
MuSQLE: Distributed SQL Query Execution Over Multiple Engine Environments

Victor Giannakouris∗, Nikolaos Papailiou∗, Dimitrios Tsoumakos§ and Nectarios Koziris∗
∗Computing Systems Laboratory, National and Technical University of Athens, Greece

{vgian, npapa, nkoziris}@cslab.ece.ntua.gr
§Department of Informatics, Ionian University, Corfu, Greece

dtsouma@ionio.gr

Abstract—Multi-engine analytics has been gaining an in-
creasing amount of attention from both the academic and
the industrial community as it can successfully cope with the
heterogeneity and complexity that the plethora of frameworks,
technologies and requirements have brought forth. It is now
common for a data analyst to combine data that resides on
multiple and totally independent engines and perform complex
analytics queries. Multi-engine solutions based on SQL can
facilitate such efforts, as SQL is a popular standard that
the majority of data-scientists understands. Existing solutions
propose a middleware that centrally optimizes query execution
for multiple engines. Yet, this approach requires manual
integration of every primitive engine operator along with its
cost model, rendering the process of adding new operators or
engines highly inextensible. To address this issue we present
MuSQLE, a system for SQL-based analytics over multi-engine
environments. MuSQLE can efficiently utilize external SQL
engines allowing for both intra and inter engine optimizations.
Our framework adopts a novel API-based strategy. Instead
of manual integration, MuSQLE specifies a generic API, used
for the cost estimation and query execution, that needs to be
implemented for each SQL engine endpoint. Our engine API
is integrated with a state-of-the-art query optimizer, adding
support for location-based, multi-engine query optimization
and letting individual runtimes perform sub-query physical
optimization. The derived multi-engine plans are executed
using the Spark distributed execution framework. Our detailed
experimental evaluation, integrating PostgreSQL, MemSQL
and SparkSQL under MuSQLE, demonstrates its ability to ac-
curately decide on the most suitable execution engine. MuSQLE
can provide speedups of up to 1 order of magnitude for
TPCH queries, leveraging different engines for the execution
of individual query parts.

Keywords-Polystore, Multi-Engine Optimization, SQL, Cost-
models, Big Data

I. INTRODUCTION

Big Data analytics constitutes a large fraction of modern
datacenter workloads with numerous applications in most
aspects of business and everyday life. Current methods and
tools for Big Data analysis are quite diverse, being dictated
by the heterogeneity of use cases that operate over different
data formats, computational and functional requirements.
This reality has brought forth an abundance of: i) compu-
tation languages and models (e.g., SQL, MapReduce, BSP,
etc), ii) data store technologies (e.g., NoSQL stores [1], [2],
columnstores [3], distributed FSs [4], etc), and iii) execution
engines (e.g. [5], [6], [7], [8], etc).

While all these systems have been successful, they still
showcase their advantages on a subset of analytics applica-
tions. Their striking limitation is that they require specific
data formats and query inputs, being able to utilize only
their custom execution engine. The need for a multi-engine
approach, that splits and coordinates workflow execution
among multiple engines has been recently recognized and
is gaining increasing attention ([9], [10], [11], [12], [13]).

Regarding a standardized querying language, SQL, the
mainstay query language for RDBMSs, is generally ac-
knowledged as a top in-demand skill for this new era, with
new platforms constantly seeking its support ([14], [15],
[16], [13], [17]). SQL emerges as the de facto language
for big data due to its extensibility, its ability to naturally
represent queries that can be optimized, and the vast number
of products and developers that already support it. These
points highly suggest a multi-engine approach that allows
SQL analytics over multiple data formats and uses the most
appropriate engines.

Recent attempts along this line ([9], [18], [11]) tackle the
issue by producing federated systems: There exists a custom
subsystem where the different engines’ operators and cost
models are integrated and optimized planning is performed.
While this is achieved for the already included systems and
operators, this setup lacks extensibility as it requires a lot of
manual work in order for one to incorporate a new analytics
engine or support new operators on already integrated ones.
Moreover, it frequently proves suboptimal to define a single,
global optimization layer, and disregard the capabilities of
the underlying engines to locally optimize.

In this work we present MuSQLE, an open-source frame-
work1 for high-performance SQL-based analytics over dif-
ferent data sources and execution engines. MuSQLE is able
to overcome the aforementioned deficiencies and optimize
simple or complex SQL queries. Our solution adopts a
novel API-based strategy for integrating runtimes: Instead
of manual integration, MuSQLE utilizes standardized, API-
based cost-model and execution endpoints from the partici-
pating engines. Our system is able to optimally disseminate
parts of the initial query (including the appropriate data
movements between stores) using state-of-the-art planning

1https://github.com/gsvic/MuSQLE

and letting individual optimizers handle the respective sub-
queries. MuSQLE utilizes Spark [14] as an executor and
orchestrator layer, extending its current functionality as well
as providing it with a native cost-model.

In summary, our work makes the following contributions:
• We propose a generic SQL engine API that can facil-

itate multi-engine query optimization. The API is based
on well-documented SQL functionality and can be im-
plemented using generic, engine-agnostic interfaces like
JDBC and ODBC.
• We integrate this API into a state-of-the-art query op-

timizer, allowing for external, multi-engine cost-based
query optimization. Our optimizer runs on the logical
level, allowing the connected engines to have full control
of physical optimization and join execution. This approach
avoids the detailed enumeration of all physical operators
on the external optimizer and thus further facilitates the
integration of a new SQL engine.
• We compile and utilize a cost model for the SparkSQL

operators. This model is used within our query planner to
achieve query optimization for SparkSQL.
• We present a fully functional system that integrates three

popular engines: SparkSQL [14], PostgreSQL [19] and
MemSQL [20]. We describe our system architecture and
components in detail, as well as extensively evaluate the
utility and efficiency of our scheme.
• Our detailed experimental evaluation showcases that

MuSQLE can accurately decide on the most suitable ex-
ecution engine and provides speedups of up to 1 order of
magnitude for TPCH queries, leveraging different engines
for the execution of individual query parts.

