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Abstract. Sharing structured data in a P2P network is a challenging problem, es-
pecially in the absence of a mediated schema. The standard practice of answering
a consecutively rewritten query along the propagation path often results insignif-
icant loss of information. On the opposite, the use of mediated schemas requires
human interaction and global agreement, both during creation and maintenance.
In this paper we presentGrouPeer, an adaptive, automated approach to both is-
sues in the context of unstructured P2P database overlays. By allowing peers to
individually choose which rewritten version of a query to answer and evaluate the
received answers, information-rich sources left hidden otherwise are discovered.
Gradually, the overlay is restructured as semantically similar peers are clustered
together. Experimental results show that our technique produces veryaccurate
answers and builds clusters that are very close to the optimal ones by contacting
a very small number of nodes in the overlay.

1 Introduction
In the last few years, there has been a growing interest in thePeer-to-Peer (P2P) paradigm,
primarily boosted by popular applications that enable massive data sharing among mil-
lions of users. The P2P paradigm dictates a fully distributed, cooperative network de-
sign, where nodes collectively form a system without any supervision. Many popular
P2P applications operate on unstructured networks, with peers joining and leaving the
system in an ad-hoc fashion, while maintaining only local knowledge. While structured
overlays (e.g., [40]) provide efficient lookup operations,in many realistic scenarios the
topology cannot be controlled and thus they cannot be used (e.g., dynamic ad-hoc net-
works or existing large-scale unstructured overlays).

In contrast to data integration architectures, P2P data sharing systems do not as-
sume a mediated schema to which all sources of the system should conform in order to
share data. In such a system, where peers share (semi)-structured data, each is an au-
tonomous source that has a local schema. Sources store and manage their data locally,
revealing only part of their schemas to the rest of the peers.Due to the lack of global
schema, they express and answer queries based on their localschema. In a P2P data
management system, peers also perform local coordination with their acquaintees, i.e.
their one-hop neighbors in the overlay. Thus, both data management and coordination
are performed in a totally decentralized manner. During theacquaintance procedure,
the two peers exchange information about part of their localschema and create a medi-
ating mapping semi-automatically [21]. The establishmentof an acquaintance implies
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an agreement for the performance of data coordination between the acquaintees based
on the respective schema mapping. However, peers do not haveto conform to data or
schema transformation in order to establish acquaintanceswith other peers and partici-
pate in the system.

In large-scale unstructured P2P systems as described above, joining peers usually
become acquainted to the first randomly available nodes and not to the most useful ones,
i.e., the peers that best meet their need for information. Therefore, they have to direct
queries not only to their neighbors, but to a greater part of the system. Furthermore,
the lack of global knowledge deprives peers from the abilityto direct their queries to
appropriate remote nodes. One can roughly identify two common approaches to this
problem. A possible solution is to propagate queries on paths of bounded length in the
overlay. At each routing step, the query is rewritten to the schema of its new host based
on the respective acquaintance mappings. A query may have tobe rewritten several
times from peer to peer till it reaches nodes that are able to answer it sufficiently in terms
of quality, but also quantity, of the result. It is obvious that the successive rewritings
decrease or restrict the information that can be returned bya query and, thus, also reduce
the possibility of accurate query answering. Moreover, it is the case that peers may not
be able to sufficiently answer received queries, not becausetheir local schema does not
match the initial query adequately, but because the incoming rewritten version has been
gradually reduced or corrupted. Therefore, the performance of the query processing
procedure is degraded during the rewritings on intermediate peers.

In the second approach, nodes are organized by means of a human-guided process
(usually by one or more administrators and application experts) into groups of peers
that store semantically related data. The administrator, using schema matching tools
as well as domain knowledge, creates a mediated schema representative of the group
and mappings with the local databases. Queries are then expressed on this mediated
schema. Obviously, this approach requires manual work, extensive peer coordination
and repetition of this process each time the group changes.

Motivating Example

Envision a P2P system where the participating peers are databases of private doc-
tors of various specialties, diagnostic laboratories and databases of hospitals. Figure 1
depicts a small part of this system, where nodes are: DavisDB- the database of the
private doctor Dr. Davis, LuDB - the database of pediatrician Dr Lu and StuartDB - the
database of the pharmacist, Mr Stuart. On top of each database sits a P2P layer, which
is responsible for all data exchange of this peer with its acquaintees. Among others, the
P2P layer is responsible for the creation and maintenance ofmappings of local schemas
during the establishment of acquaintances along the lines of [21]. Moreover, each peer
owns a query rewriting and a query-schema matching mechanism. The schemas of the
databases are shown in Figure 1.

Suppose that Dr Davis would like to collect from the system general information
about patients that have had diseases. He expresses the following query on his database:
Qorig:

SELECT V.Pid, D.DisDescr, D.Ache,
T.Drug, T.Dosology



III

P2P Layer


DavisDB


StuartDB


LuDB


P2P Layer


P2P Layer


DavisD
B 
:

Visits(
Pid, Date, Did
)

Disease (
Did
, DisDescr, Ache)

Treatment (
Did, Drug
, Dosology)


LuDB
 :

Disease(
Did
, AvgFever, Drug)

Patients(
Insurance#, Did, Age
, Ache)


StuartDB 
:

Treatment(
Pid, Did, Date
, Symptom,


TreatDescr, DisDescr)


Fig. 1.Part of a P2P system with peer-databases from the health environment

FROM Disease D, Treatment T, Visits V
WHERE V.Did = D.Did AND D.Did = T.Did

Having only one acquaintance, the pharmacist’s database, Dr. Davis’s database prop-
agatesQorig to it. We assume GAV, LAV, or GLAV (i.e. Global, Local, Globaland
Local As View) mappings between acquaintees [23]. Note thatthe ’directionality’ of
the mapping from one peer to another characterizes the same mapping as GAV or LAV.
The directionality of a mapping is decided with respect to the direction of the query
rewriting between two peers. Thus, a mapping between peersP1 andP2 can be used
for LAV rewriting (thus, a LAV mapping) fromP1 to P2 and, also, it can be used for
GAV rewriting (thus, a GAV mapping) fromP2 to P1. We assume the following LAV
mapping between DavisDB and StuartDB databases:
MStuartDB DavisDB:
TreatmentStuartDB(Pid, , , Symptom, TreatDescr, DisDescr):-VisitsDavisDB(Pid, , Did),
DiseaseDavisDB(Did, DisDescr, Ache), TreatmentDavisDB(Did, Drug, ), {Symptom=
Ache,TreatDescr= Drug}
where the correspondences Symptom = Ache, TreatDescr = Drugthat are implied are
added in a set at the end of the mapping.3 Thus, the rewritten query on StuartDB is the
following:
QStuartDB sr:

SELECT T.Pid, T.DisDescr, T.Symptom, T.TreatDescr
FROM Treatment T

Obviously the new query has lost the attributes referring toinformation about drug
dosology, since it cannot be mapped in StuartDB. The node of Mr Stuart passes the
rewritten versionQStuartDB sr to Dr Lu with whom he has the following GAV mapping:
MStuartDB LuDB:

3 The mapping is actually a view defined on StuartDB.Treatment, which is matched with a join
on DavisDB relations such as:
View1(Pid, Symptom, TreatDescr, DisDescr):-Treatment(Pid,Did, Date, Symptom, TreatDe-
scr, DisDescr)
View1(Pid, Ache, Drug, DisDescr):- Visits(Pid, Date, Did),Disease(Did, DisDescr, Ache),
Treatment(Did, Drug, Dosology)
Due to lack of space we summarize mappings by omitting view definitions and introducing ’ ’
for attributes that are not needed.
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TreatmentStuartDB(Pid, , , Symptom, , ):- DiseaseLuDB(Did, AvgFever, ), PatientsLuDB

(Insurance♯, Did, , ), Age< 13,{Pid = Insurance♯,Symptom= AvgFever}
where correspondences Pid = Insurance♯, Symptom = AvgFever that are implied are
added in a set at the end of the mapping. Thus, the rewritten query on LuDB is the
following:
QLuDB sr:

SELECT P.Insurance#, D.AvgFever
FROM Disease D, Patients P
WHERE D.Did = P.Did, P.Age < 13

Obviously the new query has lost more attributes, which refer to the description of the
disease and the respective drug. Moreover, the new query is more restrictive than the
original, since it has an additional condition on ‘Age’. Finally, it is clear that the ‘Ache’
attribute of the original query has been poorly rewritten to‘AvgFever’, even though the
schema of LuDB contains an attribute that represents the exact same concept. Yet, if Dr
Davis were acquainted with Dr Lu, among the supported mappings could be:
M′

DavisDB LuDB:
VisitsDavisDB(Pid, , Did), DiseaseDavisDB (Did, , Ache), TreatmentDavisDB (Did, Drug,
):-DiseaseLuDB(Did, , Drug), PatientsLuDB(Insurance♯, Did, , Ache),{Pid = Insurance♯}

Using the above mapping, Dr Davis would ideally like his query to be translated as fol-
lows:
QLuDB ideal:

SELECT P.Insurance#, D.Ache, D.Drug
FROM Disease D, Patients P
WHERE D.Did = P.Did

Apparently, the above rewritten version overcomes the degradation of successive rewrit-
ing in terms of query information loss and further query restriction, as well as the poor
matching of the ‘Ache’ attribute.

In the proposed framework (GrouPeer), DavisDB can evaluate Dr Lu’s query trans-
lations (e.g., suggest that ‘Ache’=‘AvgFever’ is not a goodcorrespondence and ‘Pid’=‘In-
surance’ is a good one) and enable him to gradually improve the quality of its query
rewriting. Through mutual iterative evaluations Dr Davis notices the average answer
quality from Dr Lu is high enough to add him as an acquaintee. The two nodes cre-
ate complete mappings between their schemas, a task thatGrouPeergreatly facilitates
by building on mappings formed during remote query processing. The details on this
example are in Section 3.5.

Our Proposal: GrouPeer

The above example points out one of the major problems in unstructured P2P
database systems: peers may not be able to obtain requested information or learn about
peers with similar interests because of insufficient schemasimilarity between acquain-
tees. Semantic grouping that would assist in this task requires manual coordination
at each group creation/maintenance event. In this work we describeGrouPeer, a sys-
tem designed to enable accurate query evaluation through semantic overlay clustering
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and automatic creation and maintenance of semantic groups in relational P2P databas-
es without prior schema or meta-schema information. InGrouPeer, nodes individu-
ally decide whether to answer the successively rewritten query or automatically rewrite
its original version. Requesters evaluate the replies along with the returned rewritings
and gradually build mappings with remote peers. Eventually, peers with similar local
schemas become acquainted and clusters are created around active peers. Our paper
makes the following contributions:

– Adapts classical query rewriting to the needs of P2P databases and combines it suc-
cessfully with automatic schema matching.

– Investigates the notion of semantic query similarity in thecontext of the P2P paradigm
and proposes directions for its quantification.

– Presents a complete methodology for discovering similar peers in an unstructured
overlay and gradually clustering them by utilizing learning through regularly posed
query traffic.

– Exploits the results of learning so that mappings between remote peers are gradually
built on their specific common interests; this facilitates the acquaintance procedure
that is usually performed through human interaction.

Our experimental section shows how clustering efficiently reorganizes any given
overlay so that peers can direct queries to relevant nodes and increase answer accu-
racy. We then show how grouping can be applied to increase both the accuracy and the
number of received replies.

The rest of the paper is organized as follows: Section 2 discusses aspects of the
proposed clustering technique. In Section 3 we discuss aspects of query similarity and
in Section 4 we analyse the query reformulation procedure. In Section 5 we present
formally the clustering process. Section 6 shows experimental results and Section 7
presents related work. Finally, Section 8 summarizes our work.

2 Discovering Remote Interesting Peers

As our motivating example demonstrated, the querying node is doomed to ignorance of
the information-rich peers because of enforced reformulation of queries on each node of
the propagation path. But what if these nodes had the chance to receive and answer the
originally posed query? Then, the inquiring node would probably (a) get better answers
to its query, (b) have the chance to learn about peers with similar information, (c) get
acquainted with them and get even better query answers.

In GrouPeer, we propose a procedure that supports the evasion of successive rewrit-
ings on every peer of a query’s propagation path, instead of,sometimes hopelessly,
refining query reformulation. This methodology enables peers to discover others with
similar interests and schemas, that cannot be tracked otherwise. Pairs of remote peers
that exchange queries and answers learn gradually about theschema of the other party.
Learning is performed through making queries and evaluating their answers, and is
formed in mappings between the schemas of the two peers. These mappings encapsu-
late the common interest of the two peers, since they refer tothe vital schema parts on
which they express and answer queries. If the peers decide tobecome acquainted, these
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Fig. 2.Propagation of a queryQorig posed on peerP1 along a path ofn acquainted peers.
Each peer receives a pair of queries: one isQorig itself and the other is the version of
Qorig that is successively rewritten through the chain of mappings.

mappings are already a language for their communication andalleviate the adminis-
trator’s load for creation of mappings for the new acquaintance. Overall, the proposed
methodology leads to the gradual clustering of the P2P system in groups with common
interests. Thus, we refer to it as the ‘clustering process’.

In the following, we present a brief overview of the clustering process in order to
give the reader a flavor of what’s coming next. Moreover, we identify interesting sub-
problems that we solve while developing the peer clusteringmethod. Specifically, we
make necessary clarifications about the role of query reformulation and query similarity
in our approach.

2.1 Overview of the Clustering Process

In order to achieve the discovery of remote relevant peers, the key idea of our method is
to propagate along the query path not only the successively rewritten version, but also
the original one. In this way, the peers receiving this pair of query versions can indi-
vidually decide which one to answer. Peers are assumed to be equipped with a query
rewriting mechanism and an automatic schema-matching tool. The rewriting mecha-
nism is used in order to rewrite queries expressed on schemasof acquaintees based
on the respective mappings. The automatic schema-matchingtool is used in order to
comprehend and translate queries or part of queries expressed on schemas for which
mappings are not available.

Successive query reformulation produces query versions that deviate from the orig-
inal query. Obviously, if the chain of peer mappings used forthe rewriting is poor in
information relevant to the query (i.e. query parts cannot be reformulated accurately),
this can result in fast degradation within a few hops. Query parts that cannot be trans-
lated through existing mappings are eliminated in the rewritten version. Even if the
following nodes on the query path encapsulate the eliminated concepts in their schemas,
they still cannot contribute them to the original query, because the version they receive
does not include them. Our goal is to keep the eliminated concepts aside and try to
match them in follow-up schemas.

