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Abstract. Sharing structured data in a P2P network is a challenging problem, es-
pecially in the absence of a mediated schema. The standard practicaefrany

a consecutively rewritten query along the propagation path often ressigmirf-
icant loss of information. On the opposite, the use of mediated schensisa®
human interaction and global agreement, both during creation and nmeaiicen

In this paper we prese@rouPeer an adaptive, automated approach to both is-
sues in the context of unstructured P2P database overlays. By alloegng
individually choose which rewritten version of a query to answer antliat@the
received answers, information-rich sources left hidden otherwesdiacovered.
Gradually, the overlay is restructured as semantically similar peers aterdd
together. Experimental results show that our technique producesavewyate
answers and builds clusters that are very close to the optimal ones tactog

a very small number of nodes in the overlay.

1 Introduction

Inthe last few years, there has been a growing interest iRelee-to-Peer (P2P) paradigm,
primarily boosted by popular applications that enable imastata sharing among mil-
lions of users. The P2P paradigm dictates a fully distrihut@operative network de-
sign, where nodes collectively form a system without anyesugion. Many popular
P2P applications operate on unstructured networks, wighsgeining and leaving the
system in an ad-hoc fashion, while maintaining only localwledge. While structured
overlays (e.g., [40]) provide efficient lookup operatioimsmany realistic scenarios the
topology cannot be controlled and thus they cannot be usgd @ynamic ad-hoc net-
works or existing large-scale unstructured overlays).

In contrast to data integration architectures, P2P daterghaystems do not as-
sume a mediated schema to which all sources of the systertdstamform in order to
share data. In such a system, where peers share (semiustdidata, each is an au-
tonomous source that has a local schema. Sources store agenheir data locally,
revealing only part of their schemas to the rest of the p&aus.to the lack of global
schema, they express and answer queries based on theistbeaha. In a P2P data
management system, peers also perform local coordinatithntieeir acquaintees, i.e.
their one-hop neighbors in the overlay. Thus, both data gemant and coordination
are performed in a totally decentralized manner. Duringabguaintance procedure,
the two peers exchange information about part of their lechéma and create a medi-
ating mapping semi-automatically [21]. The establishntdran acquaintance implies



an agreement for the performance of data coordination legtee acquaintees based
on the respective schema mapping. However, peers do notthvaemform to data or
schema transformation in order to establish acquaintamiteother peers and partici-
pate in the system.

In large-scale unstructured P2P systems as described,gbmieg peers usually
become acquainted to the first randomly available nodesairtd the most useful ones,
i.e., the peers that best meet their need for informatioerdfore, they have to direct
queries not only to their neighbors, but to a greater parhefdystem. Furthermore,
the lack of global knowledge deprives peers from the abibtylirect their queries to
appropriate remote nodes. One can roughly identify two comapproaches to this
problem. A possible solution is to propagate queries ongetivounded length in the
overlay. At each routing step, the query is rewritten to ttfeesna of its new host based
on the respective acquaintance mappings. A query may hake tewritten several
times from peer to peer till it reaches nodes that are abledwer it sufficiently in terms
of quality, but also quantity, of the result. It is obviousttihe successive rewritings
decrease or restrict the information that can be returnedduery and, thus, also reduce
the possibility of accurate query answering. Moreoves thie case that peers may not
be able to sufficiently answer received queries, not bectieselocal schema does not
match the initial query adequately, but because the incgmawritten version has been
gradually reduced or corrupted. Therefore, the performarfcthe query processing
procedure is degraded during the rewritings on intermedgiaers.

In the second approach, nodes are organized by means of anfguiteed process
(usually by one or more administrators and application espénto groups of peers
that store semantically related data. The administraginguschema matching tools
as well as domain knowledge, creates a mediated schemaeapatve of the group
and mappings with the local databases. Queries are theessqgat on this mediated
schema. Obviously, this approach requires manual worlegnsite peer coordination
and repetition of this process each time the group changes.

Motivating Example

Envision a P2P system where the participating peers arbalsea of private doc-
tors of various specialties, diagnostic laboratories aatdlihses of hospitals. Figure 1
depicts a small part of this system, where nodes are: Davisbig@ database of the
private doctor Dr. Davis, LUDB - the database of pediatrida Lu and StuartDB - the
database of the pharmacist, Mr Stuart. On top of each daatigsa P2P layer, which
is responsible for all data exchange of this peer with itsiaggees. Among others, the
P2P layer is responsible for the creation and maintenanecappings of local schemas
during the establishment of acquaintances along the lihgslh Moreover, each peer
owns a query rewriting and a query-schema matching meahaiiise schemas of the
databases are shown in Figure 1.

Suppose that Dr Davis would like to collect from the systemegal information
about patients that have had diseases. He expresses thvérfigliquery on his database:

Qorig:

SELECT V.Pid, D. D sDescr, D.Ache,
T. Drug, T.Dosol ogy



DavisDB :

Visits(Pid, Date, Did) LuDB:
Disease (Did, DisDescr, Ache) P2P Layer) Disease(Did, AvgFever, Drug)
Treatment (Did, Drug, Dosology) v Patients(Insurance#, Did. Age Ache)

P2P Layer

StuartDB

DavisDB - M
- StuartDB : -
Treatment(Pid, Did, Date Symptom,

TreatDescr, DisDescr)

Fig. 1. Part of a P2P system with peer-databases from the healttoemént

FROM Di sease D, Treatnent T, Visits V
WHERE V.Did = D.DId ANDD.Did = T.D d

Having only one acquaintance, the pharmacist's databas@dvis’s database prop-
agatesQorig to it. We assume GAV, LAV, or GLAV (i.e. Global, Local, Globahd
Local As View) mappings between acquaintees [23]. Note timratdirectionality’ of
the mapping from one peer to another characterizes the sapgimg as GAV or LAV.
The directionality of a mapping is decided with respect te direction of the query
rewriting between two peers. Thus, a mapping between pgaeasnd P, can be used
for LAV rewriting (thus, a LAV mapping) fronP; to P, and, also, it can be used for
GAV rewriting (thus, a GAV mapping) fron®, to P;. We assume the following LAV
mapping between DavisDB and StuartDB databases:

MstuartDB DavisDB:

Treatmengiyaripe(Pid, -, ., Symptom, TreatDescr, DisDescr):-Visitsisps(Pid, _, Did),
Diseas@avispe(Did, DisDescr, Ache), Treatmasd,isps(Did, Drug, ), {Symptom=
Ache TreatDescr= Drug}

where the correspondences Symptom = Ache, TreatDescr =thatigre implied are
added in a set at the end of the mappmghus, the rewritten query on StuartDB is the
following:

QstuartbBsr:

SELECT T.Pid, T.D sDescr, T.Synptom T.TreatDescr
FROM Treatnment T

Obviously the new query has lost the attributes referringnformation about drug
dosology, since it cannot be mapped in StuartDB. The node roStdart passes the
rewritten versiorQstuartpr sr to Dr Lu with whom he has the following GAV mapping:
Mstuartbg LuDB:

3 The mapping is actually a view defined on StuartDB.Treatment, which is exielih a join
on DavisDB relations such as:
Viewl(Pid, Symptom, TreatDescr, DisDescr):-Treatment(Pid,Did, C8yenptom, TreatDe-
scr, DisDescr)
Viewl1(Pid, Ache, Drug, DisDescr):- Visits(Pid, Date, Did),Disease(MdsDescr, Ache),
Treatment(Did, Drug, Dosology)
Due to lack of space we summarize mappings by omitting view definitions &mdluting '
for attributes that are not needed.
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Treatmengiyaripe(Pid, _, -, Symptom,, .):- Diseasgeypgs(Did, AvgFever, ), Patients,ps
(Insurancg, Did, _, ), Age < 13, {Pid = Insurancg, Symptom= AvgFevet

where correspondences Pid = Insurgn&mptom = AvgFever that are implied are
added in a set at the end of the mapping. Thus, the rewrittenycan LuDB is the
following:

QLupB._sr:

SELECT P.Insurance#, D.AvgFever
FROM Di sease D, Patients P
WHERE D.Did = P.Did, P.Age < 13

Obviously the new query has lost more attributes, whichrref¢he description of the
disease and the respective drug. Moreover, the new quergiis rastrictive than the
original, since it has an additional condition on ‘Age’. &lly, it is clear that the ‘Ache’
attribute of the original query has been poorly rewrittetAi@Fever’, even though the
schema of LUDB contains an attribute that represents thet saene concept. Yet, if Dr
Davis were acquainted with Dr Lu, among the supported maspiould be:

Mbayispa LuDg'

Visitspavisps(Pid, _, Did), Diseasgavisps (Did, _, Ache), Treatmemtyisps (Did, Drug,
_):-Disease,pg(Did, -, Drug), Patientg,pg(Insurance, Did, _, Ache),{Pid = Insurancé}

Using the above mapping, Dr Davis would ideally like his quierbe translated as fol-
lows:

QLuDB_ideal:

SELECT P.Insurance#, D.Ache, D.Drug
FROM Di sease D, Patients P
VWHERE D.Did = P.Dd

Apparently, the above rewritten version overcomes theatkgion of successive rewrit-
ing in terms of query information loss and further queryniesbn, as well as the poor
matching of the ‘Ache’ attribute.

In the proposed frameworksfouPee}, DavisDB can evaluate Dr Lu’s query trans-
lations (e.g., suggest that ‘Ache’="AvgFever’ is not a geadrespondence and ‘Pid’=‘In-
surance’ is a good one) and enable him to gradually improseythality of its query
rewriting. Through mutual iterative evaluations Dr Davistines the average answer
quality from Dr Lu is high enough to add him as an acquaintée fivo nodes cre-
ate complete mappings between their schemas, a tastetbaPeergreatly facilitates
by building on mappings formed during remote query procgssThe details on this
example are in Section 3.5.

Our Proposal: GrouPeer

The above example points out one of the major problems inructsted P2P
database systems: peers may not be able to obtain requafstedation or learn about
peers with similar interests because of insufficient scheimdarity between acquain-
tees. Semantic grouping that would assist in this task regunanual coordination
at each group creation/maintenance event. In this work geride GrouPeer a sys-
tem designed to enable accurate query evaluation throughrg& overlay clustering
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and automatic creation and maintenance of semantic grougational P2P databas-
es without prior schema or meta-schema informationGmuPeer nodes individu-
ally decide whether to answer the successively rewritt@amgar automatically rewrite
its original version. Requesters evaluate the repliesgalith the returned rewritings
and gradually build mappings with remote peers. Eventuplers with similar local
schemas become acquainted and clusters are created aaiivedpaers. Our paper
makes the following contributions:

— Adapts classical query rewriting to the needs of P2P dagsbasd combines it suc-
cessfully with automatic schema matching.

— Investigates the notion of semantic query similarity in¢batext of the P2P paradigm
and proposes directions for its quantification.

— Presents a complete methodology for discovering simil@rgé an unstructured
overlay and gradually clustering them by utilizing leagithrough regularly posed
query traffic.

— Exploits the results of learning so that mappings betwesrote peers are gradually
built on their specific common interests; this facilitathe ficquaintance procedure
that is usually performed through human interaction.

Our experimental section shows how clustering efficientigrganizes any given
overlay so that peers can direct queries to relevant nodgsnanease answer accu-
racy. We then show how grouping can be applied to increadethetaccuracy and the
number of received replies.

The rest of the paper is organized as follows: Section 2 disesiaspects of the
proposed clustering technique. In Section 3 we discusscespéquery similarity and
in Section 4 we analyse the query reformulation procedureSdction 5 we present
formally the clustering process. Section 6 shows experiatgrsults and Section 7
presents related work. Finally, Section 8 summarizes oukwo

2 Discovering Remote Interesting Peers

As our motivating example demonstrated, the querying ne@dedmed to ignorance of
the information-rich peers because of enforced reforranaif queries on each node of
the propagation path. But what if these nodes had the charree¢ive and answer the
originally posed query? Then, the inquiring node would piai (a) get better answers
to its query, (b) have the chance to learn about peers withagimformation, (c) get
acquainted with them and get even better query answers.

In GrouPeer we propose a procedure that supports the evasion of siwxessrit-
ings on every peer of a query’s propagation path, insteadafietimes hopelessly,
refining query reformulation. This methodology enablesrpée discover others with
similar interests and schemas, that cannot be trackedvatieerPairs of remote peers
that exchange queries and answers learn gradually abosithieena of the other party.
Learning is performed through making queries and evalgatieir answers, and is
formed in mappings between the schemas of the two peerse Thagpings encapsu-
late the common interest of the two peers, since they reférewital schema parts on
which they express and answer queries. If the peers decliBrtume acquainted, these
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Fig. 2. Propagation of a quet@orig posed on ped?l along a path af acquainted peers.
Each peer receives a pair of queries: onQdgy itself and the other is the version of
Qorig that is successively rewritten through the chain of mapgping

mappings are already a language for their communicationadladiate the adminis-
trator’s load for creation of mappings for the new acquaioga Overall, the proposed
methodology leads to the gradual clustering of the P2P systgroups with common
interests. Thus, we refer to it as the ‘clustering process’.

In the following, we present a brief overview of the clusteriprocess in order to
give the reader a flavor of what's coming next. Moreover, wantdy interesting sub-
problems that we solve while developing the peer clustemeghod. Specifically, we
make necessary clarifications about the role of query raftation and query similarity
in our approach.

2.1 Overview of the Clustering Process

In order to achieve the discovery of remote relevant peleskey idea of our method is
to propagate along the query path not only the successigelsitten version, but also
the original one. In this way, the peers receiving this péigwery versions can indi-
vidually decide which one to answer. Peers are assumed tquipped with a query
rewriting mechanism and an automatic schema-matching Tda rewriting mecha-
nism is used in order to rewrite queries expressed on schefmasquaintees based
on the respective mappings. The automatic schema-mattbahgs used in order to
comprehend and translate queries or part of queries exqutess schemas for which
mappings are not available.

Successive query reformulation produces query versiatsigviate from the orig-
inal query. Obviously, if the chain of peer mappings usedtffier rewriting is poor in
information relevant to the query (i.e. query parts canmotdformulated accurately),
this can result in fast degradation within a few hops. Quenggthat cannot be trans-
lated through existing mappings are eliminated in the rsriversion. Even if the
following nodes on the query path encapsulate the elimihedacepts in their schemas,
they still cannot contribute them to the original query,dngxe the version they receive
does not include them. Our goal is to keep the eliminated eptscaside and try to
match them in follow-up schemas.