II. RELATED WORK

We now present some of the most relevant approaches
in multi engine analytics focusing on SQL-based solutions.
We emphasize on the pros and cons of each approach,
distinguishing between two categories: Research works and
Production-level systems.

Production Systems: SparkSQL [21] provides a com-
plete in-memory query execution engine using Resilient
Distributed Datasets (RDDs), allowing remote data manipu-
lation via DataFrames. For example, it is possible to query
tables stored in an RDBMS or a main memory store (e.g.,
MemSQL [20]) as well as Parquet files in a HDFS cluster.
The user can query these tables using traditional SQL via
the SQLContext or by using methods of the DataFrame
interface. However, in such a case, SparkSQL needs to fetch
and distribute every external table into its worker nodes in
order to perform data operations. As a result, optimization
and processing capabilities of the external stores are ignored
(e.g., index scans in case of filters).

PrestoDB [16] is a popular system for distributed, analyti-
cal query execution over heterogeneous datastores developed
at Facebook. It provides a distributed execution model

using similar algorithms with SparkSQL for querying data
across multiple datastores by providing an engine-specific
connector for each external system (e.g., Kafka, Cassandra,
Hive, etc.) in order to be integrated to the core system.
PrestoDB also needs to fetch each table involved in the query
without pushing any operation to the underlying runtimes.

Apache Drill [22] enables SQL-based querying over un-
structured, schema-free datastores (e.g., HDFS, MongoDB,
Azure). However, Drill does not utilize individual cost
models, statistics and estimates in the planning phase. This
prevents it from executing one or more subqueries locally
even if the local execution would be faster.

Research Works: BigDAWG [13] addresses the problem
of query resolution over heterogeneous environments by
executing queries using islands of information, where each
island refers to a data model, a query language and a set
of data management systems. In BigDAWG, a query is
optimized using either Single- or Multi-Island Planning.
While the system supports native subquery execution inside
the underlying engines, it treats each engine as a black-box.
As a result, local optimizers are ignored.

A different approach is followed by CloudMdsQL [23]
which provides a functional SQL-like language for querying
data stored in heterogeneous datastores within a single query,
focusing on the ad-hoc usage of each datastore’s native
query language and engine. CloudMdsQL supports the local
execution of a subquery and shipping of intermediate re-
sults. As it focuses on integration, it requires custom-made
wrappers that translate from source to target language and
provide cost models for the optimizer to use. Furthermore,
the optimization is more rule-based, using selection and
join condition pushdowns. The MuSQLE optimizer is more
refined: Statistics injection, when moving an intermediate
result into another store, is utilized for increased accuracy.

A different data integration approach is followed by
QUEPA [24], which focuses on data integration over poly-
stores. QUEPA introduces two new query methods: Aug-
mented search and augmented exploration. In summary, this
approach enables the user to query the polystore without
knowing the exact structure of each individual database.
Using record linkage, QUEPA will return records enriched
with relevant (similar) tuples of other databases of the
polystore. In exploratory mode, the user is prompted to select
the relevant information retrieved that she wishes to explore.
However, QUEPA only focuses on integration and does not
provide any optimization for the execution phase.

SQL++ [17] provides a semi-structured data model, which
combines the traditional SQL language with JSON exten-
sions making it easy to query NoSQL databases by em-
bedding JSON queries inside SQL code. However, SQL++
focuses only on the proposed language without providing
query planning optimizations.

MISO [11] focuses on the tuning of the physical design
of polystores in order to minimize data movements of

intermediate results between the underlying stores. MISO
aims at optimizing the performance of ad-hoc, big data query
processing by deciding where data is best to reside in. Yet,
MISO also needs to maintain and calibrate its own cost
functions for estimating the cost of operations. As a result,
for every new engine to be added there is an integration
overhead to generate the appropriate cost estimators.

III. ARCHITECTURE

Figure 1 depicts MuSQLE’s architecture. Our system is
designed to facilitate the execution of multi-engine SQL
queries. Such queries can be executed over tables that reside
in multiple engines. The Metastore module is responsible for
storing the schema and location information for each table.
Our SQL Parser communicates with the Metastore in order
to validate a user query and create the query graph. After
parsing the query, our Multi-engine Optimizer, discussed
in Section V, finds the optimal execution plan taking into
account logical operator ordering, engine selection for query
subgraphs as well as the required intermediate result move-
ments. The generated execution plan is a tree of SQL and
move operators. Each SQL operator is bound to a specific
engine and refers to a subgraph of the initial query. The
move operators handle the transfers of intermediate results
between different SQL engines.

SQL Parser

Engine API

SQL

Multi-Engine query
Metastore

Multi-engine Optimizer

Query graph

Validate

Execution Plan

Estimate
Cost/Statistics

Locations

Figure 1: MuSQLE system architecture

In order for our optimizer to interact with the various
engines, we introduce an Engine API, presented in Sec-
tion IV. The API contains methods for the estimation of
execution cost and intermediate result statistics which are
used by our optimizer. It also contains SQL query execution
methods as well as methods for retrieving and loading
intermediate tables. We opt for utilizing Spark’s engine as
an execution framework for our multi-engine plans. Using
Spark, MuSQLE provides scalable, main-memory based
interaction between the connected SQL engines as well as
primitives for fault-tolerance. Spark also provides a SQL
interface allowing us to also utilize it as an alternative
execution engine. We implement our engine API for three
state-of-the-art engines: i) PostgreSQL, ii) MemSQL and

iii) SparkSQL. The selected engines provide a diverse set,
ranging from centralized to distributed execution, row- and
column-oriented storage and disk-based to main-memory
data indexing and join execution.