Overall, an initiated queryQorig is propagated in the query path. On each node, the
query is rewritten through mappings with the previous node to Qsr, which is augmented
with automatically rewritten query parts toQsra. Also, Qorig is automatically rewritten
from scratch toQar. The answering node compares the two rewritten versions with
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Fig. 3.Representation of the query answering procedure on a peer.

the original one, using a special similarity function, (seeSection 3), and answers the
version it deems most similar to it. Figure 2 shows a propagation path of a query and
Figure 3 summarizes the main part of the query answering procedure on a peer. The
query initiator evaluates the satisfiability of the received answer and sends its feedback
to the answering peer about the answered query version. According to the evaluation,
the query replier keeps record of bad and good rewritings of the initiator’s schema
elements. Gradually, the query replier builds mappings with the initiator through the
queries it receives and answers on its behalf. Moreover, theinitiator logs the evaluation
of query answers from each replier. Based on this, the initiator can decide that it has
common interests with a remote peer and ask to become its acquaintee. After that, new
acquaintees can base their communication on already created mappings.

2.2 Query Similarity and Query Reformulation

We are interested in data exchange issues in pure (i.e. without super-nodes) P2P database
systems. We consider peers that each one of them owns a relational peer schema (i.e.,
the only internal mappings are foreign key constraints) that it thoroughly exports to its
immediate neighbors, hereafteracquaintees. Each pair of acquaintees holds peer map-
pings between their schemas. Peer mappings are considered to be of the well-known
GAV-LAV-GLAV (i.e. Global, Local, Global and Local As View)form (we limit our
study to mappings that can be expressed as SPJ queries). Hence, a peer mapping is a
view with the head of it belonging to the global schema and thebody to the local one
(GAV) or the opposite (LAV). For clarity reasons, we remind that in GAV/LAV defini-
tions for the P2P setting, the global schema is the schema of the peer on which the query
is initially posed and the local schema is the schema of the peer on which it is rewritten.
Peers express queries on their local schema, which are then propagated in the P2P sys-
tem from one acquaintee to the next. We focus on conjunctive queries with arithmetic
comparisons. At each step, a query is successively reformulated through mappings.

In such a system we assume that the query reformulation is performed by a query
rewriting mechanism based on the chain of algorithms for answering queries using
views [25], [30], [35] and [3] for LAV mappings; for GAV mappings, we consider the
straightforward substitution of the view head with the bodyas it is done in Piazza [17].
GLAV mappings are used with combination of LAV and GAV query rewriting tech-
niques [13, 17]. However, we propose that the query reformulation mechanism is en-
hanced, so that queries are rewritten even if they can be partly satisfied by the available
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mappings. More specifically, the reformulation mechanism needs to address the cases
where partial transformation of the queries is possible; i.e. not all ’select’ attributes or
’where’ conditions are present in mappings. In the following we describe the character-
istics of such a mechanism in detail.

The goal of the reformulation mechanism is to transform a query so that it can
be answered partly or thoroughly by an acquaintee, i.e. an one-hop neighbor in the
overlay. The available query rewriting algorithms restrict their usage to queries that
can be completely rewritten under a set of mappings, meaningthat these algorithms can
rewrite queries only if all ‘select’ attributes and ‘where’conditions of the original query
can be rewritten through the available mappings.

Yet, this is not suitable for a P2P environment. In many such common applications,
peers are satisfied with retrieved information with characteristics similar to those of
their query (consider for example search engines, popular P2P file-sharing applications,
etc). Therefore, it is reasonable to assume that it is preferable for our P2P database
system to operate in a similar manner (as [33] does). Hence, we would like peer queries
to be reformulated and propagated even if they can be only partly satisfied.

Existing rewriting algorithms have been designed to serve the problem of data and
schema integration and thus do not allow partial query rewriting. These algorithms
are driven by the assumption that the correct rewriting of a query is the maximally-
contained version of it [24]. Yet, query containment in dataintegration refers to the
containment of the answer sets. In P2P database environments, peers are not interested
in answers from other peers that are contained in the answersthey can retrieve locally;
they are rather interested in answers that would be ”semantically relevant” to the origi-
nally posed query.

In this work we propose the preprocessing of the queries posed on P2P databases
in order to produce versions that can be classically rewritten to other peer schemas.
In this context, we investigate the notion of query similarity based more on structural
features rather than semantics itself and we propose a querysimilarity function . In the
same spirit we discuss guidelines for the preprocessing of queries and we present an
algorithm that considers GLAV, GAV and LAV mappings in orderto select those that
can rewrite the query in the best way.

GrouPeer gives the opportunity to overcome peers on a query propagation path that
are poor in requested information and discover others that are rich. The trade-off for
this opportunity is the sacrifice of soundness and completeness of query answers. Also,
each peer evaluates the soundness and completeness of its answered query versions
from its own perspective using its own tools that can extend from basic dictionaries to
sophisticated automatic matches that emply ontologies. Nevertheless,GrouPeerallows
the peer users to define their own preference for soundness and completeness through
the weights on query elements and the similarity threshold.

3 Query Similarity

In order for a peer to answer an incoming query, it has to translate it with respect to its
local schema. Usually, the resulting query is not a completetranslation of the original
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one, but is somehow ‘similar’ to it. In the literature [24], the similarity between rewritten
queries is measured according to the containment of the results of the rewritten query
to the results of the original one. However, this kind of query similarity cannot be ef-
fective in the context of this work. The difference of the P2Pdatabase paradigm and the
data integration one, is that the first is multi-layered whereas the second has only two
layers. This means that a query has to be rewritten several times along a propagation
path (i.e. many layers of rewriting) in a P2P system whereas it is rewritten only once
in a data integration system. In a P2P system the compositionof a chain of mappings
between two remote peers is not known to either of them. In a P2P database system we
would like to compare queries written on remote peer schemas: Qorig is written on the
schema of the initiator and the rewritten versionQrewr on the schema of a remote peer.
Moreover, inGrouPeertheQrewr is not a classically rewritten version ofQorig. For these
two reasons, it is not possible to decide query containment based on view expansion.
Furthermore, we require a quantification of such a containment, which is not defined in
a classical way. Nevertheless, query containment in data integration is actually decided
by the containment of the query answers. This means that if weactually want to mea-
sure the classical containment ofQorig andQrewr, we need the query answers, (since it
is not possible to decide query containment based on view expansion). However, our
goal is not to answer the queries in order to measure their similarity, but to measure
their similarity in order to decide which one to answer. Thus, we have to rely on query
characteristics rather than the answer to the query in orderto determine similarity.

Query similarity has been explored in several works in the recent past. Some of
these works deal with keyword matching in the database environment [4, 7] or with
the processing of imprecise queries [14, 22, 31]. The work in[5] talks about attribute
similarity but focuses on numeric data and on conclusions about similarity that can be
deduced from the workload. Furthermore, in [15] queries areclassified according to
their structural similarity; yet, the authors focus on features that differentiate queries
with respect to optimization plans. The only work relevant to ours is that of [6], where
overall semantic similarity of queries is explored. Yet, our focus is on query versions
that are produced through the use of mappings, and we are interested on the effect of
the mappings in query similarity.

In order to measure the similarity of two queries,Qorig andQrewr there is a need
for a function that quantifies their semantic relativeness,Msim(Qorig,Qrewr). Our goal
is to study from a qualitative point of view what is the impacton the query semantics
of query elements that cannot be rewritten though the available mappings. Next, we
discuss the guidelines along which the similarity functionshould be constructed and
the factors that affect it.

3.1 Aspects of Query Similarity

The similarity of two queries, each on a distinct schema, is not only a matter of different
query characteristics, but also of why these different characteristics exist. Specifically,
since we are interested in incomplete rewritings of queries, query similarity has to take
into consideration under which data exchange conditions new elements in the rewritten
version are inserted or old elements are missing.
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(1) ’select’ attributes:
For example, remember the query on StuartDB,QStuartDB sr, and the successively

rewritten version on LuDB,QLuDB sr; First, two of the ’select’ attributes ofQStuartDB sr,
T.DisDescr and T.TreatDescr are missing in the ’select’ clause ofQLuDB sr. It is obvious
that the lack of rewriting of these two attributes is due to either the lack of correspond-
ing attributes in the schema of LuDB, or the lack of mappings between StuartDB and
LuDB that encapsulate the correspondence of these attributes. Nevertheless, the rewrit-
ten version never has additional ’select’ attributes, compared with the original one.

Observation: It is clear that ’select’ attributes missing in the rewritten query version
influence negatively the overall similarity of the queries.

(2) ’where’ conditions:
Yet, things are more vague with the query conditions. There are several situations

and we consider each separately.

(2a) additional value constraints: In our exampleQLuDB sr has the additional condi-
tion P.Age< 13. Is this condition an additional constraint to the query compared with
the non-conditionalQStuartDB sr? In order to find out, we have to consider the circum-
stances under which the mapping that contributed this condition, MStuartDB LuDB, was
created. In our case, Dr Lu is a pediatrician, and, thus, he stores in his database infor-
mation about kids, i.e. P.Age< 13 for all data in LuDB. Therefore, the corresponding
additional condition inQLuDB sr is not actually an additional constraint, since the set of
returned tuples is the same if the posed query includes or notthis condition. However,
if Dr Lu is a family doctor, but for some reason his database maintains the mapping
MStuartDB LuDB with StuartDB, the condition onP.Ageis an actual additional constraint,
sinceQLuDB sr returns fewer tuples than if the condition is eliminated. Ingeneral, addi-
tional value conditions in rewritten queries either restrict or do not influence the result
of the query. This depends on the reasoning that created the mappings used for the query
rewriting.

Observation:Since we are not able to know the logic beneath mapping creation, we
consider additional value conditions as restrictive, and,therefore, that they decrease
the similarity of the queries.

(2b) additional joins on non-key attributes: Beyond value conditions, SPJ queries
have joins either on relation keys or just plain attributes.As far as additional joins
on plain attributes are concerned, we can follow the same rationale as in the previous
paragraph. We can conclude that, in the same way as with additional value conditions,
additional joins on plain attributes can be considered as more restrictive, in the general
case.

Observation:Additional joins on non-key attributes decrease query similarity.

(2c) additional joins on key attributes: However, is this the case for joins on relation
keys? Consider again the successive rewritingsQStuartDB sr andQLuDB sr of the motivat-
ing example. The second query has a join on relation keys,D.Did = P.Did, whereas the
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first does not have any. Easily, we can see that this join is necessary in order to ’select’
both attributesP.Insurance♯ andD.AvgFever; thus, it does not restrict the query answer.

Yet, a minor objection to this reasoning is that two relations joined by their keys do
not coincide with one relation that contains all their attributes: the first contains only
the tuples of the two joined relations that have common key values, whereas the second
can contain even the tuples of the two relations that have non-matching key values4.

Furthermore, a join on keys restricts the query answer, if the rewritten version does
not contain ’select’ attributes from both parts of the join.For example, suppose that
QStuartDB sr does not contain in the ’select’ clause the attributeP.Insurance♯. However,
the only way to rewrite it is through the available mappingMStuartDB LuDB. Hence, the
rewritten version on LuDB will be:
Q′

LuDB sr:

SELECT D.AvgFever
FROM Disease D, Patients P
WHERE D.Did = P.Did, P.Age < 13

In this case, even though the additional join is on relation keys, it does not serve as an
associative action and it does restrict the query answer: inthe absence of it the query
would return additionally the tuples of relationDiseasethat do not have a matchingDid
with a thePid of a tuple in relationPatients.

Observation: We consider additional joins on relation keys as neutral to query sim-
ilarity, if the existence of ’select’ attributes is based onthe existence of the join; oth-
erwise, we consider additional joins on relation keys as a negative influence to query
similarity.

(2d) absent joins on key attributes: Finally, let us consider joins on relation keys that
exist in the source query, but are absent in the rewritten version. For example, this is
the case ofQorig andQStuartDB sr. The two joins on relation keys in the former are not
present in the latter. Should this element absence in the rewritten version be considered
as a reformulation failure? The answer is no, obviously: since the query rewriting is per-
formed using the mappingMStuartDB DavisDB that combines the relationsVisits, Disease
andTreatmentfrom DavisDB in a correspondence to theTreatmentsrelation in Stu-
artDB, the two joins ofQorig are ”consumed”, in a way, during the complete rewriting
through the discussed mapping. Thus, the absence of the two joins in the rewritten
version does not mean that the mechanism failed to rewrite them, but that they are en-
capsulated in the mappings used for the rewriting, and they are not needed in the new
query.

But, what if the joins ofQorig were not present in the mappingMStuartDB DavisDB?
For example suppose that StuartDB uses for the rewritingQorig the mappings:
M1′StuartDB DavisDB:

4 Assume that there are two relationsR1(x,y) andR2(x,z) with the same key,x, and a relation
that contains all attributes ofR1, R2: R(x,y,z) with keyx. The tuples of each one ofR1/R2 that
cannot be joined with a tuple ofR2/R1, would have a corresponding tuple inR, for which the
attributes corresponding toR2/R1 would be null (outer join)
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TreatmentStuartDB(Pid, , , Symptom, , DisDescr):- VisitsDavisDB(Pid, , Did),
DiseaseDavisDB(Did, DisDescr, Ache),{Symptom= Ache}
and
M2′StuartDB DavisDB:
TreatmentStuartDB( , , , , TreatDescr,):- TreatmentDavisDB( , Drug, ), {TreatDescr=
Drug} 5,
The rewritten query on StuartDB would be:
Q′

StuartDB sr:

SELECT T1.Pid, T1.DisDescr, T1.Symptom, T2.TreatDescr
FROM Treatment T1, Treatment T2

The second join ofQorig, ’D.Did = T.Did’, is not encapsulated in the above mappings.
It is obvious that the lack of this join in the mappings and therewritten version results
in a cartesian product in the relation StuartDB.Treatment;thus, the lack of the key join
affects really badly the reformulation ofQorig.

Observation: We consider that joins on relation keys are satisfied, i.e. explicitly or
implicitly present in a query rewriting, if they are presenteither in the mappings used
for the reformulation or in the rewritten version itself. Ifjoins on keys are not satisfied,
we consider that their lack in the rewritten version affectsnegatively the similarity with
the source query.

In addition to the above, any other missing constraints (i.e. value constraints or joins
on non-key attributes) are considered to have a bad impact onquery similarity.

