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Abstract—The advent of the Cloud computing era along with
the wide adoption of the distributed paradigm has enabled
applications to increase their performance standards and
greatly extend their scalability limits. Nevertheless, the ability
of modern applications to be deployed in numerous different
ways has complicated their structure and enormously increased
the difficulty of extracting accurate performance models for
them. This capability is crucial for many operations, such as the
identification of the most appropriate execution setups for an
anticipated workload, finding bottlenecks, etc. In this work, we
propose a fully automated performance modeling methodology
that aims at the creation of highly accurate performance models
for a given maximum number of deployments. The main idea
of the proposed methodology lies on the “smart” exploration
of the application configuration space, the selection and de-
ployment of a set of representative application configurations
and the construction of the performance model through the
adoption of Machine Learning techniques. Moreover, taking
into consideration the often unstable and error-prone nature of
the cloud, the proposed system attempts to overcome transient
cloud failures that occur during the application deployment
phase through the re-execution of the parts that failed. Our
evaluation, conducted for a set of real-world applications
frequently deployed over cloud infrastructures, indicates that
our system is capable of both constructing performance models
of high accuracy and doing so in an efficient manner, fixing
application deployments that present errors without requiring
human intervention.

I. INTRODUCTION

Performance modeling, i.e., the ability of predicting the
performance of an application given a set of parameters
that affect it, is a well researched problem [1], [2] that
dates back to the era of the first computer programs. A
performance model encapsulates the knowledge of the appli-
cation’s behavior under different circumstances, something
that is crucial during its lifetime. Identifying the optimal
setups [3], recognizing the bottlenecks [4], predicting the
impact of a cloud elasticity action [5] and facilitating the
choice of a suitable engine in multi-engine environments
[6] are some of the many use cases in which the utilization
of a performance model is of key importance.

However, the wide adoption of the cloud computing
paradigm, as indicated by the ever increasing number of
applications that migrate to the cloud [7], in combination
with the extensive utilization of distributed application ar-
chitectures, in order for them to fully utilize the merits of

the Cloud (e.g., seemingly infinite scalability, fault-tolerance,
etc.), has lead to significantly more complex application
configuration spaces. As a consequence, the difficulty of
estimating accurate performance models within realistic time
and cost constraints has greatly increased. The ability of a
cloud user to programmatically determine the exact appli-
cation configuration in great detail (e.g., how many nodes
should be employed for each application component, how
many cores, memory, disk, etc.) results in configuration
spaces of high dimensionality and an enormous amount of
possible configurations, much harder to be modeled.

In order to tackle this challenge, several approaches have
been suggested which fall in two categories: the analytical or
“white-box” and “black-box” approaches. Approaches of the
former category assume a well-known application structure
and target to model it in an analytical way. The analyst
needs to know the data flow, which components are used
and under which circumstances in order to identify which
are the dominant application parameters. Such an approach
is presented in [8] for Hadoop whereas in [9] the authors
focus on the memcached cache. Albeit such “white-box”
approaches can be extremely useful and accurate for simpler
application structures, their accuracy is proportional to the
level of detail employed during the application analysis: The
more complex the application, the more difficult it becomes
to capture all the parameters that affect its performance.

On the contrary, “black-box” approaches make no as-
sumption on application structure and view the modeling
problem as a function approximation problem. The main
idea behind them lies on the generation of a multidimen-
sional configuration space, the points of which represent
the possible configurations of the application, and view the
performance model as a function that projects this space to
a performance metric. In order to construct the performance
model, one needs to sample the configuration space and
extract a subspace of configurations, deploy the application
for each of them and model the untested configurations
using statistical and Machine Learning techniques. Such an
approach is presented in [10] for capacity planning, whereas
in [11], [12], similar black-box approaches are presented
using different Machine Learning models.

Despite being considered more generic than their “white-
box” counterparts, “black-box” approaches pose some lim-



itations that hinder their efficiency for applications with
complex structures. First, massive configuration spaces with
a large number of parameters each of which may receive
multiple values, require an increasing number of samples in
order to be approximated with satisfying accuracy, some-
thing that entails enormous computation power, time and
cost. Although the selection policy of the configurations,
i.e., which configurations should be chosen for deployment,
greatly impacts the accuracy of the final model and it could
greatly help with reducing the number of deployments, this
dimension is not thoroughly investigated in the literature.

Second, any black-box algorithm requires the fully auto-
mated deployment of the selected configurations, something
that, in practice, may prove more difficult than anticipated.
For a wealth of reasons that include, but are not limited to,
the complexity of the cloud software and hardware stack,
the big number of components that need to cooperate in
order to assist in cloud services (e.g., identity, compute,
networking services), unexpected events (e.g., power outages
[13]), cloud infrastructures often tend to present transient
errors that threaten application execution and vanish after a
short period of time. Such errors may be tolerable during the
application’s lifetime, e.g., if a DNS request fails, chances
are that a second DNS request will succeed. However,
during the application deployment phase, which requires the
coordination between multiple components, such errors may
lead a deployment to failure, requiring manual intervention
for fixing it or dropping it in order to avoid stale resources.

In order to tackle the aforementioned challenges, in this
work we propose a system that takes a holistic view in the
performance modeling problem, addressing both problems in
a unified way. In order to increase modeling accuracy, we
propose an adaptive performance modeling algorithm that
relies on partitioning the configuration space, based on the
approximated performance, and focusing on the partitions
the behavior of which is harder to be modeled. Through
the adoption of the mechanics of Decision Trees [14], the
proposed methodology partitions the configuration space,
obtains sample configurations from each region according
to their size and accuracy and constructs a model as a
composition of linear models for different regions of the
configuration space. Intuitively, the suggested methodology
is an attempt to adaptively “zoom-in” to regions of the
configuration space that present complex patterns, without
overlooking to equally explore the configuration space.