IV. ENGINE API

In this section, we describe in detail our Engine API
that undertakes the integration between MuSQLE and the
execution engine stack. To make our API generic and easy
to implement, we devise five basic functions. Our functions
are, in most cases, an extension of the already provided SQL
functionality and require limited work to be implemented
for a new engine. Our API functions are categorized in two
groups: Execution and Estimation.
Execution functions: The following functions are used for
executing our multi-engine query plans using Spark:
• def execute(sqlQuery: String): DataFrame:

This method sends a SQL query for execution to the
specific engine. This is the most basic operation and can be
implemented by extending well-known and massively used
interfaces like JDBC and ODBC. The result of the query
is loaded in a Spark DataFrame and can be subsequently
moved to another engine for the execution of a query plan.
• def loadTable(table: String, df:

DataFrame): Unit:

This method takes as argument a Spark DataFrame, which
is an intermediate result table, and loads it in the specific
engine. Again, this interface requires limited implementation
overhead for most SQL engines.
Estimation functions: These functions are used inside our
optimizer to estimate the execution cost and statistics of
query subgraphs. In detail, the methods are:
• def getStats(sql: String): Stats:

This method is used to obtain an estimation of: i) the
execution time of a specific SQL query and ii) the statistics
of the result table. This functionality is already provided
by many SQL engines in the context of the EXPLAIN
statement. However, the results returned by different engines
do not have a standard format. In most cases, they return the
selected execution plan, the number of result rows as well
as an execution cost measured in disk or cpu operations.
To foster the integration of SQL engines in a multi-engine
environment, we believe that such methods should follow
a standard output format and return values that are compa-
rable. Especially in the case of engines that use cost-based
query optimization, such functionality already exists but is
sometimes not exposed by the EXPLAIN output. To tackle
this problem, we parse the output provided by the EXPLAIN
statements of both PostgreSQL and MemSQL and use it
to implement our API function. For Spark SQL, currently
not utilizing a cost-based optimizer, we developed custom
cost models for each operation as well as custom statistics,
described in Section VI. Details on how we combine the

returned values in order to achieve unbiased query planning
are presented in Section V-B.
• def getLoadCost(stats: Stats): Double:

This method returns an estimation of the time required to
load a table from a Spark DataFrame to the specific engine.
The statistics of the table, which contain its number of
rows and columns are provided in the Statistics object. Cost
functions similar to the following equation can be used for
this task: Cmove = Bt · Teng , where Bt is the size of the
input table and Teng is the transfer rate for the engine eng.
• def injectStats(table: String, stats:

Stats): Unit:

This function is required when trying to obtain execution
statistics for SQL queries that utilize intermediate results,
not present in a specific engine. In a what-if optimization
style, our optimizer injects all intermediate result statistics
in the required engines, before calling the getStats
method for queries that contain them. We analyze in detail
how this is achieved by our optimizer in Section V. In
brief, the injectStats method creates a “fake” table
using the name and the statistics provided as argument. We
have created custom code for doing this operation in all
the integrated engines. However, assuming the multi-engine
execution scenario is beneficial, such APIs can be easily
implemented by the engine developers.

V. MULTI-ENGINE QUERY OPTIMIZATION

A. Optimization Algorithm

Finding the optimal join plan for complex queries has al-
ways been a major research challenge in optimizing database
systems. One of the oldest and most efficient dynamic
programming algorithms for join planning is DPsize [25],
widely used in commercial databases like IBM’s DB2. DP-
size limits the search space to left-deep trees and generates
plans in increasing order of size. A more recent approach,
DPccp [26] and its variant DPhyp [27] are considered to
be the most efficient, state-of-the-art dynamic programming
algorithms for query optimization. They reduce the search
space by examining connected subgraphs of the query in a
bottom-up fashion. DPccp bases its enumeration procedure
on finding all csg-cmp-pairs in the SQL join graph, where
each table is represented by a vertex and join conditions are
recorded using edges.

Definition 1: (csg-cmp-pair) Let G = (V,E) be a join
graph and S1, S2 two subsets of V such that S1 ⊆ V and
S2 ⊆ (V \ S1) are a connected subgraph and a connected
complement respectively. If there further exists an edge (u,
v)∈E such that u∈S1 and v∈S2, we call (S1, S2) a csg-cmp-
pair.

In essence, csg-cmp-pairs are pairs that contain a con-
nected subgraph (csg) of the query graph and one of its
connected complement subgraphs (cmp). Each csg-cmp-pair
corresponds to a 2-way join between the csg and the cmp

ALGORITHM 1: emitCsgCmp(S1, S2)

1 plans1 = dpTable[S1];
2 plans2 = dpTable[S2];
3 S = S1 ∪ S2;
4 p =

∧
(u1,u2)∈E,ui⊂Si

P(u1, u2) ;
5 for (e1, plan1) ∈ plans1 do
6 for (e2, plan2) ∈ plans2 do
7 for e ∈ engines do
8 //execute query in engine e
9 c1 = 0; c2 = 0;

10 newPlan1 = plan1; newPlan2 = plan2;
11 if e1! = e then
12 table1 = newTempTable();
13 c1 = e.getLoadCost(plan1.stats);
14 e.injectStats(table1, plan1.stats);
15 newPlan1 = move(newPlan1, e, table1);
16 if e2! = e then
17 table2 = newTempTable();
18 c2 = e.getLoadCost(plan2.stats);
19 e.injectStats(table2, plan2.stats);
20 newPlan2 = move(newPlan2, e, table2);
21 newPlan = newPlan1 ./p newPlan2;
22 sql = toSQL(newPlan, e);
23 stats = e.getStats(sql);
24 stats.cost = stats.cost+ c1 + c2;
25 if dpTable[S][e] = ∅ ∨

stats.cost < dpTable[S][e].cost then
26 dpTable[S][e] = newPlan;