(3) corresponding ’select’ attributes and ’where’ conditions:
Suppose that the only available mapping in order to rewriteQorig isM1′StuartDB DavisDB.

Then the rewriting procedure would produce the query version:
Q′′

StuartDB sr:

SELECT T.Pid, T.DisDescr, T.Symptom
FROM Treatment T

Again, neither the rewritten query nor the used mapping contain any form of the join
’D.Did = T.Did’ of Qorig. Moreover, in this case the ’select’ attribute Treatment.Drug of
Qorig is not mapped in StuartDB, and, thus, it is not present inQ′′

StuartDB sr. So, the lack
of both the aforementioned join and attribute should influence negatively the similarity
of the source and the rewritten query. However, the attribute Drug is not really worth of
rewriting, even if this is possible, (e.g. if the mappingM2′StuartDB DavisDB is available), if
the join ’D.Did = T.Did’ cannot be rewritten: as we have discussed previously, the result
would be a cartesian product, which in general cannot be considered a good rewriting.

The question that arises from this situation is whether the lack of these two elements
should affect the query similarity in a correlated or separate way. Again, the answer to

5 The reader can observe that the mappingM2′StuartDB DavisDB does not map tuples 1-1; yet,
this is a possible mapping and its meaning is: ”tuples in DavisDB.Treatment correspond to
tuples in StuartDB.Treatment where the respective attributes Drug and TreatDescr have the
same value ”
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this question depends on how users think in order to form an originally posed query.
If users use joins on relation keys only as an associative means for retrieving attributes
from distinct relations, then the role of these joins is supportive to ’select’ attributes and
the impotence of their reformulation leads to the impotenceof retrieving the supported
attributes from the target database; these joins cannot be present alone, i.e. without the
attribute(s) they support. Therefore, as far as query similarity is concerned, the lack
of such rewritten joins should be correlated with the lack ofthe supported rewritten
attributes. Nevertheless, in case we assume that users create queries without any specific
logic, key joins cannot be thought of as associative to retrieved attributes, in general.
Hence, their lack should be considered as not affecting query similarity.

The second assumption is more conservative than the first, because it considers that
two independent query features are missing from the rewritten version. Moreover, the
second assumption does not affect the query rewriting procedure, since query features
can be considered separately for rewriting (Section 4); yet, in agreement with the first
assumption, combinations of ’select’ attributes / ’where’conditions should be spotted.

Observation: We consider that the presence of each query feature is independent
from the presence of the rest and they affect query similarity in a separate way.

In the same spirit, we have to consider whether the retrievalof an attribute should
be correlated with value conditions on the same attribute. For example, suppose a query
similar toQLuDB sr, where Patient.Age is a ’select’ attribute:
Q′′

LuDB sr:

SELECT P.Insurance#, D.AvgFever, P.Age
FROM Disease D, Patients P
WHERE D.Did = P.Did, P.Age < 13

Should the lack of Patient.Age in a rewriting ofQ′′
LuDB sr be correlated with the lack

of the condition ’Patient.Age< 13’ in the same rewriting? As in the case of joins on
keys discussed previously, the answer to this question can be either ’yes’ or ’no’. On
one hand, the presence of the value condition in the rewritten query depends on the
presence of the respective ’select’ attribute, for if the second is not mapped in the target
database, both of them cannot be rewritten. On the other hand, a user may create the
original query with or without the value condition, meaningthat in general the presence
of the ’select’ attribute in the original query does not depend on the presence of the
respective value condition or vice versa.

Observation: Following the second reasoning, we do not correlate ’select’ attributes
with respective value conditions in the calculation of query similarity.

3.2 Query Similarity Criteria

Based on the above observations, we want to form the criteriafor the assessment of
query similarity. The rough outcome of the earlier discussion is that missing or addi-
tional query features, i.e. ’select’ attributes or ’where’conditions should be considered
decreasingly in query similarity, from a conservative point of view. We choose a con-
servative point of view in order to determine a correct estimation of query similarity in
any context of P2P database applications.



XIV

We have to refine our observations by ordering the importanceof the role of the
various missing or additional query features. First, we reckon that key attributes are
highly important in a relational schema since their values uniquely prescribe the values
of other attributes. We think that the role of keys in queriesis as important as in the
schema itself, no matter if such an attribute appears in a ’select’ or ’where’ clause. Thus,
deficient rewritings of key attributes may result in severe semantic deviations from the
original query. Second, ’select’ attributes represent what information the user requires
actually. Thus, their lack in the rewritten query is decisively irreparable. Third, even
though the lack of join conditions is a negative factor for query similarity, it results in a
query version that retrieves a superset of the data that would be retrieved by a query with
the rewritten joins. Furthermore, the lack of value constraints has the same effect in the
query as the lack of joins. However, the lack of joins probably results in much bigger
supersets of retrieved data than the lack of value constraints. Finally, the introduction of
new value constraints, joins on non-key attributes is considered a deficiency . Yet, new
conditions produce a rewriting that is classically contained in the source query; thus,
we think of the introduction of new conditions as the weakestcriterion of all.

Thus, we form the following criteria for the definition of thesimilarity of two query
versions. The criteria are ordered according to their importance in query similarity.

Cr1 Key attributes are rewritten, no matter what their position in the query is
Cr2 ’select’ attributes are rewritten
Cr3 Join attributes are rewritten
Cr4 Constrained attributes (beyond join ones) are rewritten
Cr5 There are no additional parts in the query: new value constraints and joins on non-key

attributes6

a There are no new value constraints
b There are no new joins on non-key attributes
c There are no new joins on key attributes that are necessary for the rewriting of

’select’ attributes

Overall, the above ordering of the criteria is based on the rationale that the most
important elements of a query are the attributes that are keys or ’select’ attributes. Joins
are very important; yet their lack results in supersets of answers that the peer might be
able to refine. Finally, additional conditions (thus, classically contained rewritings) are
considered the most lossless rewritings. The lack of rewriting of keys or query condi-
tions (joins and value constraints) results in answers thatare not sound whereas the lack
of rewriting of ’select’ attributes and additional conditions result in answers that are not
complete. Since the importance of answer soundness over completeness or the opposite
is application-dependent7, we do not base the ordering of the criteria solely on them.

6 We consider all additional parts in a query in this last criterion. We distinguishthe parts ac-
cording to their role in(a), (b) and(c) as shown. All of them have roughly the same priority;
yet, in a refined similarity metric, priority can be given according to lexicographical order. Fi-
nally, the criterion 5(c) may be eliminated in more conservative similarity metrics. A thorough
investigation of the impact of these criteria to a variety of application fields is out of the scope
of this work.

7 For example in a medical application, as in the motivating example, soundness may be more
important than completeness, whereas in an application of multimedia content the opposite
may hold.
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3.3 Discussion on Alternative Approaches to Query Similarity Metrics

The ordering of the criteria in Section 3.2 is formed on the atomic importance of each
query element. In order to decide about the overall similarity of the original and the
rewritten query version there is a need for a metric that correlates the importance of the
separate query elements.

As we have seen in Section 3.1, the similarity guidelines along which we can form a
query similarity function take into consideration the ’select’ attributesA and the ’where’
conditions, i.e., the value constraintsC and the join conditionsJ, individually. The
rewriting of query parts can be explicit in the rewritten query or implicit in the used
mappings; for both cases we use the function symbolrewr to refer to the rewritings of
query parts.

Beyond the separate rewriting ofA, J andC, the peer has to decide if there is any
correlation among them. The peer’s policy concerning this correlation depends on the
importance it gives to the rewriting ofJs in the translated query, as we have discussed
earlier. Moreover, the correlation of the different query elements in the similarity func-
tion has a respective impact on their separate importance inthe query. Thus, a strong
correlation ofJ elements with the rest or among themselves (e.g. the following func-
tions (2) and (3)), achieves the domination ofJ elements in total but also a more critical
importance of each one of them, separately (especially function (3)). Beyond the gen-
eral correlation of query elements, weights can be associated with each one of them so
that tuning to the special needs of each query can be performed.

If the peer is, in a way, optimistic, then it can consider thatall three setsA, C and
J are of equal importance and the non-rewriting of any of them does not influence
the rewriting of the rest. Such peers may be more interested in complete than sound
answers. The function that quantifies this policy is the following:

∑ rewr(J)+∑ rewr(A)+∑ rewr(C)

∑J+∑A+∑C
(1)

However, a reasonable policy is to consider the rewriting ofJ to be more important
than the satisfaction ofA andC. More specifically, a peer can decide that the rewriting
of A andC depends on the average of the rewrittenJ:

∑ rewr(J) · (∑ rewr(A)+∑ rewr(C))

∑J · (∑A+∑C)
(2)

Or the rewriting ofA andC depends on the rewriting of allJ:

∏ rewr(J) · (∑ rewr(A)+∑ rewr(C))

∏J · (∑A+∑C)
(3)

Moreover, a peer can decide that the rewriting ofJ influences only theA andC refer-
ring to the same relations. In this case the two above functions, (2) and (3) are altered
respectively as follows:

∑R(∑ rewr(JR) · (∑ rewr(AR)+∑ rewr(CR)))

∑R(∑JR · (∑AR+∑CR))
(4)
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∑R(∏ rewr(JR) · (∑ rewr(AR)+∑ rewr(CR)))

∑R(∏JR · (∑AR+∑CR))
(5)

where the indexR indicates the relations to which the attributes inJR, AR, andCR refer,
respectively. Peers that use functions (2), (4) or (3), (5) may be more interested in sound
than complete answers.

The definition ofrewr can vary depending on what a peer considers that contributes
to a ’good’ or a ’bad’ rewriting. Moreover, the result ofrewr has to be a number that
quantifies the quality of the rewriting. Depending on the implementation, therewr func-
tion quantifies the ’good’ and the ’bad’ rewriting, either asa boolean function (i.e.rewr
produces only two values, for example{0,1}) or as a function that produces a range of
continuous or non-continuous values (for examplerewr can produce a result in[0,1]).
The peer’s policy for partial rewriting of query parts can take into consideration possi-
ble differences of data types and ranges and, also, the difficulty to transform encodings.
For example, in the motivating example we have assumed that the attributeDrug in
DavisDB is rewritten as the attributeTreatDescr; however, the first might not be so
accurate as the latter. Also, suppose that the original query contained the following
condition: Pid> 505. Even though the assumed mapping in the motivating example
matchesPid to Insurance#, the translation and thus the satisfaction of this condition
may not be possible:Insurance# > ’505’ has most probably no meaning for Dr Lu’s
database. Situations like the one just described hint that careless translation of aC not
only may not actually satisfy the originalC but also deteriorate significantly the whole
query: the conditionInsurance# > 505 could lead to a translated query that gives an
empty answer. Thus, we do require a safe and conservative translation ofCs. In this
spirit, the conditionPid > 505 would not be rewritten in the new query, since a general
rule could prohibit the transformation of numerical valuesto strings. Nevertheless, data
mapping is out of the scope of this work.

Nevertheless, a thorough investigation of the applicability of the various correlations
among the rewritings of query parts as well as of the various implementations ofrewr is
out of the scope of this work. In the following we present the approach we have taken in
GrouPeerfor the construction of a moderate and generally applicablequery similarity
metric.

3.4 Our Approach to a Query Similarity Metric

In our approach a query is considered to be a set of elements, one for each ‘select’
attribute and one for each ‘where’ condition. A propagated query version,Q′

sr, that
is derived through rewritings on an initial query,Qorig, maintains all the elements of
the latter. Thus,Q′

sr may contain elements that are not present in its SPJ form. These
elements are marked as non-present. The absence of ‘select’attributes means thatQ′

sr
is degraded by them w.r.tQorig. However, this is not the case with ‘where’ clause con-
ditions: the absence of a condition is a result of either the presence of it in a mapping
used to produce theQ′

sr, or the inadequacy of mappings to rewrite the condition. In the
first case, even though the condition is not present structurally in the SPJ form ofQ′

sr,
it is semantically encapsulated. In the second case,Q′

sr is degraded by the lack of this
condition.
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Definition 1. A query Q propagated in the P2P database system is a pair of twosets:
Q = {Sl,Cn}; Sl is a set of elements Sl= {E1, ..,Em}; each element Ei , i = 1, ..,m
corresponds to a ‘select’ attribute Ai ≡ R.A and an indication, ’pres’, whether Ai is
present in Q or not. Thus, Sl.Ei = {Ai , pres}, pres∈ {true, f alse}. Cn is a set of ele-
ments Cn= {E1, ..,En}; each Ei corresponds to a ‘where’ clause condition Ci with an
indication ’pres’, whether Ci is present in the query or not and an indication ’st’ that
shows if the condition is satisfied. Thus, Cn.Ei = {Ci , pres,st}, pres,st∈ {true, f alse}
and Ci ≡ R.A = R′.A/R.A ϕ const, whereϕ ∈ {=,>,<,}, const is a data value, for
i = 1, ..,n and R.A, (R′.A) denotes the attribute A of relation R, (R′).

A query condition issatisfiedif it is explicitly or implicitly (i.e. through the em-
ployed mappings) present in a query rewriting. For clarity,we denote the set-of-elements
form of a queryQ asQsoe.

Example The set-of-elements form ofQorig is:
Qsoe

orig = {{{Pid, true},{DisDescr, true}, {Ache, true},{Drug, true}, {Dosology, true}},
{{{Visits.Did = Disease.Did, true, true},{Disease.Did = Treatment.Did, true, true}}}.
We omit the relation names wherever this is possible, in order to save space.

It is important to notice that the similarity of two queries is confined by the seman-
tic similarity of their elements. Hence, the similarity measure we are seeking should
be in the same spirit as such measures in the field of schema matching (e.g. [28]) and
matching taxonomies (e.g. [11]). Specifically, if each element ofQorig is semantically
matched totally with the respective element ofQrewr andQrewr does not include ele-
ments that cannot be matched with elements ofQorig (i.e. Qrewr does not have more
constraints thanQorig), thenQorig is semantically identical withQrewr.

Thus, we introduce the functionsat that takes as input two query elementsEi and
E′

i and returns the set of concepts ofEi that couldnot be matched with concepts ofE′
i

8. The following is the formal definition of a concept:

Definition 2. Considering a relational schema S, a distinct concept corresponds to
each R.A where A is an attribute of relation R∈ S.

Note that comparingEi andE′
i is safe, meaning that the indexi indicates that both

elements refer to the same query element (’select’ attributes,Ei ∈ Sl, or ’where’ condi-
tions,Ei ∈Cn).