In order to tackle the second challenge, we integrate the
adaptive performance modeling algorithm with AURA [15],
a system that automates application deployment with the
extra feature of overcoming transient cloud failures dur-
ing the deployment phase. AURA analyzes the application
description and serializes it into a dependency directed
acyclic graph (DAG). A deployment effectively means the
traversal of this DAG. In case of failure, AURA isolates the
DAG components (scripts) that failed and re-executes them,

employing a filesystem snapshot mechanism to guarantee
that the deployment scripts always have the same effects
and, hence, can be re-executed as many times as needed.

The concrete contributions of this work can be, thus,
summarized as follows:
• We propose an adaptive, accuracy-driven performance

modeling methodology that relies on recursively par-
titioning the application configuration space, sampling
each region according to its approximation error and
space coverage and generalizing its findings using De-
cision Trees,

• We integrate our adaptive algorithm with AURA, a
system used to automate the cloud deployment process
with error-recovery enhancements,

• We conduct a thorough experimental evaluation using
popular, real world applications and complex configu-
ration spaces of varying dimensionality.

Our extensive evaluation showcases that the suggested
methodology outperforms other, state-of-the-art methodolo-
gies, as it generates performance models up to 3× more
accurate in the best case, also achieving to ignore configu-
ration parameters with extremely low importance. Moreover,
the suggested algorithm is proven to be extensible as it can
successfully consider deployment parameters such as the
monetary cost of the deployments, reducing the budget of the
modeling process, introducing an affordable modeling error.
Finally, the combination of our modeling methodology with
AURA renders our system capable of deploying applications
in the most unstable environments.

II. PROBLEM FORMULATION

In this section we provide a mathematical description
of the problem that this work tackles, also providing the
necessary notation followed throughout the paper.

Assume an application A, affected by a set of parameters
denoted with d1, d2, · · · , dn and producing an output that
represents a performance metric P . Each di, 1 ≤ i ≤ n
will be referred to as the application’s dimension i. Each
dimension may receive values within a pre-defined set,
i.e., di ∈ {c1, c2, · · · , cm}. For example, if d1 refers to
the number of nodes of a Hadoop cluster, then the set
d1 ∈ {1, · · · , 20} means that this Hadoop cluster enumer-
ates 1 up to 20 nodes. The Cartesian product of all di,
1 ≤ i ≤ n produces an upper bound of the applicaton
Deployment Space D, i.e., D = d1 × d2 × · · · × dn. Note
that, |D| =

∏n
i=1 |di| which means that an increase to the

number of dimensions leads to an exponential increase to
D’s configurations.

We also define the performance function F of an appli-
cation as a projection from D to P , i.e., F : D → P .
Moreover, using a subset Ds ⊆ D, we deploy A for all
c ∈ Ds and based on the obtained performance values,
we construct an approximate function F ′ : D → P , that
approximates the original function F . The construction of F ′



occurs through applying regression techniques (e.g., linear
regression), based on the performance points obtained from
the deployment of the application for all c ∈ Ds. Note that,
the estimation of F is prohibitive as it entails the deployment
of the entirety of D. Using this notation, the problem that
this paper attempts to tackle is the following: Given a
maximum number of deployments B, find a set Ds ⊆ D,
|Ds| = B, such that the trained function F ′ produced using
Ds best approximates the original performance function F .
Intuitively, we seek for a set of representative configurations
that provide a good overview of the unknown F function,
in order to train a Machine Learning model that accurately
approximates it.

The optimal solution of the problem is NP-Hard, as one
should exhaustively calculate all the possible D’s subsets of
size B and identify the one that generates a performance
model F ′ with the lowest approximation error. Note that,
even if such calculation were possible, one should first obtain
the performance values of all D points, something that en-
tails prohibitive time and cost, as this procedure requires the
deployment of the application to a cloud infrastructure, and
the execution of a workflow for each possible combination
of parameters. This exhaustive approach is cumbersome,
especially when the application structure is complex and D
comprises many dimensions, each with multiple values.

It should be noted that this problem formulation implies
that the deployment of a given configuration always provides
the same performance metrics, i.e., the deployments are
reproducible. For this to apply, the following precondi-
tion must be met: The cloud infrastructure in which the
application is deployed to must provide resources with
consistent behavior, i.e., there should exist no interference
and performance degradations due to the noisy-neighbor
effect [16]. Albeit this assumption may sound too rigid,
in practice it means that if the cloud provider respects the
offered SLAs, the interference factor generates a minimal
noise to the model without seriously affecting its accuracy.

Finally, we should note that the previous description
makes no assumption regarding the nature of the input
application dimensions. In general, the dimensions can fall
under three categories: (a) resource-related dimensions (e.g.,
number of nodes of a cluster, number of cores, amount of
RAM, etc.), (b) workload-related dimensions (e.g., dataset
size, request throughput, etc.), (c) application-level dimen-
sions (e.g., amount of cache of a DBMS, replication of
HDFS, etc.). The definition of the dimensions is conducted
by the user who must define which dimensions should be
profiled and which are the possible values for each one. Note
that this does not violate the “black-box” principle: The user
is invited to define as many dimensions as one desires, and
our system is responsible for filtering out the unimportant
ones, focusing only on the impactful dimensions.