graphs. This property ensures that the enumeration of all
csg-cmp-pairs checks all possible 2-way join plans, ensuring
the optimality of the selected plan. We extend the DPhyp
algorithm in order to find the optimal join plan of a multi-
engine SQL query. Our main extensions are:
Location-based optimization: One of the major differences
of our algorithm compared to DPhyp is the structure of the
dpTable used. To leverage the strengths of multiple engines,
the optimizer needs to take into account the location of
each intermediate result. A result with a certain location,
while more expensive to generate than another, can be more
efficiently used in a subsequent join leading to a better
join plan for the query. To cover this case, we change
the structure of our dynamic programming table: While in
DPhyp only one plan is kept for each query subgraph, our
dpTable maintains, for each query subgraph, a list of plans
that contains the best join plan for each possible location
(i.e., integrated SQL engine).
Multi-engine execution cost and statistics estimation:
We integrate our generic SQL engine API with the DPhyp
optimizer, allowing for the discovery of the optimal plan
without depending on hand-coded or statically-integrated
cost models. This approach separates the task of plan enu-
meration from the task of cost estimation, facilitating ‘out of
the box’ integration and optimal utilization of new engines.

Algorithm 1 presents the pseudocode of our extended
emitCsgCmp(S1, S2) function. We maintain the same no-
tation as used in [27], allowing interested readers to easily
point to this paper for the details of the baseline algorithm.

p_partkey =
ps_partkey

c_nationkey =
n_nationkey

c_custkey =
o_custkey

o_orderkey =
l_orderkey

l_partkey =
p_partkey

nation
n_name=‘GERMANY’part

customer

partsupp

p_retailprice> 2090

lineitem orders

Figure 2: Join graph for Qe

Postgres: inter2
SELECT c_custkey, c_name
FROM customer, nation
WHERE c_nationkey =
n_nationkey
and n_name = ‘GERMANY’

Exec Time = 82 ms
Rows = 30182

Spark SQL
SELECT c_name, o_orderdate
FROM inter1, inter2, orders,
lineitem
WHERE
l_partkey = p_partkey
And o_custkey = c_custkey
And o_orderkey = l_orderkey

Exec Time = 33.2 sec
Rows = 824

Cost: 72 m
s

Co
st

: 2
 m

s

MemSQL: inter1
SELECT p_partkey
FROM part, partsupp
WHERE p_partkey =
ps_partkey
and p_retailprice > 2090

Exec Time = 14.58 sec
Rows = 900

M
ov

e

M
ove

Figure 3: Multi-engine execution plan for Qe

The emitCsgCmp(S1, S2) function is called for each csg-
cmp-pair and is responsible for checking the cost of the
specific join using the optimal plans for S1 and S2 as well
as the cost model.

As mentioned above, our dpTable is a two-dimensional
array having one more dimension corresponding to the
engine location of each intermediate result. Therefore, the
emitCsgCmp(S1, S2) function needs to evaluate the uti-
lization of multiple plans, retrieved in lines 1-2, for both
input query subgraphs. Additionally, we must check the cost
of using these results in all the connected engines. Even
if both intermediate results are not in a specific engine,
loading them and continuing the query execution in that
engine might be beneficial. To check all possible execution
plans, we consider all combinations of left plans, right plans
and execution engines (lines 5-26). For each of them, we
check the locations of the left and the right plan, applying
move operations if required. To apply move operators, we
call the getLoadCost method for engine e in order to estimate
the required time (lines 13 and 18). We also inject an
intermediate temporary table, in engine e, using the API
method injectStatistics (lines 14 and 19). This table will be
used later on for query estimation.

After checking for move operations, we compose the
result plan (line 21) and transform it to a SQL query string
(line 22). The method to produce this string recursively
iterates through the plan nodes stopping at move operators.
This allows us to create a query string that refers to in-
termediate moved tables with their temporary names. The
generated SQL query contains only the join information
assigned for execution in engine e and is sent for estimation
to the respective engine through the getExecutionStats API
method. The dpTable record for S = S1 ∪ S2, i.e., the
resulting subgraph of the query, is updated only if the
estimated cost is lower than the one contained in the dpTable
for the specific combination of (S, e) (line 26).

To facilitate the understanding of our algorithm, we
present a detailed query optimization example for the fol-
lowing query Qe:
SELECT c_name, o_orderdate

FROM part, partsupp, lineitem, orders,

customer, nation WHERE

p_partkey = ps_partkey AND

c_nationkey = n_nationkey AND

l_partkey = p_partkey AND

o_custkey = c_custkey AND

o_orderkey = l_orderkey AND

p_retailprice > 2090 AND

n_name = ‘GERMANY’

The above query is based on TPC-H data and returns
all customers from Germany that ordered a part with retail
price higher than 2090. For this example, we assume that the
tables lineitem and orders, due to their large size, are
stored in a Spark cluster, using HDFS files. Accordingly, the
customer and nation tables are stored in a PostgreSQL
server and the part and partsupp tables in a MemSQL
cluster. The join graph of Qe, along with the table location
information is depicted in Figure 2. Our optimizer uses the
DPhyp algorithm to enumerate all csg-cmp-pairs of the join
graph. One possible csg-cmp-pair (S1, S2) is the one with
S1 = {part, partsupp} and S2 = {lineitem, orders}.
When DPhyp calls the emitCsgCmp method for this pair, the
optimal plans for both S1 and S2 can be found in the dpT-
able. Algorithm 1 checks all combinations of plans for S1,
S2 and execution engines. This process results in selecting
SparkSQL as the execution engine while moving the result
of the optimal plan for S1 from MemSQL to SparkSQL.
In this case, the toSQL method (line 22 of Algorithm 1)
refers to the intermediate result table coming from MemSQL
with its temporary name “inter1” and therefore the remaining
SQL query is:
SELECT o_custkey, o_orderdate

FROM inter1, lineitem, orders WHERE

l_partkey = p_partkey AND

o_orderkey = l_orderkey

This query is sent for estimation to the SparkSQL
API. Its estimated cost is added to the move cost
of “inter1” and the resulting plan is inserted in the
dpTable for S = {part, partsupp, lineitem, orders}.
Later on, the csg-cmp-pair (S′1, S