Query elementsEi can be implicit or explicit in the regular SQL form: explicit
are those that appear in the SQL form and implicit are those that are encapsulated in
mappings used for reformulation. The functionsat compares elements either of their
explicit or implicit existence in the SQL form. It is straightforward that for two queries
Qorig = {Sl,Cn} andQrewr = {Sl′,Cn′}, the functionsat(Sl.Ei ,Sl′.E′

i ) exports the con-
cepts ofEi for which E′

i .pres= f alseand the functionsat(Cn.Ei ,Cn′.E′
i ) exports the

concepts ofEi for whichE′
i .st = f alse(i.e.E′

i .pres= f alse, too). Also, note thatsat is
not reflective: it exports the concepts ofEi not matched inE′

i but not the opposite.

8 We do not assume that peers share an ontology. Yet, each peer may ormay not possess and
use dictionaries or ontologies in order to perform matching. If peers do not use any kind of
dictionary or ontology, then concept matching is as simple as keyword matching.
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Also, it is obvious that forE′
j for which there is no correspondingE j , sat compares

E′
j with the /0 and exports all the concepts involved inE′

j . Thesat function calculates a
set of concepts that represents the semantic dissimilarityof two query elements. Thus,
|sat(Ei ,E′

i )|, is a quantification of the dissimilarity of the pair ofEi , E′
i . Based onsat

values of all the elements involved inQorig andQrewr, Msim can calculate the overall
semantic similarity of the two query versions. The following is the formal definition of
the default similarity metric thatGrouPeeremploys.

Definition 3. For two query versions Qorig = {Sl,Cn}, Qrewr = {Sl′,Cn′} and a set of
user-specified weights wQorig that denote the importance of each element in the seman-
tics of Qorig:

Msim(Qorig,Qrewr) = 1−
∑i wi · |sat(Ei ,E′

i )|+∑ j w j · |sat(E′
j , /0)|

∑i wi · |sat(Ei , /0,)|
(6)

where Ei ’s are elements of Qorig and E′i ’s,E′
j ’s are elements of Qrewr and ∑wi = 1.

Specifically, if Ei ∈ Sl then E′i ∈ Sl′ and if Ei ∈Cn then E′i ∈Cn′. Also, E′j ∈Cn′. More-
over, by default the weights wi have values along the lines of the similarity criteria of
section 3.2. The wj weights correspond to the criterion Cr5 about additional conditions.

The metricMsim is structured such that dissimilar elements diminish its value and
perfect similarity is represented byMsim= 1. The proposed functionMsim is constructed
along the lines of the associative function (1); thus, we adopt a conservative view of
query similarity that is more generic and more suitable to test in various applications.9.

GrouPeerdoes not predefine a similarity threshold below which a queryshould
not be rewritten. Instead, we recognize that the need (and quality standards) of each
user about peer information is unique. Therefore, the similarity threshold according to
which a query rewriting should be accepted or disregarded should be tuned by the user.
Actually, the user has the power to tune the value of weights for all the query elements,
and, thus decide if the lack of the rewriting of each such element is acceptable or not by
her standards on the quality of answers that she expects fromthe system.

The above proposition about the form of theMsim function is not restrictive: as men-
tioned before, semantic similarity is a subjective issue, therefore, its calculation formula
can differ from one peer to the next. Beyond this, defining semantic similarity for a wide
range of queries and contexts is a complicated matter, sinceit not only depends on con-
cept correspondences, but also on interrelations of concepts (ontologies).

4 Query Reformulation

We assume that peers own a query reformulation mechanism based on existing query
rewriting algorithms, yet it enables the production of a rewritten versionQrewr from the
original queryQorig, where:

9 Moreover, in cases of query conditions with arithmetic comparisons, thesat function can be
implemented so that it takes care of rewritten versions that have narrower constraints than the
original version (for example X< 10 can be rewritten to X<8 [3])
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– Qrewr maintains in the ‘select’ clause all the ‘select’ attributes of Qorig that can be
rewritten through the available mappings. Thus, in conjunctive form, the head ofQrewr

is a projection of the head ofQorig.
– all the ‘where’ conditions ofQorig that cannot be rewritten through the available map-

pings are ignored. The rest are rewritten and included inQrewr. In conjunctive form,
Qorig and Qrewr have mappings between attributes of predicates even if predicates
themselves cannot be mapped.

As an example of the first rule above, remember the original query posed by Dr
Davis, Qorig; it is not possible to rewrite it to the schema of StuartDB, because the
’select’ attribute Treatment.Dosology ofQorig is not mapped in StuartDB. Thus, this
attribute is ignored in the classical query rewriting procedure.

As an example for the second rule above, consider the original query,Qorig, aug-
mented with a value condition:
Qorig changed:

SELECT V.Pid, D.DisDescr, D.Ache, T.Drug, T.Dosology
FROM Disease D, Treatment T, Visits V
WHERE V.Did = D.Did AND D.Did = T.Did AND T.Dosology = 5mg

Since the attribute Treatment.Dosology is not mapped in StuartDB, there cannot be a
classically contained rewriting ofQorig changed, because the condition ’T.Dosology =
5mg’ cannot be rewritten. Thus, this condition is ignored.

In this work, we use the termsreformulationandrewriting interchangeably, mean-
ing the query translation according to the principles described above. In order to achieve
the above reformulation, the algorithm has two conceptual steps:

1. Pre-processes the incoming queryQinc and produces the versionQinc preprocessedthat
contains the part ofQinc (i.e. the ’select’ attributes and ’where’ conditions) thatcan
be altogether reformulated by a single mapping.

2. Then,Qinc preprocessedis rewritten with the classical query rewriting algorithms.

These two steps are conceptually distinct. However, depending on the implemen-
tation, they can be performed either in a sequential way or ina way that is partially
sequential and partially parallel, i.e. some parts of the preprocessing procedure can be
merged with the query rewriting itself10.

Example Assume that StuartDB and LuDB have the following mapping:
M1StuartDB LuDB:
TreatmentStuartDB(Pid, , , , , ):- DiseaseLuDB(Did, , ),
PatientsLuDB(Insurance♯, Did, , ), Age< 13,{Pid = Insurance♯}

Then the queryQStuartDB sr is preprocessed so that the ’select’ attribute ’Treatment.
Symptom’ is eliminated. The preprocessed query version is:
QStuartDB sr preprocessed:

10 For example if query rewriting using LAV mapping is performed with the bucket algorithm
[25] then preprocessing has to be done before query rewriting; yet, ifquery rewriting is per-
formed with the minicon algorithm [35] the preprocessing can be integratedin the algorithm
itself.
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SELECT T.Pid, T.DisDescr, T.TreatDescr
FROM Treatment T

Now,QStuartDB sr preprocessedcan be rewritten in the classical way usingM1StuartDB LuDB.

Query Preprocessing Guidelines

In order to pre-process a query and produce the input for the rewriting algorithm,
we choose the mapping(s) with respect to which we will perform the preprocessing.
As aforementioned, we want to choose the mappings thatbestrewrite the query. The
best rewritten version is valuated with respect to the similarity criteria defined in the
previous section. The mappings used for the rewriting are actually the exclusive means
that provide the rewritten query features thus, the structure of the mappings reflects the
rewritten query. Also, mappings are actually queries (or pairs of queries) themselves.
Thereupon, we base our decision for the selection of mappings on the query similarity
criteria defined in Section 3.

There is a variety of query-mapping combinations that we cancome across during
the mappings selection procedure. We discuss the combinations of queries and con-
sidered mappings that do not match completely. The following is a categorization of
the main query-mapping combinations that we can come across, where attributes of
relations involved in the query are missing from the mapping. This categorization is
complete and other combinations actually fall into one or more of these categories. The
categorization follows the lines of query similarity aspects.

Case A:Considering GAV mappings
In this case we consider attributes of relations that are missing from the mapping.

These relation attributes may appear in the query (’select’or ’where’ clause), or not.
Attributes that appear in the query but not in the mapping arerelated to one of the
criteria defined in Section 3.2. Moreover, in this case we consider additional conditions
on mapped attributes that appear in both the query and the mapping.

1. For attributes that are not present in the ’select’ clause:
(a) The query isQ(x,y) : −P(x,y,z) and the mapping isP(x,y, ) : −P′(x,y)
(b) The query isQ(x,y) : −P(x,y,z),z=′ c′ and the mapping isP(x,y, ) : −P′(x,y)
(c) The query isQ(x,y) : −P(x,y,z)R(z,w) and the mapping isR( ,w) : −R′(w)
(d) The query isQ(x,y) : −P(x,y,z)R(z,w) and the mapping isR(z, ) : −R′(z)
(e) The query isQ(x,y) : −P(x,y,z), the mapping isP(x,y,z) : −P′(x,y,z),z=′ c′

(f) The query isQ(x,y) : −P(x,y,z) and the mapping isP(x,y,z) : −P′(x,y,z)R′(z)
2. For attributes that are present in the ’select’ clause:

(a) The query isQ(x,y) : −P(x,y,z) and the mapping isP(x, ,z) : −P′(x,z)
(b) The query isQ(x,y) : −P(x,y,z), the mapping isP(x,y,z) : −P′(x,y,z),x =′ c′

(c) The query isQ(x,y) : −P(x,y,z) and the mapping isP(x,y,z) : −P′(x,y,z)R′(x)

Cases 1(b) and 1(c) denote missing value constraints (criterion Cr4) and joins (criterion
Cr3), respectively. Cases 1(a,d) denote missing attributes from relations of the query;
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yet these attributes do not appear in the query itself11. Cases 1(e,f), 2(b,c) denote addi-
tional ’where’ conditions (criterion Cr5). Case 2(a) denotes a missing ’select’ attribute
(criterion Cr2).

Case B:Considering LAV mappings
In this case we consider attributes of relations that are involved in the query but are

missing from the mapping.

1. ’select’ attributes of the query are missing from the mapping.
(a) The query isQ(x,y) :−P(x,y,z) and the mapping isQ′(x) :−P(x,y,z) or Q′(x,z) :

−P(x,y,z)

2. ’where’conditions of the query are not mapped through themapping:
(a) The query isQ(x,y) : −P(x,y,z),z=′ c′ and the mapping isQ′(x,y) : −P(x,y,z)
(b) The query isQ(x,y) : −P(x,y,z)R(z) and the considered mapping isQ′(x,y) :

−P(x,y,z) and there is no mapping forR(z) 12

3. additional ’where’ conditions
(a) The query isQ(x,y) : −P(x,y,z) and the mapping isQ′(x,y) : −P(x,y,z),z=′ c′

(b) The query isQ(x,y) : −P(x,y,z) and the mapping isQ′(x,y) : −P(x,y,z)R(x)
(c) The query isQ(x,y) : −P(x,y,z) and the mapping isQ′(x,y) : −P(x,y,z)R(z)

Case (1a) corresponds to criterion Cr2. Case 2(a) denotes a missing value constraint
(criterion Cr4), whereas case 2(b) denotes a missing join (criterion Cr3). Note that both
cases can refer to mappings with additional ’where’ conditions (criterion Cr5). Case
3(a) denotes an additional value constraint and cases 3(b,c) denote additional joins on
relation attributes that appear or not in the query (criterion Cr5).

Case C:Considering GLAV mappings13

1. ’select’ attributes of the query are missing from the mapping.
(a) The query isQ(x,y,z) and the mapping isQ(x,y,z) : −Q′(x,y)

2. The mapped query has additional ’select’ attributes:
(a) The query isQ(x,y) and the mapping isQ(x,y) : −Q′(x,y,z)

We select mappings according to the criteria of Section 3.2.The lack of attributes
of relations involved in the query that do not appear either in the ’select’ or the ’where’
clause, such as in Case A 1(a,d), is not taken into consideration: the mapping corre-
spondences denote that the predicates match, even if not alltheir attributes match.

11 These cases do not correspond to any criterion of section 3.2: in section 3 we have focused on
similarity of queries and we have not considered similarities of attributes thatare not involved
in queries. Nevertheless, we present cases 1(a,d) for completeness

12 Actually, classical LAV rewriting algorithms (e.g. [35]) cannot rewriteR(z) even if there is a
mapping for it, since the join onz cannot be rewritten.

13 We only consider the head of queries in GLAV mappings. Refining our categorization for the
bodies of these queries is future work
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In order to impose the criteria of section 3.2 we construct anassociative similar-
ity function. Specifically, for a query subgoalg 14 and a mappingM, the associative
functionMas quantifies the lack of non-matched attributes.

Mas(g,M) =
|g|

∑
i=1

wi ·ai ,wi ∈ {wk,ws,w j ,wc},ai ∈ {0,1} (7)

where|g| denotes the arity ofg, i.e. the total number of attributes ing involved in the
query. Also, each subgoal attribute,i, has a weight,wi that denotes if it is a key, a
’select’, a join or a constrained attribute. If it has more than two such characteristics, it
keeps the one that is higher in the hierarchy of the criteria.Accordingly, the weights for
a key, a ’select’, a join or a constrained attribute iswk, ws, w j andwc, respectively. We
require thatwk > ws > w j > wc. Finally,ai denotes if the respective attribute is matched
in the mapping (ai = 0) or not (ai = 1).

We use the following form that estimates the matching ability of the selected map-
pings:

Simg(Q,M ) = 1−
∑ j Simg j .Mas+∑k wa

∑ j ∑
|g j |
i=1w ji

,wi ∈ {wk,ws,w j ,wc},ai ∈ {0,1} (8)

M is the set of selected mappings andSimg j .Mas is theMas value for theg j subgoal;
the weightw ji refers to theith attribute of thej th subgoal. The weight for an additional
condition iswa (wc > wa) and ∑wa represents the total weight of all the additional
conditions in the selected mappings. Actually, theSimg function speculates the result
of Msim of section 3.4, by estimating if each query element can be rewritten with the
considered mapping;Simg breaks down query elements to attributes of query subgoals
in order to facilitate the straightforward use of mappings in conjunctive form in the
preprocessing algorithm. In this way, we manage to estimateif a mapping can be used
for rewriting a query, without running the rewriting algorithm.

The algorithm that chooses which mappings will be used in thequery rewriting
procedure is shown in Figure 4. Briefly, the algorithm considers three sets of mappings:
GLAV, GAV and LAV. It produces one subset of each set. Each such subset contains the
mappings that are most similar to the corresponding query subgoals according to the
aforementioned criteria of section 3.2. Finally, the algorithm chooses the subset of the
three which has the highestSimg value for the query.