III. ADAPTIVE PERFORMANCE MODELING
METHODOLOGY

A. Methodology overview

As mentioned before, the problem of identifying a rep-
resentative set of application configurations Ds ⊆ D is
NP-Hard. Moreover, it requires the deployment of the ap-
plication for the entire configuration space, something that
makes it impractical both in terms of time and monetary cost.
However, taking into consideration the nature of the appli-
cations that are typically deployed over cloud platforms, we
make two crucial observations, through which we propose
an efficient heuristic algorithm that focuses on dynamically
constructing Ds, avoiding unnecessary deployments.
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Figure 1. Algorithm execution for the Wordcount examplea

First, by virtue of their design, distributed applications
are largely affected by resource-related dimensions (e.g.,
number of nodes, number of cores, etc.) that tend to impact
their performance on a linear or partially linear manner. For
example, take the Wordcount operator executed on a Hadoop
cluster of fixed resources (cores/node, dataset size, etc.) and
assume that one executes the operator changing only the
number of Hadoop slaves. Wordcount’s execution time, is
presented in Figure 1 (a) by the Actual line. Note that, the
operator clearly presents two regions: Region (1) in which
a cluster size increase results in a linear time decrease and
Region (2) in which the operator has reached its scalability
limits and any further cluster increase results in no time
reduction. One could easily approximate this performance
function using a partially linear function. Second, the pre-
vious example also highlights that the input dimensions do
not have a monotonic impact on the application performance
throughout the entire D, something that effectively means
that the same dimensions may exhibit completely different
behavior to different regions of D.

With these two observations under consideration, we
now propose the adaptive performance modeling method-
ology, presented in Algorithm 1. Exploiting the previous
observations, the algorithm attempts to iteratively partition
the deployment space D to smaller regions, distribute the
deployment budget B (expressed as the number of al-
lowed deployments) to each region separately (consuming
b samples at each iteration as discussed in the following
sections), according to the behavior of the predicted per-
formance function and the region’s size and, finally, deploy
the selected configurations. Finally, based on the obtained



samples, the algorithm constructs an approximation of the
performance function and returns it to the user. In essence,
the algorithm initially attempts to explore the Deployment
Space, obtaining a first “feel” of the performance function
and then adaptively focuses on or “zooms-in” parts of the
space where the performance function remains obscure.

Algorithm 1 DT-based Adaptive Profiling Algorithm
1: procedure DTADAPTIVE(D, B, b)
2: tree← TREEINIT(∅), samples← ∅
3: while |samples| ≤ B do
4: tree← PARTITION(tree, samples)
5: s← SAMPLE(D, tree, samples, b)
6: d← DEPLOY(s)
7: samples← samples ∪ d

8: model← CREATEMODEL(samples)
9: return model

Note that, the output of the algorithm is the approximate
function (F ′), which can be used by the user for many
purposes. For example, if one wants to identify the optimal
execution application configuration, one has to search for
the point c = argminxF

′(x), assuming F ′ expresses the
execution time (and, hence, lower is better). If one wants to
consult F ′ in order to predict the application performance
for a given configuration c, one has to call F ′(c), which is
pre-calculated and instantly returned to the user. We now
discuss the algorithm’s steps in detail.

B. Deployment Space Partitioning

The two observations regarding the partial linearity of
the performance function and the space locality, lead us to
consider a recursive space partitioning scheme where the
space is adaptively partitioned in smaller regions, according
to the behavior of the performance function. A popular
data structure with this property is the Classification and
Regression Tree [14], or Decision Tree (DT). DTs are tree
structures that consist of two nodes: The intermediate (or
test) nodes that represent a boundary of the space and the
terminal (or leaf ) nodes that represent a region of the space
along with the label of a class (classification) or a linear
model (regression). An example of a DT can be found in
Figure 2. Figure 2 (a) depicts the tree structure and Figure 2
(b) demonstrates the space partitioning this tree represents.
In our example, we assume a 2-dimensional Deployment
Space (d1 being the horizontal and d2 the vertical axis) and
the dots represent the chosen samples.

The problem of space partitioning with a DT can be
reduced to constructing a DT from scratch. The main
idea behind the construction algorithm lies on recursively
partitioning the DT’s leaves, through the identification of
a new boundary line with respect to maximizing the ho-
mogeneity of the samples that belong to the same newly-
created leaf and, minimizing the homogeneity between the
samples that belong to different leaves, accordingly. The
samples’ homogeneity can be measured in many different
ways: When the DT is used for classification, Gini Impurity
[14], Entropy and Information Gain [17] are extensively

used, whereas the Variance Reduction [14] metric is used
for regression. In order to take into account the previous
observation regarding the (partially) linear impact of many
resource related dimensions to the application performance,
we design a new homogeneity metric, presented in Equation
1. Specifically, our metric expresses whether a line can
separate a set of samples (within a DT leaf) in two new
sets (leaves) so that the two new sets fit into linear models,
constructed one for each new leaf, accurately enough. This
is expressed as follows:

Score(line) =
|L1|R2

1 + |L2|R2
2

|L1|+ |L2|
(1)

where L{1,2} represent the sets generated by a set of samples
if line is used for partitioning and R2

{1,2} represent the
coefficients of determination [18] for each of the two sets
which, in turn, reflects the suitability of a linear model for
each newly generated leaf. R2 receives values in the interval
[0, 1], in which 1 indicates total linear fitness and 0 indicates
that the samples cannot be represented by a linear model.
From our experimental evaluation, we conclud that the
adoption of Equation 1 against other popular homogeneity
metrics contributed to the construction of a more accurate
model (experiment omitted due to space constraints).
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Figure 2. Example of a Decision Tree

Given the above, we now provide the algorithm that is
responsible to partition the tree’s leaves at each iteration.
Algorithm 2 iterates over the leaves of the tree. For each leaf,
all the possible new split lines are calculated (iterating all
the values of all the dimensions of the leaf) and the samples
that belong to the specified leaf (samples∩l) are partitioned
using the split function. For the two new sets L1 and L2,
we estimate the linear regression model that best summarizes
them (using the Ordinary Least Squares (OLS) method [19])
and the respective R2 values. The respective score of each is
calculated. Finally, when the line with the maximum score is
found, a new testNode is generated and replaces the former
leaf node (l) of the tree. When this process is repeated for
each leaf separately, the new tree is returned.