′
2) with S′1 =

{part, partsupp, lineitem, orders} and S′2 = {customer,
nation} is considered. This time emitCsgCmp selects Spark-
SQL as the execution engine while moving the plan of
S′2 from PostgreSQL to SparkSQL. The toSQL method

generates the following query, referring to both “inter1” and
“inter2” coming from MemSQL and PostgreSQL:
SELECT c_name, o_orderdate

FROM inter1,inter2,lineitem, orders WHERE

l_partkey = p_partkey AND

o_custkey = c_custkey AND

o_orderkey = l_orderkey

Again, the estimation API of SparkSQL is called and the
resulting plan is inserted to the dpTable, adding the required
move cost. After the enumeration of all possible csg-cmp-
pairs, the optimal plan of the query is discovered. The se-
lected multi-engine plan is depicted in Figure 3 and consists
of SQL and move operators. SQL operators are bound to
specific engines and their estimated cost and number of
results is depicted inside the respective boxes. The tree-based
multi-engine plan is executed in a bottom-up fashion, using
the Spark processing framework as well as our execution-
related, engine API methods.

B. Comparing query estimations of different engines

Query optimization and execution time estimation are
challenging tasks and are based on both cardinality estima-
tions and operator cost models. In principle, as long as the
cardinality estimations and the cost models of an engine
are accurate, a good estimation of the execution time can
be obtained for the query in hand. In reality, cardinality
estimates are usually computed based on simplifying as-
sumptions like uniformity and independence. Furthermore,
cost model functions are oversimplified and do not take
into account important parameters (e.g., the server load
during query execution). In most cases, cost is measured in
primitive operations like disk fetches or CPU cycles. While
these measurements are considered to have linear correlation
to the actual execution time, the correlation factors depend
on hardware-specific parameters like the disk throughput or
the CPU speed. A recent survey [28] illustrated that state-of-
the-art SQL engines can easily misestimate costs by a factor
of 1000 or more.

In this landscape, a major challenge for our system is
how to compare and utilize the estimations provided by our
user-implemented estimation APIs. To achieve an unbiased
optimization procedure, we use the Metastore to record all
query estimations, retrieved by the various APIs during
query optimization. We also maintain, for each executed
query, a detailed log of execution time for both the total
query as well as it subqueries executed on different engines.
This set of measurements is used to train machine learning
models for tweaking the accuracy of the provided APIs. Our
models target two challenges:

1) Transforming the costs measured using primitive op-
erations (e.g., disk fetches) to estimations for the execution
time. For example, the PostgreSQL EXPLAIN API returns
the cost of the query in page fetches. Assuming a linear
connection between the disk cost and the execution time, we

Symbol Description
Dr Cost of a single row read
Dw Cost of a single row write
th Cost of hashing a single value
tbr Cost of broadcasting a single row
Ccpu Cost of a single CPU comparison
cores The number of cores in the cluster

Part(s) The number of partitions of the relation s
R(s) The number of rows of the relation s
Sp spark.sql.shuffle.partitions

Table I: Cost Model Parameters

use the previously described set of measurements to train a
linear model that maps disk cost to execution time.

2) Due to inaccurate engine predictions or faulty API
implementations, an engine can consistently fail to reason-
ably predict query execution time. To handle this case, we
perform an accuracy analysis on top of all our query estima-
tion measurements. This analysis computes the correlation
between the estimated and the actual execution times for
each engine. The computed correlation is used to adjust our
confidence on a specific estimation API. Our optimizer uses
a probability, proportionate to the measured correlation, to
randomly discard the API estimation results. Therefore, in
the case of an API that fails to achieve sufficient correlation
to its actual execution times, the entire engine will be
discarded from the optimization process.

VI. SPARKSQL COST-BASED QUERY OPTIMIZATION

Our engine API requires the implementation of cost esti-
mations for each integrated SQL engine. While PostgreSQL
and MemSQL provide such functionality through their in-
ternal cost-based optimizers, SparkSQL opts for heuristic-
based optimization, without implementing cost models for
its various operators. In this section, we present a cost model
for SparkSQL which can be used to estimate the execution
time of a SparkSQL physical plan. We also add support
for injection of table statistics and utilize intermediate result
cardinalities in order to provide more accurate execution
time estimations.
Cost models: We have integrated a set of cost models into
SparkSQL, extending the logic and formulas described in
[29]. We present the cost models for three important oper-
ators: Sort-Merge Join, Broadcast-Hash Join and Exchange.
Detailed formulas exist for all operators, yet we omit them
due to space limitations. Table I presents the notation used
in our cost models. First, we define the number of rounds
required for an operation to run. The number of parallel tasks
depends on how many CPUs a task uses. This can be set
by modifying the spark.task.cpus parameter. For the
rest of our discussion we assume that this parameter is set
to 1. Thus, the number of tasks which can be run in parallel
is equal to the number of cores in the cluster. The number
of rounds required for a task of p partitions is thus:

Rounds(p) =

⌈
p

cores

⌉

Exchange: This operation performs a shuffle operation
on the data and partitions the results. The operation will be
executed into Part(s) tasks, where each task will process
R(s)/Part(s) rows. Each row will be hashed on the same
column and will be sent to the corresponding partition
according to the resulting hash value. The resulting cost is
thus:
Cexch(s) =

R(s)

Part(s)
· (Ccpu +Dw) ·Rounds(Part(s))

Broadcast-Hash Join: First, each row of the “small” table
is hashed on the join condition attribute. This process takes
place in the Spark driver node. Then, the hashed relation is
broadcasted to all the workers. The cost of this operation
equals: Cbroadcast(s) = R(s) · (th + tbr). After all nodes
receive the hashed relation, a local join is performed for
each partition of the large relation with the small relation.
Thus, the total cost of a broadcast-hash join equals:

Cbhj = Cbroadcast(s)+
R(s) ·R(l) · Ccpu

Part(l)
·Rounds(Part(l))