Overall, an initiated querQorig is propagated in the query path. On each node, the
query is rewritten through mappings with the previous n@d@s, which is augmented
with automatically rewritten query parts @xra. Also, Qorig is automatically rewritten
from scratch toQar. The answering node compares the two rewritten versions wit
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Fig. 3. Representation of the query answering procedure on a peer.

the original one, using a special similarity function, (&extion 3), and answers the
version it deems most similar to it. Figure 2 shows a propagaiath of a query and
Figure 3 summarizes the main part of the query answeringepige on a peer. The
query initiator evaluates the satisfiability of the recdiamswer and sends its feedback
to the answering peer about the answered query version.réiogpto the evaluation,
the query replier keeps record of bad and good rewritingshefinitiator's schema
elements. Gradually, the query replier builds mappingé wie initiator through the
queries it receives and answers on its behalf. Moreovemttiator logs the evaluation
of query answers from each replier. Based on this, the foitiean decide that it has
common interests with a remote peer and ask to become itaistge. After that, new
acquaintees can base their communication on already dregtppings.

2.2 Query Similarity and Query Reformulation

We are interested in data exchange issues in pure (i.e.utisiper-nodes) P2P database
systems. We consider peers that each one of them owns @nalapeer schema (i.e.,
the only internal mappings are foreign key constraints) itthoroughly exports to its
immediate neighbors, hereaf@rquainteesEach pair of acquaintees holds peer map-
pings between their schemas. Peer mappings are considebeddf the well-known
GAV-LAV-GLAV (i.e. Global, Local, Global and Local As Viewjorm (we limit our
study to mappings that can be expressed as SPJ querieske,téepeer mapping is a
view with the head of it belonging to the global schema andbitdy to the local one
(GAV) or the opposite (LAV). For clarity reasons, we remiatin GAV/LAV defini-
tions for the P2P setting, the global schema is the schente g@iger on which the query
is initially posed and the local schema is the schema of te@ewhich it is rewritten.
Peers express queries on their local schema, which are tbpagated in the P2P sys-
tem from one acquaintee to the next. We focus on conjunctiegigs with arithmetic
comparisons. At each step, a query is successively refatedithrough mappings.

In such a system we assume that the query reformulation ferpeed by a query
rewriting mechanism based on the chain of algorithms fowenisig queries using
views [25], [30], [35] and [3] for LAV mappings; for GAV mappgs, we consider the
straightforward substitution of the view head with the bagyit is done in Piazza [17].
GLAV mappings are used with combination of LAV and GAV quegriting tech-
niques [13, 17]. However, we propose that the query refoatiari mechanism is en-
hanced, so that queries are rewritten even if they can bly gatisfied by the available
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mappings. More specifically, the reformulation mechanigads to address the cases
where partial transformation of the queries is possibée;rot all 'select’ attributes or
‘'where’ conditions are present in mappings. In the follogwme describe the character-
istics of such a mechanism in detail.

The goal of the reformulation mechanism is to transform aryse that it can
be answered partly or thoroughly by an acquaintee, i.e. @hop neighbor in the
overlay. The available query rewriting algorithms redttieir usage to queries that
can be completely rewritten under a set of mappings, medhatghese algorithms can
rewrite queries only if all ‘select’ attributes and ‘whewnditions of the original query
can be rewritten through the available mappings.

Yet, this is not suitable for a P2P environment. In many suwrhroon applications,
peers are satisfied with retrieved information with chaastics similar to those of
their query (consider for example search engines, pop@RBrfie-sharing applications,
etc). Therefore, it is reasonable to assume that it is pabferfor our P2P database
system to operate in a similar manner (as [33] does). Henegyould like peer queries
to be reformulated and propagated even if they can be ontlysatisfied.

Existing rewriting algorithms have been designed to semegproblem of data and
schema integration and thus do not allow partial query tavgi These algorithms
are driven by the assumption that the correct rewriting ofiarg is the maximally-
contained version of it [24]. Yet, query containment in daigegration refers to the
containment of the answer sets. In P2P database envirosnpestrs are not interested
in answers from other peers that are contained in the anghay<an retrieve locally;
they are rather interested in answers that would be "senalytrelevant” to the origi-
nally posed query.

In this work we propose the preprocessing of the queriescooeeP2P databases
in order to produce versions that can be classically resvritb other peer schemas.
In this context, we investigate the notion of query simtlabased more on structural
features rather than semantics itself and we propose a gimitgrity function . In the
same spirit we discuss guidelines for the preprocessingiefigs and we present an
algorithm that considers GLAV, GAV and LAV mappings in orderselect those that
can rewrite the query in the best way.

GrouPeer gives the opportunity to overcome peers on a quepagation path that
are poor in requested information and discover others tteatieh. The trade-off for
this opportunity is the sacrifice of soundness and compéstenf query answers. Also,
each peer evaluates the soundness and completeness ddvitsrad query versions
from its own perspective using its own tools that can extenchfbasic dictionaries to
sophisticated automatic matches that emply ontologiegeitleelessGrouPeerallows
the peer users to define their own preference for soundneéssaanpleteness through
the weights on query elements and the similarity threshold.

3 Query Similarity

In order for a peer to answer an incoming query, it has to laém# with respect to its
local schema. Usually, the resulting query is not a comglateslation of the original
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one, butis somehow ‘similar’ to it. In the literature [24jetsimilarity between rewritten
queries is measured according to the containment of thétsesfithe rewritten query
to the results of the original one. However, this kind of qugimilarity cannot be ef-
fective in the context of this work. The difference of the Rfabase paradigm and the
data integration one, is that the first is multi-layered velasrthe second has only two
layers. This means that a query has to be rewritten severaktalong a propagation
path (i.e. many layers of rewriting) in a P2P system where&srewritten only once
in a data integration system. In a P2P system the composgifiarchain of mappings
between two remote peers is not known to either of them. InRad2abase system we
would like to compare queries written on remote peer sche@asg is written on the
schema of the initiator and the rewritten versi@pur on the schema of a remote peer.
Moreover, inGrouPeerthe Qe is Not a classically rewritten version Qyig. For these
two reasons, it is not possible to decide query containmased on view expansion.
Furthermore, we require a quantification of such a contampwehich is not defined in
a classical way. Nevertheless, query containment in dégriation is actually decided
by the containment of the query answers. This means that datieally want to mea-
sure the classical containment@4rig andQrewr, We need the query answers, (since it
is not possible to decide query containment based on viewresipn). However, our
goal is not to answer the queries in order to measure theitasity, but to measure
their similarity in order to decide which one to answer. Thus have to rely on query
characteristics rather than the answer to the query in eoddetermine similarity.

Query similarity has been explored in several works in theené past. Some of
these works deal with keyword matching in the database emvient [4, 7] or with
the processing of imprecise queries [14, 22, 31]. The worlb]rialks about attribute
similarity but focuses on numeric data and on conclusiomsiabimilarity that can be
deduced from the workload. Furthermore, in [15] queriesdassified according to
their structural similarity; yet, the authors focus on teas that differentiate queries
with respect to optimization plans. The only work relevanburs is that of [6], where
overall semantic similarity of queries is explored. Yetr éacus is on query versions
that are produced through the use of mappings, and we arested on the effect of
the mappings in query similarity.

In order to measure the similarity of two queri€¥ig and Qrewr there is a need
for a function that quantifies their semantic relativen@&ésm(Qorig, Qrewr). Our goal
is to study from a qualitative point of view what is the impactthe query semantics
of query elements that cannot be rewritten though the alailmappings. Next, we
discuss the guidelines along which the similarity functgbould be constructed and
the factors that affect it.