In order to better illustrate the functionality of Algorithm
2, consider the example depicted in Figure 1 (a). In this one-
dimensional Deployment Space (depicted in the horizontal
axis), the partitioning algorithm tries all the (vertical) lines
that pass from each value of the horizontal axis and finds a
line that maximizes Equation 1 for the value Cluster nodes



= 96 and it constructs a tree with two leaves: Regions (1)
and (2) of Figure 1 (a). Region (2) is extremely accurately
approximated by a linear model whereas Region (1) presents
higher residuals, i.e., lower R2 values. The chosen line
maximizes Equation 1, as it generates a large (containing 4
samples) region (2) with almost perfect linear fit (R2

(2) → 1)
and a shorter (3 samples) region (1) with non-linear behavior.
One dimension not stressed in this one-dimensional exam-
ple, is the capability of the proposed algorithm to prioritize
D’s dimensions: Through selecting the most suitable dimen-
sions for partitioning D, the proposed algorithm prioritizes
them, only focusing on the ones with the highest impact,
ignoring dimensions that present low importance.
Algorithm 2 Deployment Space Partitioning Algorithm
1: procedure PARTITION(tree, samples)
2: newTree← tree
3: for l ∈ leaves(tree) do
4: L′

1, L
′
2 ← ∅

5: maxScore← 0
6: for d ∈ dimensions(l) do
7: for v ∈ values(d) do
8: L1, L2 ← split(samples ∩ l, d, v)
9: R1, R2 ← OLS(L1), OLS(L2)

10: score← |L1|R2
1+|L2|R2

2
|L1|+|L2|

11: if score > maxScore then
12: L′

1, L
′
2 ← L1, L2

13: maxScore← score
14: testNode← {L′

1, L
′
2}

15: newTree.replace(l, testNode)

16: return newTree

C. Adaptive Sampling

After partitioning the Deployment Space, the next step is
to sample the generated regions. At each algorithm iteration,
b samples need to be distributed to the existing tree leaves.
Note the difference between B and b in our Algorithm: B
represents the total deployment budget, i.e., the maximum
number of deployments conducted by the algorithm, whereas
b represents the per-iteration number of deployments. The
sample distribution policy is influenced by two factors: (a)
The error of the generated linear model for each leaf and (b)
the size of the leaf. Specifically, as shown in Algorithm 3, the
sampling algorithm iterates over the leaves of the tree (Line
3). For the samples of each leaf, a new linear regression
model is calculated (Line 5) and its residuals are estimated
using Cross Validation [20]: The higher the residuals, the
worse the fit of the points to the linear model. The size of the
specified leaf is then estimated. After storing both the error
and the size of each leaf into a map, the maximum leaf error
and size are calculated (Lines 8-11). Subsequently, a score
is estimated for each leaf (Lines 13-15). The score of each
leaf is set to be proportional to its scaled size and error. This
normalization is conducted so as to guarantee that the impact
of the two factors is equivalent. Two coefficients werror and
wsize are used to assign different weights to each measure.
These scores are accumulated and used to proportionally
distribute b to each leaf (Lines 16-19). In that loop, the
number of deployments of the specified leaf is calculated and

new samples from the subregion of the Deployment Space
are randomly drawn with the RANDOMSELECT function, in
a uniform manner. Finally, the new samples set is returned.
Algorithm 3 Sampling algorithm
1: procedure SAMPLE(D, tree, samples, b)
2: errors, sizes← ∅, maxError,maxSize← 0
3: for l ∈ leaves(tree) do
4: points← {d|d ∈ samples, d.in ∈ l}
5: m← regression(points)
6: errors[l]← crossValidation(m,points)
7: sizes[l]← |{e|e ∈ D ∩ l}|
8: if maxError ≤ errors[l] then
9: maxError ← errors[l]

10: if maxSize ≤ sizes[l] then
11: maxSize← sizes[l]

12: scores, newSamples← ∅, sumScores← 0
13: for l ∈ leaves(tree) do
14: scores[l]← werror · errors[l]

maxError + wsize · sizes[l]
maxSize

15: sumScores← sumScores + scores[l]

16: for l ∈ leaves(tree) do
17: leafNoDeps← d scores[l]

sumScores · be
18: s←RANDOMSELECT({d|d ∈ D ∩ l}, leafNoDeps)
19: newSamples← newSamples ∪ s

20: return newSamples
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 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

(d) werror = 0.0, wsize = 1.0

Figure 3. Sample distribution for different weights

To further analyze on the sampler’s functionality, we
provide an example of execution for a linear performance
function of the form y = 0.8x1 + 0.2x2. On the randomly
selected point (0.58, 0.22), an abnormality is introduced,
modeled by a Gaussian function. In Figure 3 (a), a projection
of the performance function is provided. The horizontal and
vertical axes represent x1 and x2 respectively and the colors
represent y values, where the lighter colors demonstrate
higher y values. Algorithm 1 is executed for different werror,
wsize during the SAMPLE step. We assume a maximum
number of deployments B of 100 points out of the 2500
available points and a per-iteration number of deployments
b of 10 points. In Figures 3 (b), (c) and (d) we provide
the distribution of the selected samples, for different weight
values. Each dimension is divided in 20 intervals and for
each execution we keep count of the samples that appear
inside each region. The color of the regions demonstrate
the number of the samples within the region (lighter colors
imply more samples).