In detail, the algorithm works as follows. In case of GLAV mappings we check the
overall real similarity of the of the original and the rewritten version. In the case of
GAV mappings we have to check which query elements can be satisfied by which GAV
mappings; for query elements that can be rewritten with morethan one mapping we
have to check which one of them poses the fewest additional restrictions. The execution
of this preprocessing is simple and straightforward. Similar actions have to be done for
LAV mappings. In this case we have also to check if a mapping that satisfies a part
of a query (a subgoal) is satisfied by the head or the body of themapping. In the first

14 SPJ queries can be considered in conjunctive form, where each conjunct is called a ’query
subgoal’ [43]
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case we proceed as in the case of GAV mappings. Also, for queryelements that are
satisfied in the body of the mapping that is currently examined we check if these are
value-constrained or if they are joined with subgoals that have not been examined yet.
In these cases we also proceed as in the case of GAV mappings. However, for query
elements that are joined with subgoals that have been examined, we have to check the
mapping that has been selected and stored by the algorithm for these subgoals. If this
is the same mapping as the one that is currently examined, then we proceed as in the
case of GAV mappings. Else, this query element cannot be satisfied by the mapping and
we reduce the value of the similarity of the currently examined mapping and subgoal
accordingly.

5 Clustering of Peers

Recall that the goal of clustering is to enable peers to discover other peers with similar
interests and schemas, that cannot be ’tracked’ otherwise,because they are hidden in
query propagation paths by other peers with dissimilar interests.

Pairs of remote peers that exchange queries and answers learn gradually about the
schema of each other; learning is performed through making queries an evaluating their
answers, and is formed in mappings between the schemas of thetwo peers. Actually,
each peer that receives a query tries to retrieve any query attributes that are lost in the
successive rewriting of the query along the propagation path. The mappings formed
between two remote peers encapsulate the common interest ofthe two peers, since they
refer to the (necessary) schema parts on which they express and answer queries. If the
peers decide to become acquainted, these mappings are already a language for their
communication and alleviate the administrator’s load for creation of mappings for the
new acquaintance. The peers accumulate the answers they receive from each peer; each
time they receive a new answer from a specific peer, they compute the current overall
respective similarity of answers by this peer. If this similarity exceeds a predefined user-
tuned threshold, the peer may decide to ask this peer to be itsacquaintee. The mappings
that are formed during the query position-answering between them are used as an initial
set of communication mappings.

Overall, the proposed methodology of making new acquaintances in the overlay
leads to the restructuring and, moreover, the gradual clustering of the P2P system in
groups with common interests. Thus, we refer to it as the ‘clustering process’. In what
follows we describe the details of the clustering process and we give the respective
algorithm. Also, we discuss the role of automatic schema matching and the protocol
internals ofGrouPeer.

5.1 Schema Mappings and Query Rewriting

The definitions in section 3.4 together with the following ones formalize the basic no-
tions of a concept, a query and a mapping in forms suitable forthe clustering process
we describe next.

Definition 4. Considering a source schema S and a target schema S′, a GAV/LAV/GLAV
mapping between them M(S,S′) is the set{CrM(S,S′),CondM(S,S′)}, where the set
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Input: the query to be rewrittenQ
Output: A mappingM or a set of mappingsM

– Step 1 Consider GLAV mappings:
• Make a setSimGLAV = {M,Msim} and initiateM = nulla andMsim = −∞
• For each mappingM represented asQ′ : −Q′′ compute Msim(Q,Q′′) =

Msim(Q,Q′) · Msim(Q′,Q′′)*; if SimGLAV.Msim < Msim(Q,Q′′) replace
SimGLAV.M with M andSimGLAV.Msim with Msim(Q′,Q′′)

– Step 2 Consider GAV mappings:
For each subgoalg j of Q:
• Make a setSimg j = {M,Mas} and initiateM = null andMas = −∞
• For each mappingM that matches the predicate ofg j computeMas(g j ,M); if

Simg j .Mas< Mas(g j ,M) replaceSimg j .M with M andSimg j .Maswith Mas(g j ,M)

Make the setSimGAV = {MGAV , Simg}, where Simg(Q,M ) = 1−
∑ j Simgj .Mas+∑k wa

∑ j ∑
|gj |

i=1 w ji

– Step 3 Consider LAV mappings:
For each subgoalg j of Q:
• Make a setSimg j = {M,Mas} and initiateM = null andMas = −∞
• For each mappingM that matches the predicate ofg j computeMas(g j ,M);
• in the following cases:

∗ if all the query attributes ofg j are in the head ofM
∗ if a query attributet of g j is value constrained and this constraint is included

in the body ofM
∗ if a query attributet of g j is joined with a subgoalgk that has not been

examined yet.
do: if Simg j .Mas < Mas(g j ,M) replaceSimg j .M with M and Simg j .Mas with
Mas(g j ,M)

• else (a query attributet of g j is joined with an examined subgoalgk):
∗ if Simgk .M 6= M then doMas(g j ,M) = Mas(g j ,M)−wt

∗ if Simg j .Mas < Mas(g j ,M) replaceSimg j .M with M and Simg j .Mas with
Mas(g j ,M)

Make the setSimLAV = {MLAV , Simg}, whereSimg(Q,M ) = 1−
∑ j Simgj .Mas+∑k wa

∑ j ∑
|gj |

i=1 w ji

– Step 4 CompareSimGLAV.Msim, SimGAV.Simg and SimLAV.Simg; depending on the
highest value of the three, replaceM with one of the setsSimGLAV.M, SimGAV.M ,
SimLAV.M

*Msim(Q,Q′) is a function that quantifies the semantic similarity of two queriesQ and
Q′ based on the proposed criteria.

a null denotes that there is no mapping

Fig. 4.Algorithm for the selection of mappings for the query rewriting
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of concept correspondences CrM(S,S′) = {R.A = R′.A′|R.A ∈ S,R′.A′ ∈ S′} holds un-
der the set of conditions CondM(S,S′) = {R1.A = R2.B or R1.A = const|R1,R2 ∈ S or
R1,R2 ∈ S′}; const is a data value.

Obviously, for each pair of concepts{R.A,R′.A′} that each belong to a different
schema,R.A∈ SandR′.A′ ∈ S′, and that are corresponded through a mappingM(S,S′),
there is one such pair inCrM(S,S′). A set of mappings betweenS,S′ is denoted as
M (S,S′).

For example, recall the mappingMStuartDB DavisDB from Section 1. This mapping is
a set{CrM(StuartDB,DavisDB),CondM(StuartDB,DavisDB)}, where the set of con-
cept correspondences is:CrM(StuartDB,DavisDB) = {Pid = Pid,Symptom= Ache,
TreatDescr= Drug,DisDescr= DisDescr}, where for convenience we have eliminated
the information about relations. Since the previous correspondences hold without value
conditions:CondM(StuartDB,DavisDB)} = {{Visits.Did = Disease.Did},{Disease.
Did = Treatment.Did}}.

Remember the mappingMStuartDB LuDB. In the proposed form, the set of correspon-
dences is{CrM(StuartDB,LuDB)} = {Pid = Insurance♯,Symptom= AvgFever} and
the set of conditions isCondM(StuartDB,DavisDB)} = {Disease.Did = Treatment.
Did},{Age< 13}.

Definition 5. For each correspondence R.A = R′.A′ ∈ CrM(S,S′) ∈ M(S,S′), the con-
cepts, R.A, R′.A′ are considered equivalent.

Example Assume that StuartDB poses the following query:
Q1StuartDB

15:

SELECT T.Pid, T.DisDescr, T.Symptom, T.TreatDescr
FROM Treatment T
WHERE T.Date > 01/01/2000

The representation of this query in the proposed form is:
Q1soe

StuartDB = {{{Pid, true}, {DisDescr, true}, {Symptom, true},
{TreatDescr, true},{Date> 01/01/2000}}. For simplicity we omit the relation names.

We assume that StuartDB and LuDB maintain the mapping
MStuartDB LuDB (see Section 1). The rewriting ofQ1StuartDB on LuDB is the follow-
ing:
Q1LuDB sr:

SELECT P.Insurance#, D.AvgFever
FROM Disease D, Patients P
WHERE D.Did = P.Did, P.Age < 13

It is obvious thatQ1LuDB sr coincides withQLuDB sr (see Section 1). The set-of-
elements form ofQ1LuDB sr is:
Q1soe

LuDB sr = {{{Insurance♯, true}, {DisDescr, f alse}, {AvgFever,

15 The condition of the query denotes that records with date after the date 01/01/2000 are re-
quested. For convenience we use the symbol ’>’ to denote this request in the query and the
following mapping.
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true}, {TreatDescr, f alse}, {{Date > 01/01/2000, f alse, f alse},{Disease.Did
= Patients.Did, true, true},{Age> 13, true, true}}}. This form denotes that the con-
dition ’T.Date > 01/01/2000’ of the initial query is neither present nor satisfied in
the rewritten version on LuDB. Also, there is one additionalcondition, ’P.Age< 13’,
which constraints more the initial query. Note that the order of the elements in the
Q1soe

LuDB sr.Sl set is the same as in theQ1soe
StuartDB.Sl; thus,{Insurance♯, true} corre-

sponds to{Pid, true}, and so on. It is obvious that two of the ’select’ elements of
Q1StuartDB are missing fromQ1LuDB sr. Q1LuDB sr is degraded by the ’false’ elements,
the ’false’ condition and the new condition.

Now suppose that the mapping between StuartDB and LuDB is:
M2StuartDB LuDB:
TreatmentStuartDB(Pid, , , Symptom, , ), Date > 01/01/2000:- DiseaseLuDB(Did,
AvgFever, ), PatientsLuDB(Insurance♯, Did, , ), Age < 13, {Pid = Insurance♯,
Symptom= AvgFever}

The rewritten version ofQ1StuartDB on LuDB throughM2StuartDB LuDB is again
Q1LuDB sr. However, in this case the set-of-elements form ofQ1LuDB sr is:
Q1soe

LuDB sr = {{{Insurance♯, true}, {DisDescr, f alse}, {AvgFever, true}, {TreatDescr,
f alse}, {{Date> 01/01/2000, f alse, true},{Disease.Did = Patients.Did, true, true},
{Age> 13, true, true}}}. This denotes that the condition ’Date> 01/01/2000’ is not
present in the rewritten version but it is satisfied (throughthe mappingM2StuartDB LuDB).

Example Furthermore, the set-of-elements form ofQLuDB sr is:
Qsoe

LuDB sr = {{{Insurance♯, true},{DisDescr, f alse}, {AvgFever,
true}, {Drug, f alse},{Dosology, f alse}},{Disease.Did = Patients.Did, true, true},
{Age< 13, true, true}}}.

Note that, even though the SPJ form ofQLuDB sr andQ1LuDB sr is the same, their
set-of-elements forms differs because they are derived from different initially posed
queries.

Essentially,Q′
sr keeps fromQ only the concepts and concept constraints that are

present in the mappings. Also,Q′
sr has more concept constraints thanQ. We say thatQ′

sr
is degraded by the set of missing concepts, non-satisfied andadded concept constraints.
In order to be compliant with the definition of thesat function described in the previous
section and in order forMsim to produce correct results according to our assumptions
about query similarity, we have to make an adaptation to the set-of-elements form of
source queries when compared with target ones: the problem originates from additional
joins on relation keys on rewritten queries; these new constraints do not correspond to
any of previous rewritings or the original query itself; however, as stated in Section 3.1
we choose to consider these additional conditions as necessary and non-destructive to
the original query. Sincesat exports all concepts of the key join, it affects negatively
Msim. Therefore, when comparing such query versions we add to thesource queryfake
condition elements that correspond to new key joins of the target query. Specifically,
for each new key joinCn.Ei = {Ci , true, true} we add to the source query the element
Cn.Ei = {Ci , f alse, true}.
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For example, the set-of-elements form ofQStuartDB sr andQLuDB sr is:
QStuartDB sr = {{{Pid, true},{DisDescr, true},{Symptom, true},{TreatDescr, true},
{Dosology, f alse}},{{Visits.Did = Disease.Did, f alse, true},{Disease.Did =
Treatment.Did, f alse, true}}}
QLuDB sr = {{{Insurance♯, true},{DisDescr, f alse},{AvgFever, true},{TreatDescr,

f alse}, {Dosology, f alse}},{{V.Did = D.Did, f alse, true},{Disease.Did = Treatment.
Did, f alse, true},{Disease.Did = Patients.Did, true, true}, {Age< 13, true, true}}.

Note, that the order of the elements in theQStuartDB sr, QLuDB sr set is the same as in
theQorig; thus, for exampleQLuDB sr.Sl.{Insurance♯, true} correspondsQorig.Sl.{Pid,
true}, and so on. It is obvious that one of the ’select’ elements ofQorig are miss-
ing from QStuartDB sr and two more fromQLuDB sr. Also, QStuartDB sr has satisfied the
conditions ofQorig and no new ones, whereasQLuDB sr has one new value condition,
{Age< 13, true, true} and one new key join,{Disease.Did = Paients.Did, true, true}.
WhenQLuDB sr is compared for similarity withQStuartDB sr, we add to the second a fake
condition{Disease.Did = Patients.Did, f alse, true}.

Definition 6. Considering two relational schemas S, S′ with a mapping between them
M(S,S′) = {CrM,CondM}, the successively rewritten version Q′

sr = {Sl′,Cn′} on S′ of
a query Q= {Sl,Cn} on S based on M(S,S′) has:
- Sl′.E′

i = Sl.Ei and Cn′.E′
i = Cn.Ei if presi = f alse,

- for Cn.Ei = {Ci , true, true}, if Ci ∈ CondM, Cn′.Ei = {Ci , pres, true}, pres= true or
pres= f alse, else Cn′.Ei = {Ci , f alse, f alse}
- there are new condition elements Ej = {Ci , true, true} added in Q′sr.Cn′, where Ci ∈
CondM∧ 6 ∃Ei ∈Cn such that Cn.Ei = {Ci , pres,st}
- for all the rest Sl.Ei , Cn.Ei there are corresponding Sl′.Ei , Cn′.Ei with pres= true,
st = true rewritten according to the rewriting algorithm.

