
most representative and popular realization of the Peer-
to-Peer paradigm. Large objects receive an increasing
amount of interest in such systems. In this paper, we
identify several challenges related to sharing voluminous
content such as movies, OS distributions, games, etc, in
unstructured Peer-to-Peer networks. We then describe
our scheme which adaptivelyexpandsor contractssystem
resources in order to improve the sharing process and
achieve a fair load distribution among the providers.

Keywords: Peer-to-Peer, Distributed Algorithms, In-
ternet and Cooperative Applications, Load-Balancing

I. I NTRODUCTION

Peer-to-Peer (hence P2P) computing represents the
notion of sharing resources available at the edges of the
Internet [1]. Its success can still be largely attributed
to file-sharing applications (e.g., [2]–[4]), which enable
users worldwide to exchange popular content. While the
scientific community has embraced this paradigm with a
variety of applications, it is still file-sharing that provides
P2P with its majority of users.

We are currently in the middle of a large debate (with
legal implications as well) concerning the lawfulness of
sharing copyrighted material through P2P applications.
While music undeniably receives the largest share of
user interest, a recent study [5] reports that there has
been an increase in the demand for large multimedia
files (movies) among P2P users. There also exist other
types of large objects for which communities would be
greatly interested, for example new OS distributions,
educational/commercial software, games, high quality
satellite images and maps, etc.

Obviously, sharing large files is very different from
sharing objects with considerably smaller sizes (less than

a few megabytes). The inherent difficulties arise mainly
from the size of the content, its replication inside the
network and the dynamic nature of the environment.
This is the case for most of the popular P2P applica-
tions today which operate onunstructurednetworks. In
these systems, document location and replication is user-
controlled, peers connect in an ad-hoc fashion and obtain
only local knowledge. Moreover, little or no guarantees
regarding the basic operations are offered.

In this work, we first describe this problem and
the specific difficulties entailed. We then present our
framework to achieve efficient voluminous content shar-
ing. The core of our protocol is the “Expand-Contract”
scheme for adaptively increasing or decreasing the object
replication ratio and achieving an equal load distribution
in a completely decentralized manner. During this pro-
cess, we also identify several of the emerging research
challenges we currently pursue.

II. T HE PROBLEM OF SHARING LARGE OBJECTS

A. Research Challenges and Related Work

In this section we discuss the inherent difficulties that
arise in a distributed content-sharing environment, when
efficient sharing of very large objects is required. Typical
network node configurations now include more than a
GByte of main memory, 2+ GHz of processor speed
and 200+ GBytes of secondary storage, which strongly
imply that local space and processing are no longer
the primary concerns. Experience shows that users face
serious problems when trying to retrieve large files. In
some cases, very few relevant nodes are willing to share,
and those that do are often overwhelmed by the number
of requests they receive, making them reluctant to keep
sharing.

First, it is the size of the objects itself. Given the
highly dynamic nature of file-sharing networks, it is

obvious that the waste in network and node resources
resulting from failing transactions (due to peer departures
or network failures) is enormous. Not only have the two
communicating peers wasted bandwidth and time, but
they have also possibly denied their services to other
peers in the mean time, used up link capacity, etc.

File fragmentation provides a reliable solution for this
problem. Nevertheless, it also shifts our attention to how
we should fragment each file, what to retrieve and from
where. In general, the following two approaches exist:

1) Files comprise of equal size chunks and are indi-
vidually indexed

2) Peers dynamically decide the portion that is re-
trieved from each source peer

The first approach is utilized by Overnet [6], Bit-
Torrent [7] and Slurpie [8]. Each file is divided into
a number of standard-size fragments (9500KB, 256KB,
256KB for those systems respectively). A peer may
then download different fragments from various sources.
Upon completion, each fragment becomes available for
sharing with other nodes. This approach has some
plausible characteristics, mainly the fact that peers can
immediately serve1 fragments they have retrieved. Of
course, this means that each chunk must be identified as
an individual entity now. The interesting questions here
relate to the choice of the chunk sizes, as well as the
order of their retrieval. Obviously, the smaller the size,
the less bandwidth will be wasted in case of failure, but
more transactions will be needed and more objects to be
indexed.