The adaptiveness of the proposed methodology leads



the samples to immediately identify the abnormal area. In
Figure 3 (b) the score of each leaf is only determined by
its error. Most samples are gathered around the Gaussian
distribution: The first leaves that represent the area of the
Gaussian function produce less accurate models since they
cannot express the performance function with a linear model.
Since the score of each leaf is only determined by its
error, these leaves claim the largest share of b at each step,
thus the samples are gathered around the abnormality. On
the contrary, when increasing wsize as in Figure 3 (c),
the gathering of the samples around the abnormality is
neutralized as more samples are now distributed along the
entire space, something that is intensified in Figure 3 (d),
where the abnormality is no longer visible.

The consideration of two factors (error and size) for
deciding the number of deployments spent at each leaf
targets the trade-off of exploring the Deployment Space
versus exploiting the obtained knowledge, i.e., focus on the
abnormalities of the space and allocate more points to further
examine them. This is a well-known trade-off in many fields
of study [21]. In our approach, one can favor either direction
by adjusting the weights of leaf error and size, respectively.
Note that this scheme enables the consideration of other
parameters as well, such as the deployment cost through the
extension of tre score function (Line 14). This way, more
“expensive” deployment configurations, e.g., ones that entail
multiple VMs with many cores, would be avoided in order
to regulate the profiling cost.

D. Modeling

After B samples are returned by the profiling algorithm,
they are utilized by the CREATEMODEL (Algorithm 1, Line
8) function to train a new DT. The choice of training a new
DT instead of expanding the one used during the sampling
phase is made to maximize the accuracy of the final model.
When the first test nodes of the former DT were created,
only a short portion of the samples were available to the
profiling algorithm and, hence, the original DT may have
initially created inaccurate partitions. Moreover, in cases
where the number of obtained samples is comparable to
the dimensionality of the Deployment Space, the number of
constructed leaves is extremely low and the tree degenerates
into a linear model that covers sizeable regions of the
Deployment Space with reduced accuracy. To overcome
this limitation, along with the final DT, a set of Machine
Learning classifiers are also trained, keeping the one that
achieves the lowest Cross Validation error. However, when
the DT is trained with enough samples, it outperforms all
the other classifiers. This is the main reason for choosing
the DT as a base model for our scheme: The ability to
provide higher expressiveness by composing multiple linear
models in areas of higher unpredictability, make them a
perfect choice for modeling a performance function. Note
that, the linearity of this model does not compromise its

expressiveness: Non-linear performance functions can also
be accurately approximated by a piecewise linear model,
through further partitioning the Deployment Space. For
example, one can observe that the non-linear Region (1) of
Figure 1 (a), was further analyzed through dedicating more
samples to it in the next algorithm step (depicted in Figure 1
(b)). Note that, only Region (1) claimed new samples from
the deployment budget: Region (2) needed no more samples
as the existing ones indicated that the region is accurately
approximated. This leads the proposed algorithm to better
focus on the non-linear region and better approximate it
through the utilization of more samples and leaves.

IV. SYSTEM ARCHITECTURE

A. Overview

Figure 4 provides the architecture of the system that
realizes this methodology. The main part of the methodology
is executed through the Sampler, the Partitioner and the
Modeler components. These components are orchestrated
appropriately in order to execute Algorithm 1. When the
sampler selects new configurations from D, it issues new
deployment requests to the Deployment module. The latter
is responsible for contacting the cloud provider to instantiate
new application instances (D1 – D4). Upon the execution
of the selected configurations, the results (i.e., performance
metric) are pushed back to the Modeler module, that updates
the performance model accordingly and stores them to an
internal database.

Deployment Cloud

Sampler

Partitioner

Modeler

D1

D2
D3

D4

Figure 4. System Architecture

Note that the main components of the modeling system do
not directly communicate with the cloud provider, but access
it through the Deployment module. This way, the modeling
system remains agnostic of the underlying infrastructure and
the APIs that need to use in order to contact the provider.

B. Deployment

In our work, we utilize AURA [15] in order to deploy
applications in an automated way. AURA1 models an ap-
plication deployment as a set of scripts, each of which
refers to a software component, executed in a particular
order. Each script may require input from another script
or produce output(s) that need to be forwarded to other
software modules, e.g., passwords, IP addresses, SSH keys,
etc. This mechanism facilitates the coordination between
different software components and enforces specific tasks
to be executed in a particular order, e.g., a Web Server must

1https://github.com/giagiannis/aura



attempt to connect to a Database Server, only if the latter has
successfully finished configuration. Using this model, AURA
extracts a Directed Acyclic Graph (DAG) of dependencies
between the actions that need to take place: The deployment
execution is, essentially, the traversal of the DAG. Figure 5
showcases such a DAG for a Hadoop cluster that comprises
one master and two slave nodes.

Figure 5. Hadoop deployment DAG

The reason behind utilizing AURA instead of another
popular deployment tool, lies on the error-recovery en-
hancements AURA introduces. Specifically, AURA attempts
to overcome transient failures that appear during the de-
ployment phase of an application, through the re-execution
of the deployment parts that failed. Furthermore, in order
to guarantee that the configuration scripts have the same
side effects, it introduces a lightweight filesystem snapshot
mechanism that guarantees that the failed scripts do not leave
filesystem related resources in an inconsistent state.