Note that a concept of schemaS can correspond to more than one concepts of
schemaS′. In this case, the query onS is rewritten to a set of queries inS′, one for each
such correspondence. The results of the queries are unified and returned to the query
initiator. This is compliant with the query rewriting algorithms ( [25], [30] and [3]).
For simplicity, in the rest of this work we assume that in a setof mappingsM (S,S′),
there is only one correspondence for each schema conceptR.A ∈ S or R.A ∈ S′. The
generalization of the clustering algorithm to union of queries is straightforward.

5.2 Description of the Clustering Process

In the following we describe the clustering process.

Query Propagation: Suppose that a query initiatorPI initiates a queryQorig =
{Sl,Cn}. PI propagates to its acquaintees the set{Qorig,wQorig}, wherewQorig = {wSl,wCn}
are two sets of weights that refer to the ‘select’ attributesand the ‘where’ conditions.
For example, thewSl = {wSl1, ..,wSlm} correspond to the members ofSl = {E1, ..,Em}.
The weights declare the importance of the respective query element, range in(0,1] and
add to the unit:∑wSli +∑wCnj = 1. By default, the values of the weights conform to the
criteria of section 3.2. However, the user may define weight values that are special to the
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posed query. Thus, highwi values indicate thatEi .Ai /Ei .Ci plays an important role in the
query and good rewritings of the latter are considered the accurate rewriting ofAi /Ci .
On the other hand, low values ofwi show that the query initiator is flexible concerning
the rewriting ofAi /Ci , i.e., not so accurate rewritings ofAi are accepted or thatCi is not
really important in the query semantics. For example, it is natural for join conditions
to be considered important and have high weight values. Every peer on the query path
forwards to the next acquaintee not only the successively rewritten version, but also the
original query. Assume thatP is a peer on the query path andQsr P is the version of
Qorig that has been successively rewritten through peer mappingsuntil it reached peerP
(includingP). Assume also that the next peer on the query path isP′; thenP propagates
to P′ the following set:{Qorig,wQorig ,Qsr P}. P′ has two options: it can either rewrite
and answerQorig or Qsr P.

Query Answering: As aforementioned, all peers own a query reformulation mecha-
nism that uses acquaintance mappings and query rewriting algorithms, but also a mech-
anism for automatic schema matching. Thus,P′ successively rewritesQsr P to Qsr P′

through the mappings betweenP andP′. Next,P′ determines which elements ofQorig

are not rewritten inQsr P′ and uses automatic schema matching to determine an ad hoc
rewriting of them; the ad hoc rewritten elements are added toQsr P′ and produce an
augmented version of the latter,Qsra P′ .

Moreover,P′ uses automatic matching to rewrite theQorig from scratch toQar P′ .
Hence, it can pick one of the two locally rewritten versions,Qsra P′ andQar P′ in or-
der to answerQorig. The reason for considering an automatic rewritten versionof the
original query is to recover poorly successively rewrittenelements: elements may be
poorly successively rewritten at some node on the query path; if the mapping chain
allows these elements to be successively rewritten furtheron, they may not have the
chance to recover from the poor rewriting, even if there is such a possibility through
automatic matching at some intermediate node. To demonstrate this, remember the ex-
ample of Section 1, where a ‘select’ attribute ofQorig is ‘Ache’ and this is successively
rewritten inStuartDBas ‘Symptom’ which is mapped to ‘AvgFever’ in the schema of
LuDB. However, the latter comprises an attribute ‘Ache’ which fits best the respective
element ofQorig. Yet, if Qorig does not have the chance to be automatically matched and
rewritten from scratch, the original ‘Ache’ will be rewritten to ‘AvgFever’ through the
respective mapping.

P′ compares the two rewritten versions,Qsra P′ andQar P′ , with Qorig, in order to
decide which one is moresimilar to original query, i.e., which version is semantically
closer to the original query. For this,P′ uses a functionMsimP′

(Qorig,Qrewr) that mea-
sures the similarity between the source,Qorig, and the rewritten query,Qrewr. In other
words,MsimP′

is the estimation of peerP′ about “how much” ofQorig can be answered
by Qrewr. MsimP′

is a function that quantifies the semantic similarity of the two queries.

Depending on the values ofMsim(Qorig,Qar P′), Msim(Qorig,Qsra P′), P′ answers the
most information preserving version with respect toQorig. P′ replies toPI with a packet
that carries the original query,Qorig, and the answered version, i.e., the successively
rewritten version augmented with automatic matching,Qsra or the automatic matched-
rewritten versionQar, together with the resulted tuples,Res:
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AnsP′(Qorig,Qx,Res(Qx)),x = ar or sra (9)

Answer Evaluation: The query initiatorPI evaluates the received answer with a
functionEv(Qorig,Qx,Res) that is based onMsimPI

and can take into consideration the
returned tuplesRes(Qx). Note thatMsimPI

can be the same or a different function than
MsimP′

. GrouPeeraims at finding mutual interests of pairs of peers by allowingthe latter
to have their own perspective on query, schema and data semantics (that is expressed in
a quantitative way throughMsim). Hence, each peer is allowed to judge the similarity
of queries and the quality of received answers by its own means. We note that, at the
momentGrouPeerdoes not provide a mechanism for evaluating the query answers,
Res, automatically; this is a very difficult task and presumablyit cannot be automated
for general applications. Thus,GrouPeerby default evaluates the structural similarity
of queries and respective answers. Yet, the evaluation function Ev can be implemented
in such a way so that the quality and appropriateness ofRescan be derived in a proper
way (for example, through human interaction).

PI replies toP′ with its estimation details about the reformulation of the answered
query version: thus,PI sends toP′ the set:

Sat(Qorig,Qx) = {sat(Ei ,E
′
i )|∀Ei ∈ Sl,Cn∧E′

i ∈ Sl′,Cn′},x = ar or sra (10)

which indicates the evaluation ofPI for the satisfaction of each element in the origi-
nal query by the respective element in the answered rewritten version. Added condition
elements are not evaluated explicitly, since they are always considered as deviations
from the original query.P′ can use these estimations in order to determine:

– for successively rewritten elements, if they were poorly rewritten and if they should
be automatically rewritten.

– for automatically rewritten elements, how successful werethe automatically produced
mappings.

Using the above estimations,P′ will make its final choice in establishing a better map-
ping withPI .

Building Mappings: P′ can use theSat(Qorig,Qx) values in order to make better
decisions about query rewriting the next time it receives a query from PI . P′ keeps
bad and good estimations separately and gradually builds schema mappings withPI ,
which gradually ameliorate automatic rewriting of query elements onP′ for queries
initiated byPI . Assuming that the schemas of peersPI , P′ areSI , S′, respectively,P′

keeps bad correspondences of concepts in the setBCr(SI ,S′). This set is augmented
bad correspondences reported byPI to P′ after answer evaluations.P′ avoids correspon-
dences inBCr(SI ,S′) when it attempts automatic matches on new incoming queries
from PI . Oppositely,P′ uses good answer evaluations ofPI in order to produce map-
pings that will aid the automatic rewriting of new incoming queries ofPI . Actually,
P′ uses pairs of incoming queries and their locally rewritten and answered versions,
{Qorig,Qrewr} as GLAV mappings, if the answer is evaluated positively byPI . Further-
more,P′ merges mappings it holds forPI whenever this is possible. Specifically, two
mappingsM1(SI ,S′) = {CrM1,CondM1}, M2(SI ,S′) = {CrM2,CondM2} are merged if
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the one is contained in the other, i.e.CrM1 ≡ CrM2. In this case mappings are merged
because the existence of both of them is pointless, since theone is more general than
the other.Also,M1, M2 are merged if they have different concept correspondencesthat
hold under the same constraints, i.e.CondM1 ≡CondM2, (see section 5.3). The merging
of mappings in this case aims solely at their compression; thus, it can be omitted in fa-
vor of mapping accuracy. Of course the automatic merging of mappings could be more
sophisticated and could produce GAV and LAV mappings. Yet, this is out of the scope
of this work.

The produced mappings betweenPI andP′ can serve as peer mappings in case the
two peers become acquainted.

Acquaintance Establishment:PI accumulates theMsimPI
for answers coming from

P′. When the average of these estimations overcomes a thresholdθPI , thenPI contacts
P′ and asks the latter to become its acquaintee.

The thresholdθPI shows on behalf ofPI the requirement forinformation capacity
of peers in order for them to become direct neighbors. The term information capacity
refers to the amount of information held in a database schemaand is investigated in [20]
and other works such as [29] in the context of data and schema integration.

In the context of data exchange in P2P databases, we use this term to refer to the
capacity of the information in terms of semantics, i.e., concepts and their logical in-
terrelations. Thus, we use the intersection of the information capacities (in terms of
semantics) of two peers in order to decide if these should become acquainted. Since
Msim measures the semantic relevance of two query schemas, we base the measurement
of the intersection of the information capacities on accumulatedMsim values. Therefore,
the thresholdθPI refers to the lowest overall degree the common information capacities
of two peers that is acceptable for the new acquaintance.

Next, we present in detail the algorithm of the described clustering procedure.

5.3 Clustering Algorithm

The algorithm includes two procedures running on each peer:one that runs for locally
initiated queries and one that runs for incoming queries. Also, we briefly present the
procedure that produces mappings between the query replierand the initiator, based on
the original and reformulated version of the queries.

Clustering Algorithm
On each peerP execute:
-the Query Initiator Procedure referring toP asPI

-the Query Replier Procedure referring toP asP′

Query Initiator Procedure
This procedure accumulates answers for locally initiated queries, sends evaluation
feedback to responding nodes and invokes the acquaintance process for discovered sim-
ilar peers
Input: a set of candidate acquainteesAcq=

⋃
Acqi ,Acqi = {Pi ,EvPi}; theθPI threshold;

a similarity measureMsimPI
(Q,Qr).
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Initialization:Acq= /0
while (online)do:
{for each new locally initiated queryQorig = {Sl,Cn} and user-definedwQorig do:
Step1: propagate the set{Qorig,wQorig}
Step2: wait for answers toQorig

for each received packetAnsP′(Qorig,Qx,Res(Qx)) do:
- if {P′, } /∈ AcqdoAcq= Acq∪{P′,0}
- updateP′’s evaluationEvP′= EvP′ +MsimPI

(Qorig,Qx) · f un(Res(Qx))

- send toP′ the setsat(Qorig,Qx)
- if EvP′ ≥ θPI askP′ to become an acquaintee}

Query Replier Procedure
This procedure answers incoming queries, receives evaluations for the answers and
builds mappings with the respective remote peers
Input: a set of candidate acquainteesAcq=

⋃
Acqi ,Acqi = {Pi ,M (Si ,S′),BCr(Si ,S′)};

a similarity measureMsimP′
(Q,Qr);

Initialization:Acq= /0
while (online)do:
{for each received query packet{Qorig,wQorig ,Qsr P} originated from peerPI do:
Step1: if PI is new toP′ doAcq∪{PI , /0, /0}
Step2: automatically rewriteQorig to Qar P′ usingM (SI ,S′) and avoidingBCr(SI ,S′);
save the automatic mapping of{Qorig,Qar P′} asMaut(SI ,S′)
Step3: successively reformulateQsr P to Qsr P′ through the set of mappingsM (S,S′)
between the schemasS,S′ of P,P′ respectively
Step4: - determine the set of elements that are not satisfied inQsr P′ ;
- produce the mappingMsr(SI ,S′) using theMapping Production Procedure corre-
sponding to{Qorig,Qsr P′};
- automatically rewrite the non-satisfied elements ofQsr P′ usingMsr(SI ,S′)∪M (SI ,S′)
as input mappings and avoidingBCr(SI ,S′);
- produce the augmentedQsra P′ , save the automatically produced mapping asMsra(SI ,S′):
- determine the set{Sl fsr P′ ,Cn fsr P′}, whereSl fsr P′ =

⋃
Slsr P′ .E j ,∀Slsr P′ .E j ∈Qsr P′

for which pres= f alse andCn fsr P′ =
⋃

Cnsr P′ .E j , ∀Cnsr P′ .E j ∈ Qsr P′ for which
st = f alse
- determine the set{Sltsr P′ ,Cntsr P′}, whereSltsr P′ = Slsr P′ −Sl fsr P′ andCntsr P′ =
Cnsr P′ −Cn fsr P′ ;
- produce the mappingMsr(SI ,S′) corresponding to{Qorig,Qsr P′};
- determine the set{Sl forig,Cn forig}, whereSl forig =

⋃
Slorig.E j for which the corre-

spondingSlsr P.E j ∈ Sl fsr P′ andCn forig =
⋃

Cnorig.E j for which the corresponding
Cnsr P.E j ∈Cn fsr P′ ;
- automatically rewriteSl forig to Sl fsra P′ andCn forig to Cn fsra P′ usingMsr(SI ,S′)∪
M (SI ,S′) as input mappings; produceQsra P′ = {Sltsr P′∪Sl fsra P′ ,Cntsr P′∪Cn fsra P′}
and save the automatic mapping of{Sl forig,Sl fsra P′}, {Cn forig,Cn fsra P′} in Msra(SI ,S′)
Step5: calculateMsim(Qorig,Qar P′), Msim(Qorig,Qsra P′); if Msim(Qorig,Qar P′) > Msim

(Qorig,Qsra P′), produceRes(Qar P′) and setM (SI ,S′) = M (SI ,S′)∪Maut(SI ,S′) else
produceRes(Qsra P′) and setM (SI ,S′) = M (SI ,S′)∪Msr(SI ,S′)∪Msra(SI ,S′)
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Step6: send toPI the packetAnsP′(Qorig,Qx,Res(Qx)), x = ar P′ or x = sra P′

Step7: receive fromPI the setSat(Qorig,Qx); for the not satisfied elements, i.e.sat(Ei ,E′
i )

6= /0, remove respective correspondences,Cr from mappings inM(SI ,S′), i.e.∀M(SI ,S′)=
{CrM,CondM} ∈ M (SI ,S′) such thatCr ∈ CrM, do CrM = CrM −Cr; and addCr to
BCr(SI ,S′)
Step8: merge contained mappings inM (SI ,S′) using theMapping Merging Proce-
dure}.