Sort-Merge Join: This is the SparkSQL distributed im-
plementation of the traditional Sort-Merge Join algorithm.
Before the actual join execution, each relation involved is
first shuffled and sorted. Thus, for relation s the sorting cost
equals: Csort(s) = R(s) · logR(s) · Ccpu ·Rounds(s)
After the two relations are sorted, they need to be merged.
The merge cost is:
Cmerge(s, t) = R(s) ·R(t) ·Rounds(Sp) · Ccpu

Summing up, the cost of a sort-merge join is defined as:
Csmj(s, t) = Cexch(s) + Csort(s)+

Cexch(t) + Csort(t) + Cmerge(s, t)

VII. STATISTICS INJECTION

PostgresSQL Statistics Injection: In PostgreSQL, the
reltuples and relpages columns of the pg class sys-
tem table represent the number of rows and pages
respectively. Even if relpages change manually, the
planner checks the actual number of pages using the
RelationGetNumberOfBlocks() method. Thus, in order to
modify the statistics, we used pg dbms stats2, an open
source framework which provides functionality for “freez-
ing” and modifying table statistics of PostgreSQL.

SparkSQL Statistics Injection: We extend SparkSQL,
adding support for statistics injection and cardinality estima-
tion. The existence of statistics lead to better cost estimations
as well as to more accurate physical operator selection. For
example, when planning queries that include tables stored
in external data sources (e.g., MemSQL, PostgreSQL, etc),
SparkSQL chooses explicitly the Sort-Merge Join algorithm
even though the external table may be small. We solve this
problem by injecting the input size of an external relation
using the MuSQLE optimizer. Therefore, when SparkSQL
is integrated with MuSQLE, it is able to adaptively select
the use of Broadcast Hash Join for small external tables.

2https://github.com/ossc-db/pg dbms stats

VIII. SPARK-BASED QUERY EXECUTION

After generating the multi-engine execution plan de-
scribed in Section V, we need to execute this plan over
a Spark cluster. SparkSQL uses Catalyst as its query op-
timizer. Thus, we need to transform our query plan into a
SparkSQL equivalent using Catalyst’s expressions. To do so,
we developed a method which takes as input a multi-engine
plan (i.e., see Figure 3) and transforms it into a SparkSQL
native execution plan. We achieve that by traversing our
plan in a bottom-up manner. At each leaf, using pattern
matching, we match each operator of our plan (move, SQL)
to the SparkSQL’s Catalyst equivalent one. Finally, this
method returns our execution plan represented in SparkSQL
operations.

IX. EXPERIMENTAL EVALUATION

In this section, we present a detailed evaluation of our
multi-engine SQL platform. We integrate MuSQLE with
a diverse set of engines, consisting of three state-of-the-
art systems: PostgreSQL, MemSQL and SparkSQL. The
selected engines excel on different and complementary data
and query use cases, allowing MuSQLE to adaptively pro-
vide a combination of their advantages.

A. Cluster Setup and Compared Systems

All our experiments use Virtual Machine resources de-
ployed on a private Openstack cluster, consisting of 8 VM
containers. Each VM container has a 26-core Intel Xeon R©
CPU at 2.67GHz, 48 GB of RAM and two 2TB disks setup
with RAID 0. Our experiments run on 13 Virtual Machines
each with 8G RAM, 4 VCPUs and 100G of disk storage.
The VMs are organized as follows:
• SparkSQL: We setup a Spark cluster consisting of 1

master and 5 worker VMs. The master VM runs the Spark
driver(master) and the HDFS namenode. Each of the
worker VMs runs a Spark worker and a HDFS datanode.
• PostgreSQL: One Virtual Machine is used for running a

PostgreSQL server.
• MemSQL: We use a cluster of 1 master and 5 worker

VMs. The master VM runs MemSQL’s Master Aggregator
while each worker runs a MemSQL leaf node.

There is currently limited work on the multi-engine SQL
optimization landscape as mentioned in the related work
section (code for the most relevant [11] and [13] was
not available till the time of publication). To showcase
the advantages of our system, we compare it against the
performance of the three underlying SQL engines, if they
functioned individually.

B. Datasets & Query Sets

Datasets: We evaluate MuSQLE using synthetic data
generated from the popular TPCH benchmark [30]. In order
to test the scalability of our system as well as its optimization

 0

 1

 2

 3

 4

 5

 6

2 3 4 5 6 7

O
p

ti
m

iz
a
ti

o
n

 T
im

e
 (

s)

Query size(# of tables)

Plan Enumeration
Explain API

Inject API

Figure 4: Optimization times for queries with variable
sizes, using SparkSQL, PostgerSQL and MemSQL.

 0

 5

 10

 15

 20

 25

2Tables

3Tables

4Tables

5Tables

6Tables

7Tables

2Tables

3Tables

4Tables

5Tables

6Tables

7Tables

2Tables

3Tables

4Tables

5Tables

6Tables

7Tables

O
p

ti
m

iz
a
ti

o
n

 T
im

e
 (

s)

Plan Enumeration
Explain API

Inject API

6 Engines4 Engines2 Engines

Figure 5: Optimization times for queries with variable sizes,
using 2-6 fake SQL engine APIs.

 0

 20

 40

 60

 80

2-3 4-5 6-7

E
st

im
a

ti
o
n

 E
rr

o
r

(s
e
c)

Number of tables in the query

(a)

 0

 20

 40

 60

 80

2-3 4-5 6-7

E
st

im
a

ti
o
n

 E
rr

o
r

(s
e
c)

Number of tables in the query

(b)

 0

 20

 40

 60

 80

2-3 4-5 6-7

E
st

im
a

ti
o
n

 E
rr

o
r

(s
e
c)

Number of tables in the query

(c)
Figure 6: Absolute estimation errors of execution time for (a) PostgreSQL, (b) MemSQL and (c) SparkSQL.

potential, we use three different TPCH scale sizes: 5GB,
20GB and 50GB.