Finally, in order to enforce deployment with differ-
ent characteristics, e.g., different number of VMs, CPUs,
amount of RAM, etc., we have implemented a parser that
receives a Deployment Space point, i.e., a vector containing
the chosen values for each D dimension and modifies the
application description provided to AURA in json format
accordingly. This way, the main modeling system is not
closely integrated with the deployment system, as it does
not rely on a specific application description. This means
that if one wants to utilize a different deployment tool, or
even apply the proposed methodology to container-based
platforms (orchestrated by Kubernetes [22], Docker Swarm
[23], etc.), one does not need to modify the system but
should only provide a new application description parser
that knows how to translate Deployment Space points to
concrete application descriptions.

V. EXPERIMENTAL EVALUATION

Experimental Setup: All experiments are conducted on a
8-node private Openstack cluster, each of which contains

two Intel Xeon E5645 processors running at 2.40GHz, 96G
of main memory and 2TB of hard disk (2 × 1TB 2.5”
SATA HDD in RAID-0), running Ubuntu Server 14.04.2
LTS with Linux kernel 3.13.05. The partitioning, sampling
and modeling parts of our prototype is implemented in Java
(v.1.8.0 144), whereas the deployment component (AURA)
is implemented in Python (v.2.7.13).
Applications: We have deployed four popular real-world
Big Data operators/applications which are commonly en-
countered in cloud installations. The applications along
with their dimensions chosen to represent D as well as
their domains are summarized in Table I. We opted for
applications with diverse characteristics with Deployment
Spaces of varying dimensionality (3 – 5 dimensions).

Table I
APPLICATIONS UNDER PROFILING

Application Dimensions Values(perf. metric)

Spark Bayes

YARN nodes 4–20
# cores per node 2–8
memory per node 2–8 GB

(execution time) # of documents 0.5–2.5 (×106)
# of classes 50–200 classes
YARN nodes 2–20

Hadoop Wordcount # cores per node 2–8
(execution time) memory per node 2–8 GB

dataset size 5–50 GB

Media Streaming
# of servers 1–10
video quality 144p–1440p

(throughput) request rate 50–500 req/s

MongoDB
# of MongoD 2–10
# of MongoS 2–10

(throughput) request rate 5–75 (×103) req/s

The first two operators are implemented in Spark (Bayes)
and Hadoop (Wordcount) and they are deployed to a YARN
cluster. In all cases, the performance metric corresponds
to the execution time. The Media Streaming application
[24] consists of two components: The backend is an NFS
server that serves videos to the Web Servers. A number
of lightweight Web Servers (nginx) are setup to serve the
videos to the clients. The NFS server retains 7 different
video qualities and 20 different videos per quality. Mon-
goDB is deployed as a sharded cluster and it is queried
using YCSB [25]. The sharded deployment of MongoDB
consists of three components: (a) A configuration server that
holds the cluster metadata, (b) a set of nodes that store the
data (MongoD) and (c) a set of load-balancers that act as
endpoints to the clients (MongoS).
Methodology: We compare our profiling methodology
against other end-to-end profiling schemes, measuring both
modeling accuracy and profiling time. The accuracy of the
profiling algorithms is measured using the Mean Squared
Error (MSE) metric. Our approach is referred to as DT-based
Adaptive methodology (DTA). Active Learning [26] (ACTL)
is a Machine Learning field that specializes on exploring
a performance space by obtaining samples assuming that
finding the class or the output value of the sample is com-
putationally hard. We implemented Uncertainty Sampling



that prioritizes the points of the Deployment Space with
the highest uncertainty, i.e., points for which a Machine
Learning model cannot predict their class or continuous
value with high confidence. PANIC [27] is an adaptive
approach that favors points belonging into steep areas of
the performance function, utilizing the assumption that the
abnormalities of the performance function characterize it
best. Furthermore, since most profiling approaches use a
randomized sampling algorithm [10], [28], [11], [12] to sam-
ple the Deployment Space and different Machine Learning
models to approximate the performance, we implement a
profiling scheme where we draw random samples (UNI)
from the performance functions and approximate them using
the models offered by WEKA [29], always keeping the most
accurate one. In all but a few cases, the Random Committee
[30] algorithm prevailed, which uses Multi-Layer Perceptron
as a base classifier.

A. Modeling Accuracy

We first compare the four methods against a varying
Sampling Rate (SR), i.e., the portion of the Deployment
Space utilized for approximating the performance function
(SR = |Ds|

|D| ×100%). SR varies from 3% up to 20% for the
tested applications. In Figure 6, we provide the accuracy of
each approach measured in terms of MSE.
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Figure 6. Accuracy vs sampling rate (MSE)

Figure 6 showcases that DTA outperforms all the competi-
tors for increasing SR, something indicative of its ability to
distribute the available number of deployments accordingly
so as to maximize the modeling accuracy. In more detail, all
algorithms benefit from an increase in SR since the error
metrics rapidly degrade. In Bayes, when the SR is around
3% UNI and DTA construct models of the highest accuracy.
As mentioned in Section III-D, for very low SR the linearity
of the DT would fail to accurately represent the relationship
between the input and the output dimensions, thus a Random

Committee classifier based on Multi-Layer Perceptrons is
utilized for the approximation. The same type of classifier
also achieves the highest accuracy for the rest of the profiling
algorithms (ACTL, PANIC) that also present higher errors
due to the less accurate sampling policy at low SR. As SR
increases, DT obtains more samples and creates more leaves,
which contributes in the creation of more linear models that
capture a shorter region of the Deployment Space and, thus,
producing higher accuracy. Specifically, for SR ≥ 3%, DT
created a more accurate prediction than other classifiers and
was preferred.