Mapping Production Procedure
Input: a pair of queries{Qorig,Qsr P′}, Qorig = {Sl,Cn}, Qsr P′ = {Sl′,Cn′}
Output: the mappingMsr(SI ,S′) = {CrM,CondM}.
Initialization:Msr(SI ,S′) = { /0, /0}
Step1: add toCrMsr new correspondences for pairs{Sl.Ei ,Sl′.E′

i }: for each pair of ele-
ments{Sl.Ei ,Sl′.E′

i } with Ei .pres= E′
i .pres= true, create correspondenceCr ≡Ei .A=

E′
i .A

′, and doCrMsr = CrMsr ∪Cr
Step2: update CrMsr, CondMsr for pairs {Cn.Ei ,
Cn′.E′

i }: for each pair of elements{Cn.Ei ,Cn′.E′
i } with Ei .pres= E′

i .pres= true:
- if Ei .C ≡ R.A = constandE′

i .C ≡ R′.A′ = constcreate correspondenceCr ≡ R.A =
R′.A′, and doCondMsr = CondMsr ∪Ei .C∪E′

i .C andCrMsr = CrMsr ∪R.A = R′.A′

- if Ei .C = (R1.A1 = R2.A2) andE′
i .C = (R′

1.A
′
1 = R′

2.A
′
2) create the correspondences

Cr = {R1.A1 = R′
1.A

′
1,R2.A2 = R′

2.A
′
2}, and doCondMsr = CondMsr ∪Ei .C∪E′

i .C and
CrMsr = CrMsr ∪Cr

Mapping Merging Procedure
Input: a set of mappingsM (SI ,S′) = {CrM,CondM}
Output: the altered setM (SI ,S′)
{for each pairM1(SI ,S′)= {CrM1,CondM1},M2(SI ,S′)= {CrM2,CondM2}∈M (SI ,S′)
do:
Step1: merge mappings withCrM1 ≡CrM2: if CrM1 ≡CrM2 andCondM1∩CondM2 6= /0,
mergeM1(SI ,S′) andM2(SI ,S′) by settingM1(SI ,S′) = {CrM1,Cond}, whereCond=
CondM1 if CondM1 ⊆ CondM2 or Cond= CondM2 elsewise; removeM2(SI ,S′) from
M (SI ,S′)
Step2: merge mappings withCondM1 ≡CondM2: if CondM1 ≡CondM2 mergeM1(SI ,S′)
andM2(SI ,S′) by settingM2(SI ,S′) = {Cr,CondM2} whereCr =CrM1∪CrM2; remove
M1(SI ,S′) from M (SI ,S′).}.

At step 3 of the query replier procedure, the peer augments the successively refor-
mulated query version using automatic rewriting. In order to do so, the concepts inQ′

sr
have to be translated into respective concepts inQorig, so that the mappingsM (SI ,S′)
can be used as input to the automatic matcher and new mappingscan be formed be-
tweenSI andS′. MappingsMsra andMaut are produced by the peer’s schema matching
tool. MappingsMsr are created by the mapping production procedure that produces one
mapping for each pair of input queries,Qorig, Qsr : essentially the queries form the
GLAV mappingQorig:-Qsr where only the present elements are involved.
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ExampleSuppose thatQorig is translated toQLuDB ideal with the obvious correspon-
dences. Then, we obtain the following GLAV mapping:
MiDavisDB LuDB:
VisitsDavisDB(Pid, , Did),DiseaseDavisDB(Did, , Ache), TreatmentDavisDB(Did, Drug,
):-DiseaseLuDB(Did, , Drug), PatientsLuDB(Insurance♯, Did, , Ache),{Pid = Insurance♯}

When the query replier gets the evaluation of the initiator, it refreshes the existing
mappings by removing bad correspondences. These ones are kept aside, inBCr(SI ,S′).

As a final step mappings are merged in order to avoid redundantmatching infor-
mation. Thus, mappings that are contained in others (with the classical meaning) are
eliminated.

Example Remember the mapping:
MStuartDB LuDB:
TreatmentStuartDB(Pid, , , Symptom, , ):- DiseaseLuDB(Did, AvgFever, ), PatientsLuDB

(Insurance♯, Did, , ), Age< 13,{Pid = Insurance♯,Symptom= AvgFever}

Suppose that StuartDB and LuDB create a new mapping, that is similar to the above,
but less restrictive:
M′

StuartDB LuDB:
TreatmentStuartDB(Pid, , , Symptom, , ):- DiseaseLuDB(Did, AvgFever, ), PatientsLuDB

(Insurance♯, Did, , ), {Pid = Insurance♯,Symptom= AvgFever}

Then, the merging ofMStuartDB LuDB, M′
StuartDB LuDB eliminates the first, since it is

contained in the second.
Also, mappings with the same constraints are summarized in one mapping with the

same constraints that contains all the respective correspondences. Again, suppose that
StuartDB and LuDB have the mappingMStuartDB LuDB and they create the mapping:
M′′

StuartDB LuDB:
TreatmentStuartDB( , , Symptom, , , ):- DiseaseLuDB(Did, AvgFever, ), PatientsLuDB( ,
Did, , ), Age< 13,{Symptom= AvgFever}

TheM′′
StuartDB LuDB is eliminated sinceMStuartDB LuDB contains the correspondence

Symptom = AvgFever of the first.

5.4 Clustering Example

To give an example of the clustering process we refer to the situation of the motivating
example in Section 1. Dr Davis poses the queryQorig which is successively rewritten
asQStuartDB sr on StuartDB and asQLu sr on LuDB. The successively rewritten version
QLuDB sr is augmented with the select attribute Disease.Drug using automatic matching.
Thus, the augmented successively rewritten query on LuDB isthe following:
QLuDB sra:

SELECT P.Insurance#, D.AvgFever, D.Drug
FROM Disease D, Patients P
WHERE D.Did = P.Did, P.Age < 13
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Also, the peer of Dr Lu uses automatic matching in order to rewrite from scratch the
original queryQorig. With automatic matching, the concept ‘Ache’ ofQorig is matched
to ‘Ache’ on LuDB rather than ‘AvgFever’ which was the choiceof successive rewriting.
However, automatic matching fails to discover that the concepts ‘Pid’ and ‘Insurance♯’
both refer to the patients’ unique id. The produced query is:
QLuDB ar:

SELECT D.Ache, D.Drug
FROM Disease D, Patients P
WHERE D.Did = P.Did

The Dr Lu peer calculates the value for the similarity function represented by equation
(6) without weights for the rewritten versions:
Msim(Qorig,QLuDB sra) = 1-(2+1)/7 = 4/7,
Msim(Qorig,QLuDB ar) = 1- 3/7 = 4/7
The original queryQorig has 5 ’select’ attributes and 2 conditions. Thus, there are 7
query elements to be rewritten.QLuDB sra 2 of the ’select’ attributes are not rewritten
and there is 1 additional condition. InQLuDB ar there are no additional conditions. Yet,
3 of the ’select’ attributes ofQorig are not rewritten. Note that the combination of the
join constraints ofQorig is rewritten to a single join inQLuDB sra and inQLuDB ar; thus,
all of them are satisfied.

The peer decides to answer theQLuDB sra version since it is considered safer than
QLuDB ar in terms of rewriting. Thus, it sends back to Dr Davis the answer packet:
AnsLuDB(Qorig,QLuDB sra,Res(QLuDB sra)),
The query initiator evaluates the received answer with the sameMsim function (for
simplicity we assume that the returned tuples are not taken into account). Thus, Dr
Davis decides that the correspondence ‘Ache’ = ‘AvgFever’ is not satisfying; how-
ever, the rest of the correspondences seem fine. Dr Davis stores the similarity value
Msim(Qorig,QLuDB sra) and replies to Dr Lu with the evaluation. Thus, the Dr Lu peer
creates the first possible mapping with the peer of Dr Davis:
MDavisDB LuDB:
VisitsDavisDB (Pid, , Did), DiseaseDavisDB (Did, , ), TreatmentDavisDB (Did, Drug, ):-
DiseaseLuDB(Did, , Drug),PatientsLuDB (Insurance♯, Did, , ), {Pid = Insurance♯}

Note that the mapping created on LuDB refers to the entire schema of the latter but
only to a portion of the schema encapsulated inQorig of the remote peer of Dr Davis.
Moreover, Dr Lu keeps ‘Ache’ = ‘AvgFever’ as a bad correspondence. Further on, let us
assume that Dr Lu receives again the sameQorig initiated by Dr Davis through the peer
of Dr Stuart. Again the successively rewritten version is the previousQLuDB sr. This
time Dr Lu knows that ‘Ache’ is badly matched with ‘AvgFever’and thus removes this
correspondence fromQLuDB sr. It concludes with the following augmented successively
rewritten version:
Q′

LuDB sra:

SELECT P.Insurance#, D.Ache, D.Drug
FROM Disease D, Patients P
WHERE D.Did = P.Did, P.Age < 13
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Using the new mapping, the peer of Dr Lu rewritesQorig automatically as:
Q′

LuDB ar:

SELECT P.Insurance#, D.Ache, D.Drug
FROM Disease D, Patients P
WHERE D.Did = P.Did

Note thatQ′
LuDB ar is the queryQLuDB ideal described in Section 1 as the ideal translation

of Qorig on LuDB. The peer of Dr Lu calculates the value for the similarity function
(equation (6)) for the rewritten versions:
Msim(Qorig,Q′

LuDB sra) = 4/7,Msim(Qorig,Q′
LuDB ar) = 5/7

Dr Lu decides to answer the automatically rewritten version. Thus, it sends back to Dr
Davis the answer packet:
AnsLuDB(Qorig,Q′

LuDB ar,Res(Q′
LuDB ar)). Dr Davis replies to Dr Lu that all matchings

in the rewritten query are satisfying; Dr Davis decides thatthe average value ofMsim of
the answers by Dr Lu is enough for asking him to become his acquaintee. Dr Lu forms
the mappingM′

DavisDB LuDB of Section 1. The mapping merging procedure eliminates
MDavisDB LuDB sinceM′

DavisDB LuDB contains all the correspondences of the first and the
two mappings have the same constraints. The two peers already have a mapping to start
their acquaintance,M′

DavisDB LuDB.

5.5 Discussion on otherGrouPeer Issues

In this section we discuss some details about the networkingcharacteristics ofGrouPeer.
Furthermore, we discuss the usage of automatic schema matching in GrouPeerand the
feasiblity of our approach.

GrouPeer Protocol Internals In the following we describe basic algorithm internals,
specifically the query routing scheme and the addition/deletion of acquaintances.

1) Routing:Our method utilizes informed walks with a TTL parameter in order to
propagate queries to nodes in the overlay. The requester deploys k walkers, each fol-
lowing independent paths. A node forwards a query to the neighbor(s) whose schemas
have the highest similarity value w.r.t. this query.

2) Adding/dropping acquaintees:We augment our clustering algorithm by allowing
the dropping of existing neighbors in order to gradually improve on the random initial
setup: New acquaintees are added whenever the local evaluation average is overθPI and
existing ones are dropped when its value is belowθPI Low, provided we have received
at leastTHR replies from that node. This confidence parameter is important to ensure
that the local evaluation is based on an adequate number of queries. We also define a
maximum number of connections per peer, MAXDEGREE, which forces a neighbor
addition to be preceded by the dropping of the neighbor with the smallest schema sim-
ilarity if this limit is reached. A link is dropped whenever the local evaluation average
is belowθPI Low, provided the degrees of both nodes are at least MINDEGREE. This
ensures that peers do not get disconnected from the network.
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Automatic Schema Matching Schema matching is a fundamental issue in the database
field, from database integration and warehousing to the newly proposed P2P data man-
agement systems. As discussed in [36], most approaches to this problem are semi-
automatic, in that they assume human tuning of parameters and final refinement of
the results. This is also the case in some recent P2P data management approaches
(e.g., [33]).

However, in our context, schema matching assists query reformulation and its per-
formance is boosted with increasing input mappings. Thus, it is feasible to use a tool
that produces schema matches without human interference. Specifically, well-known
matchers such as [10, 26, 34] and [9] benefit substantially from existing mappings and
correspondences and are able to produce good matchings based on the first. In our case,
successively rewritten query elements as well as mappings produced with earlier feed-
back from the query initiator can provide enough aid to the schema matching tool, so
that it can discover further matchings. In addition, the fact that we limit our study to
simple SPJ queries that do not require complicated rewritings, makes the problem eas-
ier to solve, (clearly, considering more complicated queries may even make the use of
schema matching tools impossible). In general, our method does not expect automatic
schema matching tools to discover more sophisticated relations other than simple cor-
respondences.

Furthermore and in our context, automatic matchers are alsoused to rewrite queries
from scratch, without any input mappings. In this case, we exploit the inherent capa-
bility of matchers to discover correspondences between closely semantically related
words based on their internal general dictionaries. Accordingly, the role of matchers is
to reveal a possible close semantic (and even structural) relation of the two schemas.
For example, assume that two remote peers have almost the same schema. Then, an
automatic matcher could certainly find out their schema similarity. Similarity between
source and target schemas is observed in domain-specific applications. The reason is
that: a) they store the same kind of data, b) there are specificpolicies for designing
databases of specific domains and c) there are popular database products used in vari-
ous fields. In our example, private doctors in general and specialty doctors in particular
have to store the same kind of information, which is not of a wide variety: i.e., they
care about listing their patients, their medical histories, their patients’ visits, their own
diagnosis and their own prescriptions for their patients. Moreover, it could be the case
that some of these specialists use the same commercial tool to store their information.
Obviously, for peer-databases with so similar schemas suchas DavisDB and StuartDB,
query rewriting can be done easily, even with speculations of the schema mapping.

6 Performance Evaluation

To evaluate the performance ofGrouPeer, we use a message-level simulator written in
C. By default, we randomly choose 100 nodes that play the roleof the requesters, each
making 100 queries to the system. We present results for 1,000-node random graphs
(an adequate number of participants regarding our motivating application) with aver-
age node degrees around 4, created by theBRITE[27] topology generator. Results are
averaged over 20 graphs of the same type and size, with 100 runs in each.
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For the schemas stored at each node, we use two initial relational schemas, whose
tables and attributes are uniformly distributed at nodes. The initial schema comprises 5
tables and 33 attributes. Seven attributes are keys with a total of 11 mappings (corre-
spondences) between them. Each peer stores 10 random table columns (attributes) on
average. Queries are generated randomly on the schema of each requester. They are
formed on a single or multiple tables if applicable (join queries) by randomly select-
ing. Thus, peer similarity and schema/query similarity is not controlled. The kind of the
initial schemas or the kind of queries that are used do not influence the experimental
results. The latter can be influenced by parameters that affect the initial similarity of
peer schemas and queries, i.e. the size of the initial schemas, the size of peer schemas
and the size of the queries. We experimented with larger schemas (90 attributes over
12 tables) and a flat 100-attribute single table (no mappingsbetween attributes). Be-
cause the creation of the individual schemas is computer-generated, an increase in the
schema reduces the amount of the default similarity betweennodes (unless more at-
tributes are distributed per node). Nevertheless, the important observation is that, in all
cases,GrouPeermaintains its relative advantages and behaves in a similar fashion.