Query sets: Our system focuses on SQL queries that
include multiple tables residing in different engines. To
present a detailed evaluation of such query scenarios, we
generate a custom query set3, extending the original TPCH
benchmark queries. Our set consists of 18 queries, each
one referenced as Qn, 0 ≤ n ≤ 17. We classify our
queries in two categories: i)join-only queries (Q0 - Q8)
and ii)join-filter queries (Q9 - Q17). Queries of the first
category contain multiple joins, producing large output sizes
as they combine all information of the primitive tables
without applying any filtering operation. In contrast, the
second category includes queries with ranging selectivity,
containing various filtering predicates. The selected cate-
gories can showcase the benefit of pushing the execution
of subqueries to the individual engines. In brief, queries
with large joins and small selectivity need to transfer large
intermediate results between the connected engines and thus
present small improvements. When queries have joins or
subqueries with high selectivities, it is far more beneficial
to push their execution to individual engines, transferring
only their small intermediate results.

C. Query Optimization

The time required for optimizing queries that contain a
variable number of tables, using our three integrated engines,
is presented in Figure 4. As mentioned in Section V, our
optimizer utilizes the engine APIs to estimate the cost
and statistics of the various intermediate execution plans.
External API calls can insert arbitrary large overheads on
the optimizer’s execution time. To measure this impact we

3https://github.com/gsvic/MuSQLE/blob/master/Queries.scala

break down the total optimization time into: 1) the plan enu-
meration time, 2) the time spent in external cost estimation
APIs (“EXPLAIN API”) and 3) the time spent on statistics
injection (“INJECT API”). As depicted in Figure 4, we are
able to find optimal plans for all our multi-engine queries
within 6 seconds. However, the majority of the optimization
time is spent on the external engine APIs. While the actual
plan enumeration cost, introduced by our optimizer, is less
than 1 sec for all queries, the total optimization time ranges
between 1 and 6 seconds. This is largely attributed to the
complexity of the external API implementations. For the
purposes of this paper, we provided basic implementations
for all engine APIs. However, the benefits of multi-engine
execution can push individual engine experts to fine-tune the
performance of the respective APIs.

To test the impact of adding a larger number of SQL en-
gines on the optimization time, we simulate multiple engine
API implementations. All methods of this API insert a delay,
randomly selected from the distribution of delays of the
actual engine API calls. Figure 5 presents the optimization
times required for various numbers of connected engines.
We note that the number of engines affects the performance
of our optimizer. However, as presented in the following
sections, this overhead is usually alleviated by the large
improvements on the query execution times.

D. Cost Model Accuracy

Figure 6 presents the estimation accuracy for our inte-
grated engines. We use a box plot in order to capture the
average, standard deviation, min and max values of the error.
As mentioned in Section V-B, we train regression models
in order to translate the cost estimations of MemSQL and
PostgreSQL into execution time estimations. As expected,
the query estimation error increases with the query size,
due to the propagation of erroneous cardinality and cost

10
-2

10
-1

10
0

10
1

10
2

10
3

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

E
x
e
cu

ti
o
n

 T
im

e
 (

se
c) MuSQLE

SparkSQL
PostgreSQL

MemSQL

Figure 7: TPCH 5GB, all tables are stored in all engines

10
-1

10
0

10
1

10
2

10
3

10
4

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

xx xx xx xx xx xx xx xx xx xx xx xx xx x xxE
x
e
cu

ti
o
n

 T
im

e
 (

se
c) MuSQLE

SparkSQL
PostgreSQL

MemSQL

Figure 8: TPCH 5GB, each table is stored in a specific engine

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

o o

x

o

x

o

x

o

x

o o

x

o

x

o o o

x

o

x

o

E
x
e
cu

ti
o
n

 T
im

e
 (

se
c) MuSQLE

SparkSQL
PostgreSQL

MemSQL

Figure 9: TPCH 20GB, each table is stored in a specific engine.
(x: execution time > 20 minutes, o: out-of-memory)

10
0

10
1

10
2

10
3

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

x

o

x

o

x

o

x

o

x

o

x

o

x

o

x

o

x

o

x

o

x

o

x

o

x

o

x x

o

E
x
e
cu

ti
o
n

 T
im

e
 (

se
c) MuSQLE

SparkSQL
PostgreSQL

MemSQL

Figure 10: TPCH 50GB, each table is stored in a specific engine.
(x: execution time > 20 minutes, o: out-of-memory)

estimations. However, we note that our proposed SparkSQL
cost model, in conjunction with our proposed statistics,
achieves good estimation accuracy.

E. Performance Comparison

To showcase MuSQLE’s multi-engine benefits, we run the
experiments under the following scenarios:

All tables stored in all engines: In this case, we assume
that all tables are stored in all connected engines. Due
to the existence of data in all engines, MuSQLE cannot
achieve significant performance improvements with respect
to the best underlying engine. However, this scenario nicely
demonstrates the accuracy of our optimizer in such cases.
As presented in Figure 7, our optimizer manages to select
the best execution engine for most query cases. For Q9, Q13
and Q16 wrong cost estimates lead to sub-optimal execution
plans.

Different Table Locations: In most real-life multi-engine
query scenarios, tables will be stored in different engines
according to their characteristics. For example, a table with
high frequency of updates would be stored in an OLTP
database, while a large log table in a plain HDFS file. To test
this scenario, we select the following location for the TPCH
tables: PostgreSQL stores the small sized tables (customer,
nation, region). MemSQL stores the medium sized ones
(part, partsupp, supplier), while the larger tables (lineitem,
orders) are stored in HDFS.