In the rest of the cases, DTA outperforms its competitors
for the Wordcount application and, interestingly, this is
intensified for increasing SR. Specifically, DTA manages
to present 3× smaller modeling error compared to UNI
when SR = 20%. Media Streaming, on the other hand, ex-
hibits an entirely different behavior. The selected dimensions
affect the performance almost linearly, thus the produced
performance function is smooth and easily modeled by
less sophisticated algorithms than DTA, explaining UNI’s
performance which is similar to DTA’s. PANIC and ACTL
try to identify the abnormalities of the space and fail to
produce accurate models. Finally, for the MongoDB case,
DTA outperforms the competitors increasingly with SR.
In almost all cases, DTA outperforms its competitors and
creates models even 3 times more accurate (for Bayes when
SR = 20%) from the best competitor. As an endnote, the os-
cillations in PANIC’s and ACTL’s behavior are explained by
the aggressive exploitation policy they implement. PANIC
does not explore the Deployment Space and only follows
the steep regions, whereas ACTL retains a similar policy
only following the regions of uncertainty, hence the final
models may become overfitted in some regions and fail to
capture most patterns of the performance function. Our work
identifies the necessity of both exploiting the regions of
uncertainty but also exploring the entire space. This trade-
off is only addressed by DTA and explains its dominance
for difficult to approximate applications.

B. Deployment Space Dimensionality

A key property of any black-box profiling methodology
is its ability to isolate impactful from meaningless dimen-
sions, in order to avoid wasting the deployment budget on
unimportant samples. To this end, we design the following
experiment: Utilizing the performance functions of the four
real-world applications, we introduce a varying number of
“dummy” dimensions, i.e., dimensions that have no impact
to the output performance. We assume that each new di-
mension receives two possible values and, thus, the addition
of a dummy dimension doubles the number of possible
configurations. Using the same number of deployments
(B = 300 for each case) we run our algorithm and compare
its accuracy against PANIC, UNI and ACTL. The results
for the four applications are provided in Figure 7. Note



that, we utilize the entire space for testing the accuracy
of the approximated models, something which means that
the number of test points doubles with the addition of new
dimensions.

Figure 7 demonstrates that the addition of new unimpor-
tant dimensions has, practically, no impact to DTA, UNI and
ACTL as all of them present zero MSE increase. DTA, in
particular, presents the lowest error for all cases, indicative
of its ability to, not only, model the tested applications
with higher accuracy, as seen before, but also isolate the
most important dimensions without being affected by the
unimportant ones. One can observe the importance of this
finding: During the application definition, a user need not
be aware of the dimensions that have an impact. One can
simply provide as many dimensions as needed, letting DTA
to decide which are the most impactful ones. Finally, PANIC
is the only method that appears to be strongly affected by
the space dimensionality, as an increase in the number of
dimensions leads to a rapid error growth. This is attributed
to the fact that PANIC favors areas of the Deployment Space
that present the highest oscillations. The insertion of new
dimensions exponentially increases the number of points that
belong to these areas, something which means that PANIC
dedicates an increasing number of its deployment budget for
them, and, hence, poorly approximates the rest of the space.
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Figure 7. Modeling error vs dimensionality(MSE)

C. Cost-aware Profiling

So far, we have assumed that all Deployment Space points
are equivalent, in the sense that we have not examined the
deployment configuration they represent: A point represent-
ing a deployment configuration of 8 VMs, each of which has
8 cores, is equivalent to a point representing 1 VM with 1
core. However, since the choice of a point results in its actual
deployment, it is obvious that this choice implicitly includes
a (monetary) cost dimension that has not been addressed.

We now examine DTA’s ability to adapt when such a cost
consideration exists. Let us define the following cost models:
• Bayes: |nodes| × |cores|
• Wordcount: |nodes| × |cores|
• Media Streaming: |servers|
• MongoDB: |MongoS| + |MongoD|

We have chosen realistic cost models, expressed as functions
of the allocated resources (VMs and cores). Let us recall
that Media Streaming and MongoDB utilize unicore VMs.
Hence, their cost is only proportional to the number of
allocated VMs.

We execute DTA, extending the leaf score function, pre-
sented in Algorithm 3 of Section III-C, where the error and
size parameters positively influence the score of each leaf
and cost is a negative factor, i.e.:

Score(leaf) = werror
error(leaf)

maxError
+ wsize

size(leaf)

maxSize

−wcost
cost(leaf)

maxCost

(2)

For werror = 1.0 and wsize = 0.5, we alter wcost between
0.2 and 1.0 for SR of 3% and 20%. We provide our findings
in Table II, in which we present the percentage difference
in the profiling error (measured in MSE) and cost for each
case, against the case of wcost = 0.0.