3.1 Aspects of Query Similarity

The similarity of two queries, each on a distinct schemagtonly a matter of different
query characteristics, but also of why these different atigristics exist. Specifically,
since we are interested in incomplete rewritings of quegasry similarity has to take
into consideration under which data exchange conditiomselements in the rewritten
version are inserted or old elements are missing.
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(1) 'select’ attributes:

For example, remember the query on StuartQBsuartpe sr, @and the successively
rewritten version on LUDBQ_ups_sr; First, two of the 'select’ attributes @stuartpg s,
T.DisDescr and T.TreatDescr are missing in the 'selectisteofQ,  pg_s;. It iS 0bvious
that the lack of rewriting of these two attributes is due thei the lack of correspond-
ing attributes in the schema of LuDB, or the lack of mappingsMeen StuartDB and
LuDB that encapsulate the correspondence of these adsibNevertheless, the rewrit-
ten version never has additional 'select’ attributes, carag with the original one.

Observation: Itis clear that 'select’ attributes missing in the rewrittguery version
influence negatively the overall similarity of the queries.

(2) 'where’ conditions:
Yet, things are more vague with the query conditions. Thegesaveral situations
and we consider each separately.

(2a) additional value constraints: In our exampleQ,,pp_sr has the additional condi-
tion PAge< 13. Is this condition an additional constraint to the quesgnpared with
the non-conditionaQs;uartpr sr? 1IN order to find out, we have to consider the circum-
stances under which the mapping that contributed this tongiMs;yartpg LupB, Was
created. In our case, Dr Lu is a pediatrician, and, thus, drestin his database infor-
mation about kids, i.e. P.Age 13 for all data in LuDB. Therefore, the corresponding
additional condition irQ_ype_sr iS Not actually an additional constraint, since the set of
returned tuples is the same if the posed query includes ahistondition. However,
if Dr Lu is a family doctor, but for some reason his databaséntams the mapping
Mstuartpa Lups With StuartDB, the condition oR.Ageis an actual additional constraint,
sinceQ ypp_sr returns fewer tuples than if the condition is eliminatedgémeral, addi-
tional value conditions in rewritten queries either restar do not influence the result
of the query. This depends on the reasoning that createdahpings used for the query
rewriting.

Observation: Since we are not able to know the logic beneath mapping ceatie
consider additional value conditions as restrictive, atttgrefore, that they decrease
the similarity of the queries.

(2b) additional joins on non-key attributes: Beyond value conditions, SPJ queries
have joins either on relation keys or just plain attributés.far as additional joins
on plain attributes are concerned, we can follow the sanenae as in the previous
paragraph. We can conclude that, in the same way as withi@ullitvalue conditions,
additional joins on plain attributes can be considered agmestrictive, in the general
case.

Observation: Additional joins on non-key attributes decrease queryIsirity.

(2c) additional joins on key attributes: However, is this the case for joins on relation
keys? Consider again the successive rewrit@gsartos sr andQLups_sr Of the motivat-
ing example. The second query has a join on relation kyBid = P.Did, whereas the
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first does not have any. Easily, we can see that this join iesgzey in order to 'select’
both attribute$.Insurancg andD.AvgFeverthus, it does not restrict the query answer.

Yet, a minor objection to this reasoning is that two relagigmined by their keys do
not coincide with one relation that contains all their atttes: the first contains only
the tuples of the two joined relations that have common ké&yesm whereas the second
can contain even the tuples of the two relations that havenmatiching key values.

Furthermore, a join on keys restricts the query answergiféwritten version does
not contain 'select’ attributes from both parts of the jdior example, suppose that
Qstuartprsr does not contain in the 'select’ clause the attridatasurancé. However,
the only way to rewrite it is through the available mappMeg;uartps Lups- Hence, the
rewritten version on LuDB will be:

QLubs st

SELECT D. AvgFever
FROM Di sease D, Patients P
VHERE D.Did = P.Did, P.Age < 13

In this case, even though the additional join is on relatieysk it does not serve as an
associative action and it does restrict the query answeherabsence of it the query
would return additionally the tuples of relatidiseasehat do not have a matchirigjd
with a thePid of a tuple in relatiorPatients

Observation: We consider additional joins on relation keys as neutraluery sim-
ilarity, if the existence of 'select’ attributes is based thie existence of the join; oth-
erwise, we consider additional joins on relation keys as gatige influence to query
similarity.

(2d) absent joins on key attributes: Finally, let us consider joins on relation keys that
exist in the source query, but are absent in the rewrittesioer For example, this is
the case 0Qorig andQstuartprsr- The two joins on relation keys in the former are not
present in the latter. Should this element absence in thetremversion be considered
as a reformulation failure? The answer is no, obvioushceihe query rewriting is per-
formed using the mappindlstuartps pavisps that combines the relatioNssits Disease
and Treatmentfrom DavisDB in a correspondence to tiieeatmentselation in Stu-
artDB, the two joins 0Qqrig are "consumed in a way, during the complete rewriting
through the discussed mapping. Thus, the absence of theoin® in the rewritten
version does not mean that the mechanism failed to rewte tibut that they are en-
capsulated in the mappings used for the rewriting, and theyet needed in the new
query.

But, what if the joins 0fQqrig Were not present in the mappitdistuartbr bavisDs?
For example suppose that StuartDB uses for the rewrifigg the mappings:

li .
M 1StuartDELDavisDB'

4 Assume that there are two relatioR&(x,y) andR2(x, z) with the same keyx, and a relation
that contains all attributes &1, R2: R(x, Y, z) with key x. The tuples of each one &/R2 that
cannot be joined with a tuple &2/R1, would have a corresponding tupleRnfor which the
attributes corresponding ®&2/R1 would be null (outer join)
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Treatmentiyaipg(Pid, _, _, Symptom, _, DisDescr):- Visitgavisps(Pid, _, Did),
Diseas@avispe(Did, DisDescr, Ache){ Symptom= Ache}

and

M25artDB DavisDB

Treatmenttyarps(-, - -, -, TreatDescr,):- Treatmensavisps(-, Drug,-), {TreatDescr=
Drug} °,

The rewritten query on StuartDB would be:

Q,StuartDELsr:

SELECT T1.Pid, T1.DisDescr, T1.Synptom T2.Treat Descr
FROM Treatment T1, Treatnent T2

The second join 0Qqrig, 'D.Did = T.Did’, is not encapsulated in the above mappings.
It is obvious that the lack of this join in the mappings and itaeritten version results
in a cartesian product in the relation StuartDB.Treatmimis, the lack of the key join
affects really badly the reformulation Qfrig.

Observation: We consider that joins on relation keys are satisfied, i.plieXy or
implicitly present in a query rewriting, if they are presegither in the mappings used
for the reformulation or in the rewritten version itselfjéins on keys are not satisfied,
we consider that their lack in the rewritten version affewtgatively the similarity with
the source query.

In addition to the above, any other missing constraints\akie constraints or joins
on non-key attributes) are considered to have a bad impaguery similarity.

(3) corresponding 'select’ attributes and 'where’ conditions:
Suppose that the only available mapping in order to rev@itg is M 15, ,41pe DavisDe:
Then the rewriting procedure would produce the query varsio

/! .
QStuartDBLsr'

SELECT T.Pid, T.DisDescr, T.Synptom
FROMV Treatnent T

Again, neither the rewritten query nor the used mappingaiargny form of the join
'D.Did = T.Did’ of Qorig. Moreover, in this case the 'select’ attribute Treatmenigoof
Qorig Is not mapped in StuartDB, and, thus, it is not prese@dp,,pg s SO, the lack
of both the aforementioned join and attribute should infagenegatively the similarity
of the source and the rewritten query. However, the ateilrug is not really worth of
rewriting, even if this is possible, (e.g. if the mappM@s; .1ipe pavisps IS available), if
the join 'D.Did = T.Did’ cannot be rewritten: as we have dissad previously, the result
would be a cartesian product, which in general cannot beideres a good rewriting.
The question that arises from this situation is whetheradhk bf these two elements
should affect the query similarity in a correlated or sefmaveay. Again, the answer to

° The reader can observe that the mapptil,,,.«ps pavisos 40€S NOt map tuples 1-1; yet,
this is a possible mapping and its meaning is: "tuples in DavisDB.Treatmergspond to
tuples in StuartDB.Treatment where the respective attributes Drug aadDiascr have the
same value ”
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this question depends on how users think in order to form ainaily posed query.