The second approach [9] (or modifications of it [10])
is currently used by other P2P applications (e.g., Mor-
pheus [11]). A requester contacts many source peers and
retrieves small portions of the file from each of them.
When each small chunk is retrieved, more is asked from
that specific source. This has the effect that the number
of the small portions retrieved is always proportional to
the quality of each connection, even if it varies with
time. This approach is beneficial only when the size of
the file is in the order of at least a few hundred kilobytes.
Given very large files (which is the case here), it actually
behaves similarly to the previous approach, but has the
disadvantage of requiring all contacted peers to obtain
the whole document.

There also exist several schemes (e.g. [12], [13])
which allow for increased robustness in reconstructing

1The words serve and server for objecti are used in this work to
indicate peers that maintaini and are willing to share it with others
(depending on their individual capacities)

a file by receiving a few extra parts of it. These methods
are most beneficial for medium–small size files.

An equally important issue is the availability of re-
sources inside the system. We generally expect volumi-
nous content to be more sparsely replicated than audio
or image files for example. Combined with their large
size (and thus increased amount of download time), this
has the effect of overloading most of the servers. In
turn, this reduces the availability of the shared files, as
servers refuse connections, while download performance
degrades for all involved peers. In general, it is interest-
ing to investigate different means of system response to
increased workload and overloaded servers. In Slurpie
and BitTorrent, interested peers have to contact a central
service in order to learn about other interested peers and
then collaborate with them, forming a mesh and commu-
nicating through it. The Overnet protocol specifies that
peers cooperate with four other downloaders of the same
file (no details as to how they are found and maintained)
that have high upload speeds.

Our approach mostly focuses on providing an adap-
tive solution to the problem of availability together
with minimizing the instances of server overloads or
serious service degradation. We intend for our system
to “expand” and “contract” its resources according to
the workload as perceived locally and balance content
sharing in overloaded areas. Moreover, this will be done
in a completely decentralized manner, with minimal
communication overhead and using absolutely affordable
memory space per node.

B. Our Framework

We assume apure Peer-to-Peer model, with no im-
posed hierarchy over the set of participating peers. All
of them may serve and request various objects. Each
peer locally maintains its own collection of objects, as
well as a local view of the system. Ignoring physical
connectivity and topology from our talk, we generally
expect peers to be aware of their one-hop neighbors
in the overlay, while maintaining any other protocol-
specific information (e.g., search indices, routing tables,
etc). The system is expected to exhibit a dynamic be-
havior, with peers entering and leaving at will and also
inserting/removing objects from their repositories. The
overlay structure will also be affected, since nodes are
not guaranteed to connect to the same neighbors each
time.

This is a general model for resource-sharing in a com-
pletely decentralized, infra-structureless P2P network.
We now extend it with details specific to the problem

Fig. 1. Part of the overlay network of our model. Shaded peers
inside the bold dotted line representMi , while those inside the thin
dotted eclipse representM j . Other peers (those with a file connected
to them) also serve objectsi or j

in hand (see Figure 1). For each objecti, there exists
a set of peers called theserver setSi = {si1,si2, . . . ,sik}
that serve the specific object. These are the nodes that,
at a given time, are online, store objecti and are willing
to share it. A subset ofSi , the mirror set Mi ⊆ Si

(the shaded peers) represents the set of peers that, if
online,alwaysservei. This does not imply that all peers
in Mi will always be online, their connectivity in the
overlay will remain the same, or that they will never
refuse connections. But we can assume, without loss
of generality, that these nodes will be mostly available.
Our assumption is not unrealistic: Imagine that these
servers can represent mirror sites/authority nodes that
provide with up-to-date content. Nevertheless, they are
not guaranteed to be always on-line, nor do they provide
similar services. Apart from the mirror set, other peers
that already host or have recently retrieved an object can
serve requests for it (nodes with files attached to them
in Figure 1). A server set comprises of these nodes plus
the corresponding mirror set.