TPCH 5GB: Figure 8 depicts the respective results for the
TPCH 5 GB dataset. The performance improvement for this
dataset is not significant due to the small amount of input
data. This suggests that, in most cases, the optimal execution
plan is to move the tables and execute the whole query in a
single engine in order to prevent the intermediate result data
movements. However, we note that our system, correctly

estimating the execution times for the different engines,
selects the most profitable. For example, the execution of
Q12 takes place in PostgreSQL while query Q17 runs in
MemSQL. Again, this experiment showcases our optimizer’s
decision accuracy.
TPCH (20, 50)GB: For larger dataset sizes, all individual
engines incur significant overheads when loading external
tables. In such cases, plans that perform local processing
inside the individual engines while moving small sized
intermediate results prove largely beneficial. Specifically,
Figures 9 and 10 illustrate that most of the queries could
not be completed in MemSQL due to the large intermediate
results which lead to an out-of-memory error. In the case
of PostgreSQL, it took more than 2000 sec to complete the
execution of several queries, requiring over twenty minutes
to fetch the external tables. SparkSQL, taking advantage of
its distributed execution engine, succeeds in handling all
the queries of this scale. However, MuSQLE not only man-
ages to select the most efficient execution engine, but also
achieves better response times than SparkSQL by pushing
local processing on the other engines. For example, Q14
contains one filter on lineitem table. MuSQLE’s execution
plan pushes a subquery containing the filter into SparkSQL.
The small sized intermediate results are then moved in
MemSQL, where they are joined with the smaller part and
partsupp tables. Similar improvements can be also observed
for queries Q13, Q15, Q16 and Q17, which represent the
cases that MuSQLE outperforms even the best individual
engine, resulting in up to one order of magnitude speedups.

X. CONCLUSIONS

In this paper we presented MuSQLE, a multi-engine SQL
executor. MuSQLE introduces a generic engine API that
needs to be implemented for each integrated engine. We
extend a state-of-the-art query optimizer, adding support
for location based optimization and individual engine cost
estimation. We have integrated MuSQLE with PostgreSQL,
MemSQL and SparkSQL. Our detailed experimental evalu-
ation proves that MuSQLE can accurately select the best
execution engine for a large set of queries and provides
speedups of up to 1 order of magnitude, leveraging different
engines for the execution of individual query parts.

ACKNOWLEDGMENTS

This work has been partly supported by the European
Commission in terms of the ASAP FP7 ICT Project under
grant agreement no 619706. Nikolaos Papailiou has received
funding from IKY fellowships of excellence for postgraduate
studies in Greece - SIEMENS program.

REFERENCES

[1] “Apache HBase,” http://hbase.apache.org/.
[2] “neo4j,” http://neo4j.com/.
[3] “monetdb,” https://www.monetdb.org/.

[4] “Hadoop Distributed File System,” http://hadoop.apache.org/
docs/r1.2.1/hdfs design.html.

[5] “Apache Hadoop,” http://hadoop.apache.org/.
[6] “Apache Spark,” https://spark.apache.org/.
[7] “Apache Hama,” https://hama.apache.org/.
[8] “Apache Flink,” https://flink.apache.org/.
[9] A. Simitsis, K. Wilkinson, U. Dayal, and M. Hsu, “HFMS:

Managing the Lifecycle and Complexity of Hybrid Analytic
Data Flows,” in ICDE. IEEE, 2013.

[10] D. DeWitt, A. Halverson, R. Nehme et al., “Split query
processing in polybase,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2013.

[11] J. LeFevre, J. Sankaranarayanan, H. Hacigumus et al.,
“MISO: Souping up big data query processing with a multi-
store system,” in Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, 2014.

[12] K. Doka, N. Papailiou, D. Tsoumakos, C. Mantas, and
N. Koziris, “IReS: Intelligent, Multi-Engine Resource Sched-
uler for Big Data Analytics Workflows,” in SIGMOD, 2015.

[13] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska,
B. Howe, J. Kepner, S. Madden, D. Maier, T. Mattson, and
S. Zdonik, “The bigdawg polystore system,” ACM Sigmod
Record, 2015.

[14] “Spark SQL,” https://spark.apache.org/sql/.
[15] “Apache Impala,” http://impala.io/.
[16] “Presto,” http://www.teradata.com/Presto.
[17] K. Ong, Y. Papakonstantinou, and R. Vernoux, “The SQL++

semi-structured data model and query language: A capabil-
ities survey of sql-on-hadoop, nosql and newsql databases,”
CoRR, 2014.

[18] A. Simitsis, K. Wilkinson, and P. Jovanovic, “xPAD: A
Platform for Analytic Data Flows,” in SIGMOD 2013.

[19] “PostgreSQL,” https://www.postgresql.org/.
[20] “MemSQL,” http://www.memsql.com/.
[21] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.

Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi
et al., “Spark SQL: Relational data processing in spark,”
in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM, 2015.

[22] “Apache Drill,” https://drill.apache.org/.
[23] B. Kolev, P. Valduriez, C. Bondiombouy, R. Jiménez-Peris,

R. Pau, and J. Pereira, “CloudMdsQL: querying heteroge-
neous cloud data stores with a common language,” Dis-
tributed and Parallel Databases, 2015.

[24] A. Maccioni, E. Basili, and R. Torlone, “QUEPA: Querying
and exploring a polystore by augmentation.”

[25] P. Gassner, G. M. Lohman, K. B. Schiefer, and Y. Wang,
“Query optimization in the IBM DB2 family,” IEEE Data
Eng. Bull., 1993.

[26] G. Moerkotte and T. Neumann, “Analysis of two existing and
one new dynamic programming algorithm for the generation
of optimal bushy join trees without cross products,” in VLDB,
2006.

[27] G. Moerkotte and T. Neumann, “Dynamic programming
strikes back,” in SIGMOD, 2008.

[28] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper,
and T. Neumann, “How good are query optimizers, really?”
Proceedings of the VLDB Endowment, 2015.

[29] D. Taniar, C. H. Leung, W. Rahayu, and S. Goel, High per-
formance parallel database processing and grid databases.
John Wiley & Sons, 2008.

[30] T. P. P. Council, “TPC-H benchmark specification,” Published
at http://www. tcp. org/hspec. html, 2008.