Our basic performance metrics are the average similarity oraccuracyof answers
to the original queries (i.e., the structural similarity ofthe answered query over the
original one evaluated at the requester), as well as the number of nodes that provide an
answer. The accuracy is confined to the structural similarity since it aims at studying
the effectiveness of theGrouPeerclustering process without human intervention.

Clustering Results For the automatic rewriting of the original query, we simulate the
possible erroneous outcome by altering the “perfect” rewriting by 50%. This is then
gradually ameliorated through our learning process. We setthe maximum number of
allowed hops per query TTL=6, the number of deployed walkersk = 3, as well as
θPI = 0.7 andθPI Low = 0.3 using a threshold parameter ofTHR=5 replies. Acquaintees
can be dropped for nodes who have more than two neighbors. Finally, we assume that
the returned tuples do not play any role to the answer evaluation.

In this study we present experiments that focus on parameters that can affect the
relative clustering in a non-predictable way. These are: the number of queries per re-
quester, the size of the queries, the number of requesters. Additionally, we check the
clustering performance for queries that contain constraints (joins).

Figure 5(a) shows the performance of our algorithm by varying the number of
queries posed by each of the 100 randomly selected requesters. Our method manages
to return far more accurate results, achieving a similarityof around 85% in the steady
state. The accuracy increases fast as more queries are created, since new acquaintees
are added and neighbors with no contribution are dropped. Wealso present in more
detail the experimental results forGrouPeerby analysing them in the respective val-
ues for answering the automatically rewritten (Qar

16) and the augmented rewritten
versions of (Qsra) the query. Both the automatically and the augmented consecutive

16 Actually, since we do not assume the existence of an automatic matcher in thesimulation
other than the straightforward one that can produce id correspondences, theQar is reduced to
the original query. Thus, the experimental results show that even for the worst situations of
automatic matching, the clustering procedure performs very well.
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rewritten queries are answered with more precision. Our method’s learning feature al-
lows the automatic rewriting of the original query to improve over time as mappings
are built between requester-replier pairs. Our clusteringmechanism helps into bring-
ing more information-rich nodes closer to requesters whichalso increases the accuracy
of the consecutive rewritings. Our scheme is compared against Naive, which uses the
same forwarding scheme as our method but answers only the successively rewritten
query version. Our method can never fall belowNaive’s performance but steadily per-
forms better with more queries. Moreover, note that for 1 query per requester (thus, for
an overlay on which no clustering is performed), answering the augmented consecu-
tively rewritten version is still better than answering theplain consecutively rewritten
version (Naive). Also, answering the original query, without classicallyrewriting it,
gives low quality results without clustering the overlay. Finally, our scheme is almost
as bandwidth-efficient asNaive, since the few additional messages reported are due to
the communication between sources and requesters during the learning mechanism, as
well as the message exchange when a new acquaintance is made.
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Table 1.Performance varying the number of query attributes

Similarity Clustering
attr = 2,queries= 100 0.87 80.2%
attr = 2,queries= 500 0.89 82.1%
attr = 4,queries= 100 0.80 86.1%
attr = 4,queries= 500 0.84 88.4%
attr = 6,queries= 100 0.71 83.0%
attr = 6,queries= 500 0.76 84.5%
attr = 8,queries= 100 0.67 80.0%
attr = 8,queries= 500 0.71 81.0%

Next, we monitorGrouPeer’s performance by specifically tracking join queries in
the same setting as the previous experiment. Figure 5(b) shows the results for our
method and two different versions ofNaive: The regular one we described before
(which allows the rewriting of a join query even if the join isnot mapped – likeGrouPeer)
and one that returns an empty query if the join(s) are not preserved. As before, we notice
that GrouPeerperforms at least as good as the original naive method and quickly in-
creases in accurate answers as more queries are generated. The more strict naive method
returns more similar results for few queries compared to ourscheme. This happens as
this method favors a complete (and thus more accurate) rewriting. Nevertheless, this
comes at a cost of retrieving an answer from about 1/3 of the peers thatGrouPeergets
answers from.

We also examine the quality of the clustering process as a means of locating nodes
with similar schemas. For each requester, we measure the average similarity with its
acquaintees at the end of the querying process and compare itwith the best possible
scenario: Having all top-m nodes in the overlay with schemas most similar to the ini-
tiator being its acquaintees, wherem is equal to the total number of acquaintees this
node has at the end of the querying process. We report the ratio of the actual average
similarity to this optimal value in Figure 5(c).

Our methodology achieves clustering that is very close to the best achievable value
in the steady state, while its quality quickly reaches that level. As more nodes become
active, the process improves, since inGrouPeernodes can take advantage of their neigh-
bors’ knowledge/connectivity. The ideal restructuring ishard to be achieved because of
the random initial connectivity: The most similar nodes maynot all receive queries and
thus are not considered by the clustering process. Specifically, nodes may either be out-
side the query range or be left out of walkers’ paths. By having more active nodes, our
method effectively reduces the influence of the latter, since query initiators get replies
by better nodes, taking advantage of other requesters’ clustering. Figure 5(c) shows that
in the steady state and with 10, 100 and 500 requesters,GrouPeerachieves 77%, 88%
and 91% of the optimal clustering respectively. We can identify 88% of the optimal
nodes in the entire network by having only 10% active nodes and each of them con-
tacting at mostk×TTL = 18 nodes per query (this amounts to less than 2% of the
peers).
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Table 1 summarizes the performance ofGrouPeerwith a different number of query
attributes (each requester making 100 or 500 queries). As the number or attributes per
query increases, the accuracy of the answers slightly drops, since a smaller percentage
of attributes has the chance to be satisfied. Note that the quality of the clustering in-
creases up to a point, after which it starts to slightly decrease. This is due to the fact that
there are two competing factors that affect the clustering process: The more attributes in
a query, the more precise the clustering process becomes, since the initiator learns more
information for its schema as a whole; the query similarity (which affects clustering
through theEv function), on the other hand, decreases with the number of attributes.

We tested our method in graphs of different sizes (from 100 to4K nodes) and dif-
ferent connectivities (power-law). Results of these runs are qualitatively similar to the
presented ones.

7 Related Work
The Chatty Web [1] considers P2P systems that share semi-structured or structured in-
formation. The authors are concerned about the gradual degradation, in terms of syntax
and semantics, of a query that is propagated along a network path. However, the Chatty
Web approach considers peers that own very simple relational schemas and GAV map-
pings with their acquaintees. Instead, we are interested inmore complex peer schemas
and we consider GAV, LAV or GLAV mappings.

In [42], the authors propose optimization techniques for query reformulation in P2P
data management systems. They focus on minimizing the rewriting of a query and
pruning the respective propagation path in order to avoid redundant reformulations.
Additionally, it is indicated that pre-computation of the query reformulation path-tree
proves to accelerate the reformulation procedure despite the disadvantage of the neces-
sary maintenance of pre-computed mappings. Our approach isspecifically designed for
large-scale unstructured overlays. First, it evades reformulation at peers poor in query-
relevant information by adaptively choosing the version ofthe query to be answered.
Moreover, while the work in [42] requires central knowledgeof the system structure,
our scheme enables nodes to operate in a completely decentralized fashion, utilizing the
standard lookup operations to refine their local knowledge.

PeerDB [33] facilitates relational data sharing without any schema knowledge. Query
matching and rewriting is based on keywords (provided by theusers). A two-step pro-
cess is described: First all nodes within a TTL radius are contacted, returning prospec-
tive answer meta-data. Then the user selects the ones that are relevant to the local query
and the requester directly contacts the selected sources and asks for the results to the var-
ious rewritten versions of the query. Instead, our approachemploys an automated tech-
nique based on a combination of successive query rewriting and query-schema match-
ing, while it utilizes bandwidth-efficient walks instead ofthe costly flooding scheme.

The works in [18] and [21] deal with data exchange between peers. Ref. [18] presents
a significant approach to the heterogeneity issue in P2P datamanagement and proposes
a language for schema mediation between peers. Also, the authors present an algorithm
for query reformulation based on local-as-view as well as global-as-view query an-
swering. In [21], the authors describe mechanisms for the declaration of data exchange
policies on-the-fly based on ECA rules. They also propose a general architecture for
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peer-databases and elaborate on the establishment and abolishment of acquaintances
between peers.

Beyond the above significant works, there are plenty that have talked about seman-
tics and semantic clustering of peers. The work in [8] is one of the first to consider
semantics in P2P systems and suggest the construction of semantic overlay networks,
i.e. SONs. Later on, other researchers have attempted to go beyond the a priori static for-
mulation of SONs: the work in [39] suggests the dynamic construction of the interest-
based shortcuts in order for peers to route queries to nodes that are likely more capable
of answering them. Inspired by [39], the authors in [44] but also in [19] exploit implicit
approaches for discovering semantic proximity based on thehistory of query answering
and the least recently used nodes. In the same spirit the workin [12] presents prelimi-
nary results about the clustering of the workload on the realpopular systems e-Donkey
and Kazaa.

Some of the well-known projects that have dealt with the dataheterogeneity prob-
lem in P2P systems are [2, 16, 32, 41]. Edutella [32] is a schema-based network that
holds RDF data. Peers have services (e.g. quering, mapping,mediating etc) that they
share with other peers. Peers can formulate complex queriesthat are translated in wrap-
pers to queries on the Edutella Common Data Model. Peers register their services and
the kinds of queries they can answer to mediators. The lattter route the incoming queries
to peers that are probably able to answer them. Edutella is aninteresting effort towards
the solution of the heterogeneity problem both of data and services. However, it is not
focused on semantic clustering of peers and does not proposesophisticated methods for
distributing queries to semantically relevant peers.

GridVine [2] is another project worth of attention. Based ona structured (i.e. imple-
menting a DHT algorithm) P2P overlay network, P-Grid, GridVine achieves the man-
agement and mapping of complex data and schemas of meta-data. Specifically, RDF
data and schemas are hashed and indexed in peers. P-Grid peers refer to a common un-
derlying tree structure of characters. Each peer is associated with a tree leaf, and thus,
with a string. GridVine allows schema inheritance and the creation and index of transla-
tion links that map pairs of schemas. Peers query RDF triples. Using the mapping links,
queries are iteretively or recursively forwarded to peers that can answer them. Although
GridVine is an interesting approach and offers many features related to semantics, the
efficiency of the search algorithm is based on the underlyingDHT, thus the structured
form of the overlay, and not to semantic clustering of peers.

Similarly, pSearch [41] is a project that employs a DHT algorithm to build a solution
to the problem of data semantic diversity in peers. Specifically, pSearch creates a se-
mantic overlay by mapping overlay nodes to physical nodes ina CAN [38]. Documents
as well as queries of peers are represented as semantic vectors. These are the keys to
store, index or search the documents in CAN. The Vector SpaceModel (VSM) and the
Latent Semantic Indexing (LSI) are used to create the semantic vectors. As GridVine,
pSearch bases search efficiency on the structured form of theoverlay, and, thus, does
not solve the semantic diversity problem in an unstructuredP2P system. Another disad-
vantage is that documents of newly-joined peers, with termsthat are not encapsulated
in the existing vector, cannot be indexed by them.
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Finally, Bibster [16] is a project that exploits ontologiesin order to enable P2P shar-
ing of bibliographic data. Ontologies are used for importing data, formulating and rout-
ing queries and processing answers. Peers advertise their expertise and learn through
ontologies about peers with similar data and interests.

Beyond semantic clustering, the work in [37] looks into the problem of discovering
connectivity clusters of nodes in P2P networks, detecting the transmission of the same
query multiple times at the same node.

8 Summary

In this paper we describedGrouPeer, a methodology to solve the query degradation
problem in P2P data management systems in the absence of global schema information.
The key characteristic of our method is to allow peers to select the appropriate rewritten
version of the query to answer. Incorporating efficient feedback between query initiators
and content providers, we achieve the discovery of remote peers on query propagation
paths that are rich in interesting information but veiled bypoor path predecessors.

In effect, with the described procedure we manage to surpassthe boundaries of
successive query rewriting and reach hidden peers pertinent in requested information.
Moreover, we have achieved the gradual training of remote peers in order to ameliorate
query rewriting and give more accurate answers. Beyond this, peers develop candidate
mappings with remote peers using their feedback about the quality of query answers.
These mappings facilitate the possible acquaintance procedure between the respective
peers. Nevertheless, all these benefits have been achieved through the sole exploitation
of queries posed in the system. Without any additional processes or metadata, peers are
enabled to discover remote peers with interesting information.

During this work, we also discussed and proposed techniquesto tackle the impor-
tant issues of query rewriting and query similarity in the context of unstructured P2P
database systems.

InGrouPeer‘active’ peers, in terms of the number of initiated queries and the num-
ber of answered ones, are compensated more with informationabout remote peers, than
inactive ones. Consequently, the P2P overlay is progressively clustered in groups of
peers with similar interests.

Experimental results show thatGrouPeernodes quickly identify the vast major-
ity of best available peers by contacting only a very small number of peers per query.
The clustering process effectively increases the quality of the returned results. Actually,
clustering according to interests of peers benefits the successively query rewriting pro-
cedure, since peers on query paths are steadily ordered according to schema similarity.
In addition, successively rewritten queries have the chance to travel longer paths before
being totally degraded due to poor peer mappings. The outcome is better quality of peer
query answers.

Currently, we extendGrouPeerwith a ’grouping’ technique that can follow the
clustering process. Actually, the grouping process intends to create explicit groups from
implicit clusters of peers. Specifically, the grouping process will create a schema that
is representative of the interests of the peers that belong to each cluster. The groups
(and therefore the group schemas) can be used in order to ameliorate even more the



XLIII

the quality of query answering but also facilitate the join of new peers in the groups
according to their interests.

In the near future we intend to implementGrouPeeras a real system and experiment
with the clustering technique as well as with the query similarity and reformulation
approaches on real data and situations.

Finally, in the future we intend to applyGrouPeerto P2P overlays that handle data
other than relational. We will focus on data that conform to models with more expres-
sive power, such as the ’Resource Description Framework’ (i.e.RDF). We presume that
the potential of theGrouPeerapproach will become more apparent for data with rich
semantics.
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