Naturally, peers may belong to server or mirror sets for
multiple objects. Moreover, they can make requests and
retrieve other objects of interest from the network. While
this is a symmetric environment, it is clear that nodes
will exhibit different sharing abilities. This is simply
the effect that is produced by a number of different
conditions:

• Varying storage and CPU capabilities,
• Popularity of stored objects,
• System workload,
• Overlay connectivity for each peer,
• Connection speeds, etc

Some of these factors remain more or less static over

time (e.g., processing power or the maximum available
bandwidth of a host), while others change dynamically.
Whichever the case, it is safe to assume that each peer in
such a system will impose a limit on the services it can
provide to other peers. This is something that is already
utilized by several file-sharing applications (e.g., Kazaa
[4]), FTP servers, etc. There exist a variety of metrics
that can be used to realize those limits, for example
the maximum number of concurrent connections, upload
bandwidth, number of shared files, rate of received
requests, etc.

Finally, we can assume (something that can be verified
by experience) that some peers prefer to keep already
downloaded files off the system, or even choose to
disconnect than continuously share them. We expect that
a certain level of user cooperation is necessary in order
to achieve application-specific goals. For example, many
current applications require that online peers serve all
previously downloaded content, while others increase
peers’ priorities the more they share. In our approach,
we assume a similar level of cooperation, except that we
do not impose it until necessary.

Given this general framework, our goal is to design
and implement a system that will exhibit the following
characteristics:

1) Efficient sharing of large objects in terms of re-
sponse times, load distribution at peers and adapta-
tion to dynamic workloads and network conditions

2) Bandwidth-efficiency and scalability

III. O UR “EXPAND-CONTRACT” T ECHNIQUE

Our system design provides with two basic operations:
ExpansionandContraction. These are shown pictorially
in Figures 2 and 3 respectively. Our main goal is to
provide a completely decentralized mechanism through
which the system will adaptively expand its replica size
when demand is increased and will shrink when demand
will fall.

Let us now discuss why the system would benefit
from those two operations. When parts of the server set
Si receive too many requests, the following may occur:
Clients’ connections get refused, while servers receive
an increasing amount of requests and their performance
deteriorates. Both groups would benefit from an increase
in the number of replicas available, especially if those
replicas were placed inside the areas of high demand
in the overlay. Conversely, consider that one or more
subsets ofSi have recently received very few requests
for object i. This practically means that a potentially
large amount of their storage space is under-utilized.

Fig. 2. Example ofExpansion

Algorithm 1 Expand
1: if Server-Node x reaches its limitthen
2: i←ChooseOb ject();
3: P← FindPossibleServers(i); {P∩Si = /0}
4: send toY ⊆ P: Activate(Y, i);
5: end if

They could remove the document to free up space or
replace it with another document of high demand. We
have to stress here the point that the system will not force
any peer to store or serve an object until this becomes
necessary; Only peers that have already retrieved the
document, or have available storage (depending on what
replication strategy we use) can play that role.

Figure 2 shows an example of our system expanding
in response to increased demand for a specific object. On
the left we see some initial server set (gray oval) and the
demand fori (arrows from various parts of the network).
Servers in two areas are overloaded with requests, thus
forcing extra replicas in those two areas to be activated
for sharing.Si expands, as we see on the right part of the
picture, in response to the demand and replication status
for objecti. Similarly, Figure 3 shows that the two white
areas of the server set (the area inside the dotted line)
do not receive requests for objecti. This leads to the
contraction ofSi which is now the gray oval on the right
part of the figure. Algorithms 1 and 2 present a high-level
description of how these two methods would work.

Note here that we do not differentiate between a
document chunk and a whole document. Lookups and
downloads can be issued for either type. Assuming a set
chunk size, requesters are responsible for assembling all
the pieces. The order by which chunks will be requested
is a problem of its own as described in [7]. Therefore,
our method can be also applied for sharing objects of
smaller sizes.

Vital to the success of our scheme are the following
points:

1) Minimization of communication insideSi

Fig. 3. Example ofContraction

Algorithm 2 Contract
1: if (Server-Node x is under-utilized)or

(x receivesActivate(x, j)) then
2: i←ChooseOb ject();
3: DeactivateReplica(i);
4: if (x received anActivate(x, j)) then
5: ActivateReplica(j);
6: end if
7: end if

2) Mechanism to identify when an object is “hot”
(many requests/pending downloads) or “cold”

3) Mechanism to locate and activate replicas inside
high-demand areas

4) Mechanism to decide on the object replacement
policy in peer storage space

For the first point, we believe that each peer can
independently choose when to initiate an expansion or
when to deactivate replica(s) of an object. Therefore,
there is no need for any message exchange between peers
insideSi .