If users use joins on relation keys only as an associativenenfert retrieving attributes
from distinct relations, then the role of these joins is urtipe to 'select’ attributes and
the impotence of their reformulation leads to the impotesfaetrieving the supported
attributes from the target database; these joins cannotdsemt alone, i.e. without the
attribute(s) they support. Therefore, as far as query arityl is concerned, the lack
of such rewritten joins should be correlated with the lackhef supported rewritten
attributes. Nevertheless, in case we assume that usets gresies without any specific
logic, key joins cannot be thought of as associative toeetd attributes, in general.
Hence, their lack should be considered as not affectingycgisnilarity.

The second assumption is more conservative than the ficsiplse it considers that
two independent query features are missing from the rexmritersion. Moreover, the
second assumption does not affect the query rewriting pltoeg since query features
can be considered separately for rewriting (Section 4);igeigreement with the first
assumption, combinations of 'select’ attributes / 'whar@hditions should be spotted.

Observation: We consider that the presence of each query feature is imdiepe
from the presence of the rest and they affect query simjlarit separate way

In the same spirit, we have to consider whether the retrigfvah attribute should
be correlated with value conditions on the same attribudeekample, suppose a query
similar toQLups_sr, Where Patient.Age is a 'select’ attribute:

/! .
LuDB_sr*

SELECT P.Insurance#, D. AvgFever, P.Age
FROM Di sease D, Patients P
WHERE D.Did = P.Did, P.Age < 13

Should the lack of Patient.Age in a rewriting @f ,pg 5 be correlated with the lack
of the condition 'Patient.Age< 13’ in the same rewriting? As in the case of joins on
keys discussed previously, the answer to this question eagitber 'yes’ or 'no’. On
one hand, the presence of the value condition in the rewrdteery depends on the
presence of the respective 'select’ attribute, for if theose is not mapped in the target
database, both of them cannot be rewritten. On the other, lzanger may create the
original query with or without the value condition, meanthgt in general the presence
of the ’select’ attribute in the original query does not degph@n the presence of the
respective value condition or vice versa.

Observation: Following the second reasoning, we do not correlate 'séttibutes
with respective value conditions in the calculation of qugimilarity.

3.2 Query Similarity Criteria

Based on the above observations, we want to form the criterithe assessment of
query similarity. The rough outcome of the earlier discosss that missing or addi-
tional query features, i.e. 'select’ attributes or 'whezehditions should be considered
decreasingly in query similarity, from a conservative pafiview. We choose a con-
servative point of view in order to determine a correct eation of query similarity in
any context of P2P database applications.
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We have to refine our observations by ordering the importaficbe role of the
various missing or additional query features. First, wekoacthat key attributes are
highly important in a relational schema since their valugigjuely prescribe the values
of other attributes. We think that the role of keys in quergeas important as in the
schemaitself, no matter if such an attribute appears irlecs®r 'where’ clause. Thus,
deficient rewritings of key attributes may result in sevesmantic deviations from the
original query. Second, 'select’ attributes representtvilif@rmation the user requires
actually. Thus, their lack in the rewritten query is dea$yvirreparable. Third, even
though the lack of join conditions is a negative factor foeyusimilarity, it results in a
query version that retrieves a superset of the data thadAmmutetrieved by a query with
the rewritten joins. Furthermore, the lack of value coristsshas the same effect in the
query as the lack of joins. However, the lack of joins proabkults in much bigger
supersets of retrieved data than the lack of value consirdtmally, the introduction of
new value constraints, joins on non-key attributes is aersid a deficiency . Yet, new
conditions produce a rewriting that is classically congdiin the source query; thus,
we think of the introduction of new conditions as the weakeiterion of all.

Thus, we form the following criteria for the definition of tenilarity of two query
versions. The criteria are ordered according to their irgrare in query similarity.

Crl Key attributes are rewritten, no matter what their posiin the query is
Cr2 ’select’ attributes are rewritten
Cr3 Join attributes are rewritten
Cr4 Constrained attributes (beyond join ones) are rewritte
Cr5 There are no additional parts in the query: new valuetcainss and joins on non-key
attributes?
a There are no new value constraints
b There are no new joins on non-key attributes
c There are no new joins on key attributes that are necessathd rewriting of
'select’ attributes

Overall, the above ordering of the criteria is based on thiemale that the most
important elements of a query are the attributes that are éelgelect’ attributes. Joins
are very important; yet their lack results in supersets sfams that the peer might be
able to refine. Finally, additional conditions (thus, cleally contained rewritings) are
considered the most lossless rewritings. The lack of rewgriof keys or query condi-
tions (joins and value constraints) results in answersatrenot sound whereas the lack
of rewriting of 'select’ attributes and additional conditis result in answers that are not
complete. Since the importance of answer soundness ovgrletamess or the opposite
is application-dependehtwe do not base the ordering of the criteria solely on them.

6 We consider all additional parts in a query in this last criterion. We distingtistparts ac-
cording to their role ina), (b) and(c) as shown. All of them have roughly the same priority;
yet, in a refined similarity metric, priority can be given according to lexiapgical order. Fi-
nally, the criterion %c) may be eliminated in more conservative similarity metrics. A thorough
investigation of the impact of these criteria to a variety of application fieldstisfdhe scope
of this work.

7 For example in a medical application, as in the motivating example, sossdnay be more
important than completeness, whereas in an application of multimedia tdnéopposite
may hold.
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3.3 Discussion on Alternative Approaches to Query Similaty Metrics

The ordering of the criteria in Section 3.2 is formed on thevat importance of each
query element. In order to decide about the overall sintylaof the original and the
rewritten query version there is a need for a metric thatetates the importance of the
separate query elements.

As we have seen in Section 3.1, the similarity guidelinesgiwhich we can form a
query similarity function take into consideration the &gl attributesA and the 'where’
conditions, i.e., the value constrair@sand the join conditions), individually. The
rewriting of query parts can be explicit in the rewritten guer implicit in the used
mappings; for both cases we use the function symbaot to refer to the rewritings of
query parts.