Table II
MSE AND COST FOR DIFFERENT COST WEIGHTS

App/tions SR MSE Cost
0.2 0.5 1.0 0.2 0.5 1.0

Bayes 3% +1% -1% -2% -1% -1% -1%
20% +4% +10% +5% -7% -9% -12%

Wordcount 3% -1% -5% -1% -4% -6% -1%
20% 0% +13% +19% -6% -8% -18%

Media Str. 3% -1% -3% +3% -1% -5% -6%
20% -6% -2% -8% -7% -11% -26%

MongoDB 3% +6% +12% +13% -2% -3% -4%
20% -1% -7% -7% -6% -9% -12%

For low SR , increasing values for wcost does not heavily
influence the profiling cost. Specifically, for the MongoDB
case, the cost reduces by a marginal factor (around 4% in
the most extreme case) whereas the error increases by 13%.
On the contrary, for high SR, the consideration of the cost
increases its impact as the application profiles are calculated
with even 26% less cost than the case of wcost = 0, e.g., in
the Media Streaming case for wcost = 1.0. Furthermore,
increasing wcost seems to intensify cost degradation, as
the cost becomes a more important factor for the leaf
score. Regarding the profiling accuracy, in most cases the
error remains the same or its increase does not exceed
10%. A notable exception from this is the Wordcount case,
where MSE reaches a growth of 19% in the case where
wcost = 1.0. From this analysis, we can conclude that cost-
aware sampling becomes particularly effective for higher SR
values, which is also desirable since high SR entail many
deployments, i.e., increased cost. In such cases, the cost-
aware algorithm has more leverage to improve the profiling
cost whereas, at the same time, the accuracy sacrifice is



totally dependent on the nature of the performance function.
However, from our evaluation, we conclude that the accuracy
degradation is analogous to the cost reduction, allowing
the user to choose between higher accuracy or reduced
deployment cost.

VI. RELATED WORK

Performance modeling is a vividly researched area. The
challenge of accurately predicting the performance of a
distributed application is hindered by the virtualization
overhead inserted from the cloud software (hypervisors,
virtual hardware, shared storage, etc.). To allow the problem
decomposition, the proposed solutions are mainly focused
on two directions: (a) modeling the performance of the
cloud provider itself through cloud benchmarks, and (b)
modeling the application performance in an infrastructure-
agnostic way. The first approach is mainly focused on exe-
cuting sets of typical cloud applications such as [31], [24],
[32], [33] over different cloud providers and identifying the
relationships between the cloud offerings and the respective
application performance. Each benchmark is deployed over
different clouds with different configurations and the relation
between the performance and the deployment setups is
obtained. Industrial solutions such as [34], [35], [36] retain
statistics and perform the analysis, providing comparisons
between different public clouds, identification of the re-
sources’ impact to the applications, etc. These results can
then be generalized into custom user applications in order
to predict their performance into different cloud providers.

The distinct approaches used to model the behavior of a
given application can be further graded in two categories: (a)
simulation/emulation based and (b) “black-box” approaches.
In the first case, the approaches are based on known models
of the cloud platforms [37] and enhance them with known
performance models of the applications under profiling.
CDOSim [38] is an approach that targets to model the Cloud
Deployment Options (CDOs) and simulate the cost and per-
formance of an application. CloudAnalyst [39] is a similar
work that simulates large distributed applications and studies
their performance for different cloud configurations. Finally,
WebProphet [40] is a work that specializes in web applica-
tions. These works assume that performance models regard-
ing both the infrastructure and the application are known, as
opposed to our approach that makes no assumptions neither
for the application nor for the infrastructure. CloudProphet
[41] is an approach used for migrating an application into
the cloud. It collects traces from the application running
locally and replays them into the cloud, predicting the
performance it should achieve over the cloud infrastructure.
//Trace [42] is an approach specializing in predicting the I/O
behavior of a parallel application, identifying the causality
between I/O patterns among different nodes. In [43] a similar
approach is presented, in which a set of benchmark appli-
cations are executed in a cloud infrastructure, measuring

microarchitecture-independent characteristics and evaluating
the relationship between a target and the benchmarked
application. According to this relationship, a performance
prediction is extracted. Finally, [44] specializes to I/O-bound
BigData applications, generating a model of the virtualized
storage through microbenchmarking and generalizing it to
predict the application performance.

Finally, the “black-box” approaches attempt a statistical
approach on the modeling problem, considering the appli-
cation as a black-box that receives a number of inputs and
produces a single output (performance metric) and tries to
model the relationship between them, through deploying the
application for some configuration combinations. In [10],
[28] a generic methodology is proposed used to infer the
application performance of based on representative deploy-
ments of the configuration space. The approach tackles the
problem of generalizing the performance for the entire de-
ployment space, but does not tackle the problem of picking
the most appropriate samples from the deployment space,
as the suggested approach. PANIC [27] is a similar work,
that addresses the problem of picking representative points
during sampling. This approach favors the points that belong
to the most steep regions of the Deployment Space, based on
the idea that these regions characterize most appropriately
the entire performance function. However it is too focused
on the abnormalities of the Deployment Space and the
proposed approach outperforms it. Similarly, the problem of
picking representative samples of the Deployment Samples
is also addressed by Active Learning [26]. This theoretical
model introduces the term of uncertainty for a classifier
that, simply put, expresses its confidence to label a specific
sample of the Deployment Space. Active Learning favors the
regions of the Deployment Space that present the highest un-
certainty and, as PANIC, fail to accurately approximate the
performance function for the entire space, as also indicated
by our experimental evaluation. Finally, in [11] and [12] two
more generic black-box approaches are provided, utilizing
different machine learning models for the approximation,
without considering, though, the problem of minimizing the
number of samples.

VII. CONCLUSIONS

In this work, we revisited the problem of application
performance modeling deployed over cloud infrastructures.
The complexity of their structure has radically increased
the difficulty of generating an accurate performance model
using an affordable number of deployments. We proposed
a methodology that utilizes Decision Trees to partition the
application configuration space in disjoint regions, sample
each one separately based on the approximation accuracy
and size. Our approach manages to adaptively “zoom-in” to
areas of the configuration space that require more detailed
sampling, achieving superior accuracy under a small number
of deployments.
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