The conditions of line 1 in Algorithms 1 and 2
describe whenExpand or Contract will be initiated.
We present the high-level behavior of our system using
Figure 4: In normal mode, nodes can adequately serve
requests and also retrieve objects. As load increases,
some reach their self-imposed limits and invoke the
Expand process (either in conjunction withContract
or independently).Expand aims at bringing the node
status back to normal and/or balance the demand for a
specific object inside an area. Normal operation and load
balancing for an object will not be necessarily achieved
simultaneously. Consider, for example, that a peer initi-
ating Expandmay receive requests for multiple objects.
Expanding in respect to one of them will probably lower
its load, but will not necessarily bring its level back to
normal.

Similarly, when peers are under-utilized, they invoke
Contract which frees idle resources from nodes and

Contract Expand

Contract

Normal Operation

Overloaded

Under−utilized

Pe
er

 L
oa

d

Fig. 4. State transitions in our system

increases the utilization of the servers.Contractwill also
be invoked when a peer is called to joinSi but cannot do
so without exceeding its limits (e.g., maximum sharing
capacity). Note that peers can still choose to reject a
certain action, for example refuse to deactivate an object
in order to serve a new one.

For the second point, there are various metrics that
can be used to achieve that categorization, for example
the number (Reqi) or rate of requests (λi) for object
i observed in a time window. FunctionChooseObject
decides at each point which stored or requested object is
the most beneficial in order to be replicated or removed.
Therefore, the second and fourth points above should
be jointly considered. One of our goals is to achieve a
system behavior that resembles the buffer management
techniques in databases: Viewing the P2P network as a
large buffer, we want to decide (in a distributed manner)
which object(s) should be kept in the buffer (become
share-enabled) and which should be replaced (or put to
secondary/tertiary storage), given a dynamic workload.

We assume that peers locate various servers by send-
ing out a query each time. This is done mainly because
peers want to get the most up-to-date information about
replica locations in their area. TheAPS [14] algorithm
has proved to be an adaptive, bandwidth-efficient scheme
which also provides for robust behavior in dynamic
environments [15]. It can be used to locate multiple
copies (or fragments) of a requested object by deploy-
ing probabilistically directed walkers.APS utilizes an
adaptive indexing scheme through which peers keep a
relative probability for each of their neighbors. These
index values are refined as more searches take place,
enabling the network to build a useful soft-state. In Fig-
ure 5, we present part of a 4,000-node power-law graph
created by the Inet-3.0 topology generator [16]. The
circle represents a server node and arcs represent links
to or from the server and 200 randomly selected nodes

Fig. 5. Visual representation of a sample power-law graph, after
several searches for a single object using the APS method. Solid line
arcs show high index value links between nodes

that search for the object. Links drawn with solid lines
represent index values stored byAPS above a certain
threshold (i.e. many successful searches through them),
while dotted links show paths with low probability of
success. After only a small number of requests, most
paths that connect the server to the requesters are drawn
with solid lines.

Augmenting this technique, we have designed a
lightweight scheme [17] that enables peers to efficiently
identify nodes that have shown interest in an object
(point 3). Our method utilizes the state created during
the search process to efficiently route messages from
server nodes to peers that have searched for and retrieved
an object. It requires no message exchange, nor any
membership state to be kept at the nodes, having very
reasonable space requirements. The same scheme can
simultaneously detect a decrease in demand for a specific
object. Therefore, it can also be used as a mechanism
(other than the obvious request rate statistic) for peers
to decide when to perform contraction, again with zero
message exchange.