Beyond the separate rewriting &f J andC, the peer has to decide if there is any
correlation among them. The peer’s policy concerning thisetation depends on the
importance it gives to the rewriting d6 in the translated query, as we have discussed
earlier. Moreover, the correlation of the different quelgneents in the similarity func-
tion has a respective impact on their separate importanteeiquery. Thus, a strong
correlation ofJ elements with the rest or among themselves (e.g. the fallgvianc-
tions (2) and (3)), achieves the dominationlaflements in total but also a more critical
importance of each one of them, separately (especiallytifum¢3)). Beyond the gen-
eral correlation of query elements, weights can be assatiagith each one of them so
that tuning to the special needs of each query can be pertbrme

If the peer is, in a way, optimistic, then it can consider tlathree set#\, C and
J are of equal importance and the non-rewriting of any of thevasdnot influence
the rewriting of the rest. Such peers may be more interestetinplete than sound
answers. The function that quantifies this policy is theofelhg:

S rewr(J) + 5 rewr(A) + 5 rewr(C)
SI+SA+5C

1)

However, a reasonable policy is to consider the rewriting taf be more important
than the satisfaction ok andC. More specifically, a peer can decide that the rewriting
of AandC depends on the average of the rewritien

> rewr(J) - (3 rewr(A) + S rewr(C))

2)
¥J-(3A+3C)
Or the rewriting ofA andC depends on the rewriting of all
[Trewr(J) - (3 rewr(A) + 3 rewr(C)) 3

MnJ-(FA+3C)

Moreover, a peer can decide that the rewritingl afifluences only thé andC refer-
ring to the same relations. In this case the two above funsti(?) and (3) are altered
respectively as follows:

SR(3 rewr(Jr) - (3 rewr(Ag) + y rewr(Cg)))
YR(ZR (FAR+3CR))

(4)
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Sr([rewr(Jr) - (3 rewr(Ag) +3 rewr(Cr)))
SR(MR (ZAR+3CR))

where the indeR indicates the relations to which the attributedinAr, andCg refer,
respectively. Peers that use functions (2), (4) or (3), (&) e more interested in sound
than complete answers.

The definition ofrewr can vary depending on what a peer considers that contributes
to a 'good’ or a 'bad’ rewriting. Moreover, the result mdwr has to be a number that
quantifies the quality of the rewriting. Depending on thelienpentation, theewr func-
tion quantifies the 'good’ and the 'bad’ rewriting, eitheraalsoolean function (i.eewr
produces only two values, for examgdle, 1}) or as a function that produces a range of
continuous or non-continuous values (for exanmeler can produce a result if0, 1]).
The peer’s policy for partial rewriting of query parts cakedanto consideration possi-
ble differences of data types and ranges and, also, theutliffio transform encodings.
For example, in the motivating example we have assumed lieaattributeDrug in
DavisDB is rewritten as the attribufereatDescr however, the first might not be so
accurate as the latter. Also, suppose that the originalygoentained the following
condition: Pid> 505. Even though the assumed mapping in the motivating ebeamp
matchesPid to Insurancé?, the translation and thus the satisfaction of this cooditi
may not be possibldnsurancé > '505’ has most probably no meaning for Dr Lu’s
database. Situations like the one just described hint #raiess translation of @ not
only may not actually satisfy the origin@lbut also deteriorate significantly the whole
query: the conditioinsurancé > 505 could lead to a translated query that gives an
empty answer. Thus, we do require a safe and conservatsgldateon ofCs. In this
spirit, the conditiorPid > 505 would not be rewritten in the new query, since a general
rule could prohibit the transformation of numerical valt@strings. Nevertheless, data
mapping is out of the scope of this work.

Nevertheless, a thorough investigation of the applicgtili the various correlations
among the rewritings of query parts as well as of the varioygementations afewr is
out of the scope of this work. In the following we present thpr@ach we have taken in
GrouPeerfor the construction of a moderate and generally applicgbkry similarity
metric.

()

3.4 Our Approach to a Query Similarity Metric

In our approach a query is considered to be a set of elememtsfoo each ‘select’
attribute and one for each ‘where’ condition. A propagatedry versionQ;,, that

is derived through rewritings on an initial queQerig, maintains all the elements of
the latter. ThusQj, may contain elements that are not present in its SPJ fornmseThe
elements are marked as non-present. The absence of ‘saeitiites means th&,,

is degraded by them w.iQqrig. However, this is not the case with ‘where’ clause con-
ditions: the absence of a condition is a result of either tiesgnce of it in a mapping
used to produce th@,,, or the inadequacy of mappings to rewrite the conditionhin t
first case, even though the condition is not present straityun the SPJ form of),,,

it is semantically encapsulated. In the second c@seis degraded by the lack of this
condition.
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Definition 1. A query Q propagated in the P2P database system is a pair oféts

Q = {SI,Cn}; Sl is a set of elements S {Ej,..,En}; each element & = 1,..,m
corresponds to a ‘select’ attribute; &= R.A and an indication, 'pres’, whether;As
present in Q or not. Thus, & = {Aj, pres}, prese {true, false}. Cn is a set of ele-
ments Cn= {Ej, ..,En}; each E corresponds to a ‘where’ clause condition@ith an
indication 'pres’, whether Cis present in the query or not and an indication 'st’ that
shows if the condition is satisfied. Thus,.Ein= {C;, pres st}, presst € {true, false}
and G =RA=R.A/RA ¢ const, where) € {=,>,<,}, const is a data value, for

i =1,..,nand RA, (R.A) denotes the attribute A of relation R,/{R

A query condition issatisfiedif it is explicitly or implicitly (i.e. through the em-
ployed mappings) presentin a query rewriting. For clavity,denote the set-of-elements
form of a queryQ asQ3°¢

Example The set-of-elements form @orig is:
ong = 11{Pid,true}, {DisDescrtrue}, {Achetrue}, {Drug,true}, {Dosologytrue} },

{{{VisitsDid = DiseaseDid, true,true}, { DiseaseDid = TreatmentDid, true,true} } }.
We omit the relation names wherever this is possible, inralsave space.

It is important to notice that the similarity of two queriessdonfined by the seman-
tic similarity of their elements. Hence, the similarity rseee we are seeking should
be in the same spirit as such measures in the field of schenthimgi(e.g. [28]) and
matching taxonomies (e.g. [11]). Specifically, if each ed@tnof Qqrig is semantically
matched totally with the respective element@t,, and Q,ewr does not include ele-
ments that cannot be matched with elementQgfy (i.e. Qrewr does not have more
constraints thaQorig), thenQorig is semantically identical witkQrew.

Thus, we introduce the functiosat that takes as input two query elemeBsand
E/ and returns the set of conceptsEfthat couldnot be matched with concepts &f
8 The following is the formal definition of a concept:

Definition 2. Considering a relational schema S, a distinct concept spoads to
each RA where A is an attribute of relation R S.

Note that comparing; andE/ is safe, meaning that the indeindicates that both
elements refer to the same query element ('select’ atethHt € S, or 'where’ condi-
tions,E; € Cn).

Query elements; can be implicit or explicit in the regular SQL form: explicit
are those that appear in the SQL form and implicit are thoaeatre encapsulated in
mappings used for reformulation. The functisat compares elements either of their
explicit or implicit existence in the SQL form. It is straifibrward that for two queries
Qorig = {SI.Cn} andQrewr = {SI',Cn'}, the functionsat(SI.E;, Sl .E/) exports the con-
cepts of for which E/.pres= falseand the functiorsat(Cn.E;,Cn'.E/) exports the
concepts oF; for which E/.st= false(i.e. E/. pres= false too). Also, note thasatis
not reflective: it exports the conceptsgfnot matched irE/ but not the opposite.

8 We do not assume that peers share an ontology. Yet, each peer nmay oot possess and
use dictionaries or ontologies in order to perform matching. If peersotiaise any kind of
dictionary or ontology, then concept matching is as simple as keyworchingtc
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Also, it is obvious that foEJf for which there is no correspondirkgy, sat compares
Elf with the® and exports all the concepts invoIvedEﬁ-‘L Thesat function calculates a
set of concepts that represents the semantic dissimilafrityo query elements. Thus,
|sat(Ej,E/)|, is a quantification of the dissimilarity of the pair Bf, E/. Based orsat
values of all the elements involved @orig and Qrewr, Msim can calculate the overall
semantic similarity of the two query versions. The follogiis the formal definition of
the default similarity metric thaBrouPeeremploys.

Definition 3. For two query versions &g = {SI,Cn}, Qrewr = {SI,Cn'} and a set of
user-specified weightsgy,, that denote the importance of each element in the seman-
tics of Qyrig:

yiwi - [sat(E;, )| +3w; - [sat(Ej, 0)]

Msim(Qorig7 Qrewr) =1- Zi Wi - |sat(Ei , 0’)|

(6)

where E's are elements of gy and E"S,Ej's are elements of Qy and Yw; = 1.
Specifically, if E€ Sl then E € Sl and if E € Cn then E € Cr. Also, E]' € Cn'. More-
over, by default the weights; Wave values along the lines of the similarity criteria of
section 3.2. The ywveights correspond to the criterion Cr5 about additionahddions.

The metricMgjm, is structured such that dissimilar elements diminish itseand
perfect similarity is represented bsim= 1. The proposed functio¥sim is constructed
along the lines of the associative function (1); thus, wepa@oconservative view of
query similarity that is more generic and more suitable $pitevarious applications.

GrouPeerdoes not predefine a similarity threshold below which a gustryuld
not be rewritten. Instead, we recognize that the need (aatitgstandards) of each
user about peer information is unique. Therefore, the ahityl threshold according to
which a query rewriting should be accepted or disregardedldibe tuned by the user.
Actually, the user has the power to tune the value of weightalf the query elements,
and, thus decide if the lack of the rewriting of each such eletris acceptable or not by
her standards on the quality of answers that she expectstifrosystem.

The above proposition about the form of tg, function is not restrictive: as men-
tioned before, semantic similarity is a subjective isshierefore, its calculation formula
can differ from one peer to the next. Beyond this, definingaaio similarity for a wide
range of queries and contexts is a complicated matter, gino€only depends on con-
cept correspondences, but also on interrelations of ceméeptologies).

4 Query Reformulation

We assume that peers own a query reformulation mechanised lmasexisting query
rewriting algorithms, yet it enables the production of anigen versionQewr from the
original queryQorig, Where:

9 Moreover, in cases of query conditions with arithmetic comparisonssatinction can be
implemented so that it takes care of rewritten versions that have narcowstraints than the
original version (for example X 10 can be rewritten to X8 [3])
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— Qrewr Maintains in the ‘select’ clause all the ‘select’ attrilsitef Qqrig that can be
rewritten through the available mappings. Thus, in cortivadorm, the head o®ewr
is a projection of the head @orig.

— all the ‘where’ conditions 0Qorig that cannot be rewritten through the available map-
pings are ignored. The rest are rewritten and include@i,. In conjunctive form,
Qorig and Qrewr have mappings between attributes of predicates even ifigated
themselves cannot be mapped.

As an example of the first rule above, remember the originahygposed by Dr
Davis, Qorig; it is not possible to rewrite it to the schema of StuartDB¢édiese the
'select’ attribute Treatment.Dosology Qlrig is not mapped in StuartDB. Thus, this
attribute is ignored in the classical query rewriting picaoes.

As an example for the second rule above, consider the ofigirery, Qorig, aug-
mented with a value condition:

Qorig_changed

SELECT V.Pid, D.D sDescr, D Ache, T.Drug, T.Dosol ogy
FROM Di sease D, Treatnent T, Visits V
WHERE V.Did = D.DId ANDD.Did = T.Did AND T. Dosol ogy = 5ng

Since the attribute Treatment.Dosology is nhot mapped iar8B, there cannot be a
classically contained rewriting dorig_changed P€Cause the condition 'T.Dosology =
5mg’ cannot be rewritten. Thus, this condition is ignored.

In this work, we use the ternreformulationandrewriting interchangeably, mean-
ing the query translation according to the principles dbscrabove. In order to achieve
the above reformulation, the algorithm has two conceptieglss

1. Pre-processes the incoming quéy. and produces the versi@nc_preprocessedhat
contains the part 0B, (i.e. the 'select’ attributes and 'where’ conditions) tican
be altogether reformulated by a single mapping.

2. Then,Qinc_preprocessedS rewritten with the classical query rewriting algorithms

These two steps are conceptually distinct. However, dépgrah the implemen-
tation, they can be performed either in a sequential way @ \way that is partially
sequential and partially parallel, i.e. some parts of tlepprcessing procedure can be
merged with the query rewriting itself.

Example Assume that StuartDB and LuDB have the following mapping:

M1styartDB LUDB:
Treatmengiyanipe(Pid, _, _, _, _, ):- Diseasg,ps(Did, _, ),
Patients,pg(Insurance, Did, _, _), Age < 13, {Pid = Insurancg}
Then the quer@siuartpe sr IS preprocessed so that the 'select’ attribute "Treatment.
Symptom’ is eliminated. The preprocessed query version is:
QStuartDELsr,preprocessed

10 For example if query rewriting using LAV mapping is performed with theKmialgorithm
[25] then preprocessing has to be done before query rewriting; yetieify rewriting is per-
formed with the minicon algorithm [35] the preprocessing can be integmttt algorithm
itself.
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SELECT T.Pid, T.Di sDescr, T.TreatDescr
FROM Treatnment T

Now, QstuartbR sr_preprocessedan be rewritten in the classical way usMdstuartpe LupB.

Query Preprocessing Guidelines

In order to pre-process a query and produce the input foreiwveiting algorithm,
we choose the mapping(s) with respect to which we will penfohe preprocessing.
As aforementioned, we want to choose the mappingshiestrewrite the query. The
best rewritten version is valuated with respect to the girityf criteria defined in the
previous section. The mappings used for the rewriting angadlg the exclusive means
that provide the rewritten query features thus, the streatfithe mappings reflects the
rewritten query. Also, mappings are actually queries (drspaf queries) themselves.
Thereupon, we base our decision for the selection of mapginghe query similarity
criteria defined in Section 3.

There is a variety of query-mapping combinations that weamane across during
the mappings selection procedure. We discuss the comtisatif queries and con-
sidered mappings that do not match completely. The follgwina categorization of
the main query-mapping combinations that we can come gondsere attributes of
relations involved in the query are missing from the mappifgs categorization is
complete and other combinations actually fall into one oreraf these categories. The
categorization follows the lines of query similarity asfsec

Case A:Considering GAV mappings

In this case we consider attributes of relations that arsingsfrom the mapping.
These relation attributes may appear in the query (‘'setactvhere’ clause), or not.
Attributes that appear in the query but not in the mappingral&ted to one of the
criteria defined in Section 3.2. Moreover, in this case wesitaT additional conditions
on mapped attributes that appear in both the query and thpintap

1. For attributes that are not present in the 'select’ clause
(@) The query if(x,y) : —P(x,y,z) and the mapping iB(x,y,_) : —P'(x,y)

(X,
(b) The query iQ(x,y) : —P(x,y,2),z="¢ and the mapping iB(x,y,-) : —P’(x7y)
(c) The query iQ(x,y) : —P(x,y,z)R(z,w) and the mapping iR(_,w) : —R/(w)
(d) The query iQ(x,y) : —P(x,y,z)R(z,w) and the mapping iR(z,-) : —R/(2)
() The query iQ(xy) : —P(x,y,2), the mapping i®(x.y.2) : ~P/(x,y.2),.z=' ¢
(x,

(f) The query isQ(x,y) : —P(x,y,z) and the mapping iB(x,y,2) : —P'(x,y,2)R (2)
2. For attributes that are present in the 'select’ clause:

(a) The query i)(x,y) : —P(x,y,2) and the mapping iB(x, _,z) : —P'(x,2)

(b) The query iQ(x,y) : —P(x,Y,z), the mapping i®(x,y,z) : —P'(x,y,2),x="¢

(c) The query iQ(x,y) : —P(x,y,z) and the mapping iB(x,y,2) : —P'(x,y,2)R (X)

Cases 1(b) and 1(c) denote missing value constraintsr{orit€r4) and joins (criterion
Cr3), respectively. Cases 1(a,d) denote missing attsbinten relations of the query;
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yet these attributes do not appear in the query itSelCases 1(e,f), 2(b,c) denote addi-
tional 'where’ conditions (criterion Cr5). Case 2(a) dez®a missing 'select’ attribute
(criterion Cr2).