Figure 6 shows some preliminary results from this
method. Using the same 4,000-node power-law graph,
one server node and a varying number of nodes with
request ratesλ = {0.1,1}queries

sec , we plot the success rate
(= number of contacted requesters over total number of
requesters) and stress (= number of messages sent over
total number of requesters) of our method. We notice
that around 90% of the requesters can be discovered
with a very low message overhead (given that at least
n messages are needed to contactn peers). Our method

10 100 1000
Requester Nodes

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
st

re
ss

lambda = .1
lambda = 1

10 100 1000
Requester Nodes

0

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

lambda = .1
lambda = 1

Fig. 6. The success rate and stress of our group notification scheme
under variable number of requesters and request rates

can also easily adjust its routing scheme so that, given
a number of requestersR , at mostm� R of them can
be contacted with high probability.

Some other interesting questions emerge from our
proposed solution. First, we intend to compare two
different activation strategies, where either some in-
termediate peers or the affected server(s) initiate the
expansion phase. Another question is how aggressive
should the expansion or contraction be, under a certain
workload and/or network dynamics. In other words,
what is a good number of new replicas/servers to be
activated given various demands for different objects.
A valid concern is to operate in a proactive manner
but avoid network oscillation; very aggressive behavior
can result in recurrent transitions between over- and
under-utilization conditions. We plan on implementing
our system and measure its effectiveness with varying
workloads and peer behavior, as well as investigate many
of these interesting directions.

IV. CONCLUSIONS

In this position paper we presented the problem of
sharing voluminous content using a Peer-to-Peer system.
We believe this to be a particularly attractive and suitable
application, based on a completely decentralized and
unstructured system model. Our design aims at providing
an adaptive response to workload changes, by creating
extra service points in needy areas or releasing redundant
servers from areas of low demand. There exist a lot of
interesting questions which we intend to pursue, mostly
in the direction of minimizing communication overhead

while maintaining the quality of content sharing under
varying conditions.

V. ACKNOWLEDGMENTS

This material is based upon work supported by, or
in part by, the U.S. Army Research Laboratory and the
U.S. Army Research Office under contract/grant number
DAAD19-01-1-0494

REFERENCES

[1] Clay Shirky, “What Is P2P ... And What Isn’t,”OpenP2P.com,

2000.

[2] “http://www.napster.com.,” Napster website.

[3] “http://www.gnutella.com,” Gnutella website.

[4] “http://www.kazaa.com,” Kazaa website.

[5] Sandvine Inc., “Regional Characteristics of P2P: File sharing as

a multi-application, multi-national phenomenon,”An Industry

White Paper, 2003.

[6] “http://www.overnet.com/,” Overnet website.

[7] Bram Cohen, “Incentives build robustness in bittorrent,” 2003.

[8] Rob Sherwood, Ryan Braud, and Bobby Bhattacharjee,

“Slurpie: A cooperative bulk data transfer protocol,” inIEEE

Infocom, 2004.

[9] Pablo Rodriguez and Ernst W. Biersack, “Dynamic parallel

access to replicated content in the Internet,”IEEE/ACM

Transactions on Networking, vol. 10, no. 4, Aug. 2002.

[10] John W. Byers, Michael Luby, and Michael Mitzenmacher,

“Accessing multiple mirror sites in parallel: Using tornado

codes to speed up downloads,” inINFOCOM, 1999.

[11] “http://www.morpheus.com,” Morpheus website.

[12] Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrol-

lahi, Daniel A. Spielman, and Volker Stemann, “Practical loss-

resilient codes,” inSTOC, 1997.

[13] Michael O. Rabin, “Efficient dispersal of information for

security, load balancing, and fault tolerance,”JACM, vol. 36,

no. 2, 1989.

[14] D. Tsoumakos and N. Roussopoulos, “Adaptive Probabilistic

Search for Peer-to-Peer Networks,” in3rd IEEE Intl Conference

on P2P Computing, 2003.

[15] D.Tsoumakos and N. Roussopoulos, “A Comparison of Peer-

to-Peer Search Methods,” inWebDB, 2003.

[16] C. Jin, Q. Chen, and S. Jamin, “Inet: Internet Topology

Generator. Technical Report CSE-TR443-00, Department of

EECS, University of Michigan,” 2000.

[17] D.Tsoumakos and N. Roussopoulos, “Efficient Group Notifica-

tion for Unstructured P2P Networks,”under submission, 2004.