Case B:Considering LAV mappings
In this case we consider attributes of relations that arelved in the query but are
missing from the mapping.

1. 'select’ attributes of the query are missing from the niagp
(@) The query i)(x,y) : —P(x,y,z) and the mapping i®'(x) : —P(x,y,2) or Q'(x,2) :
_P(X7 Y, Z)
2. 'where’conditions of the query are not mapped throughtlagping:
(@) The queryif(x,y) : —P(x,y,z),z='c’ and the mapping i€’ (x,y) : —P(Xx,y,2)
(b) The query isQ(x,y) : —P(x,y,2)R(z) and the considered mapping &(x,y) :
—P(x,Y,2) and there is no mapping f&(z) 2
3. additional 'where’ conditions
(@) The query if(x,y) : —P(x,y,z) and the mapping i® (x,y) : —P(x,y,2),z="¢
(b) The query iQ(x,y) : —P(x,y,z) and the mapping i&' (x,y) : —P(X,y,2)R(X)
(c) The query iQ(x,y) : —P(x,y,z) and the mapping i€ (x,y) : —P(x,y,2)R(2)

Case (la) corresponds to criterion Cr2. Case 2(a) denotdssinvalue constraint
(criterion Cr4), whereas case 2(b) denotes a missing joite(ion Cr3). Note that both
cases can refer to mappings with additional 'where’ coondgi (criterion Cr5). Case
3(a) denotes an additional value constraint and cases) 3gnote additional joins on
relation attributes that appear or not in the query (cioterCr5).

Case C:Considering GLAV mappinds

1. 'select’ attributes of the query are missing from the magp

(@) The query iR(x,y,z) and the mapping iQ(x,Y,z) : —Q'(X,y)
2. The mapped query has additional 'select’ attributes:

(a) The query i€(x,y) and the mapping iQ(x,y) : —Q'(x,Y,2)

We select mappings according to the criteria of Section 3l2e lack of attributes
of relations involved in the query that do not appear eithéhe 'select’ or the 'where’
clause, such as in Case A 1(a,d), is not taken into considerdahe mapping corre-
spondences denote that the predicates match, even if ibealattributes match.

11 These cases do not correspond to any criterion of section 3.2: inrs&atie have focused on
similarity of queries and we have not considered similarities of attributesitkatot involved
in queries. Nevertheless, we present cases 1(a,d) for completenes

12 Actually, classical LAV rewriting algorithms (e.g. [35]) cannot rewiRéz) even if there is a
mapping for it, since the join omcannot be rewritten.

13 We only consider the head of queries in GLAV mappings. Refining ougosiztion for the
bodies of these queries is future work
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In order to impose the criteria of section 3.2 we construcassociative similar-
ity function. Specifically, for a query subgogl** and a mappindM, the associative
function Mys quantifies the lack of non-matched attributes.

gl
Mas(g> M) = Z\NI : ai7Wi S {WkaWS7Wj7WC}7ai S {07 1} (7)
i=

where|g| denotes the arity o, i.e. the total number of attributes guinvolved in the
query. Also, each subgoal attribuie,has a weightw; that denotes if it is a key, a
'select’, a join or a constrained attribute. If it has morarthwo such characteristics, it
keeps the one that is higher in the hierarchy of the critédaordingly, the weights for
a key, a 'select’, a join or a constrained attributevis ws, wj andw, respectively. We
require thatvc > ws > w; > w. Finally, a; denotes if the respective attribute is matched
in the mapping4 = 0) or not @ = 1).

We use the following form that estimates the matching abdftthe selected map-
pings:

Simy(Q.90) =1 2! Sty Mas Jicta o {wi, Ws, Wi, We},a € {0,1}  (8)

2 2i—1 Wi

M is the set of selected mappings aithy;.Mas is the Mas value for theg; subgoal;

the weightw;; refers to tha'" attribute of thej'" subgoal. The weight for an additional
condition iswa (We > W,) and y w, represents the total weight of all the additional
conditions in the selected mappings. Actually, 8iey function speculates the result
of Msim of section 3.4, by estimating if each query element can beittew with the
considered mappingim, breaks down query elements to attributes of query subgoals
in order to facilitate the straightforward use of mappingsonjunctive form in the
preprocessing algorithm. In this way, we manage to estiihatenapping can be used
for rewriting a query, without running the rewriting algtbmin.

The algorithm that chooses which mappings will be used ingiery rewriting
procedure is shown in Figure 4. Briefly, the algorithm coassthree sets of mappings:
GLAV, GAV and LAV. It produces one subset of each set. Eacihsubset contains the
mappings that are most similar to the corresponding quebgaals according to the
aforementioned criteria of section 3.2. Finally, the aidon chooses the subset of the
three which has the higheStmy value for the query.

In detail, the algorithm works as follows. In case of GLAV rpapys we check the
overall real similarity of the of the original and the reweit version. In the case of
GAV mappings we have to check which query elements can b&fisatby which GAV
mappings; for query elements that can be rewritten with ntlba@ one mapping we
have to check which one of them poses the fewest additioglatons. The execution
of this preprocessing is simple and straightforward. Sinulctions have to be done for
LAV mappings. In this case we have also to check if a mappiag shatisfies a part
of a query (a subgoal) is satisfied by the head or the body offtggping. In the first

14 5pJ queries can be considered in conjunctive form, where eachncbiigucalled a 'query
subgoal’ [43]
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case we proceed as in the case of GAV mappings. Also, for gelergents that are
satisfied in the body of the mapping that is currently exachiwe check if these are
value-constrained or if they are joined with subgoals tlestehnot been examined yet.
In these cases we also proceed as in the case of GAV mappiog&vdr, for query
elements that are joined with subgoals that have been erdmive have to check the
mapping that has been selected and stored by the algoriththgse subgoals. If this
is the same mapping as the one that is currently examined wheproceed as in the
case of GAV mappings. Else, this query element cannot b&figatby the mapping and
we reduce the value of the similarity of the currently exaedimapping and subgoal
accordingly.

5 Clustering of Peers

Recall that the goal of clustering is to enable peers to gicother peers with similar
interests and schemas, that cannot be 'tracked’ otherbé&guse they are hidden in
query propagation paths by other peers with dissimilarésts.

Pairs of remote peers that exchange queries and answergtaatually about the
schema of each other; learning is performed through makiegies an evaluating their
answers, and is formed in mappings between the schemas tfidhgeers. Actually,
each peer that receives a query tries to retrieve any queiyuaes that are lost in the
successive rewriting of the query along the propagatioh.pBte mappings formed
between two remote peers encapsulate the common intettbst vfo peers, since they
refer to the (necessary) schema parts on which they expnelsareswer queries. If the
peers decide to become acquainted, these mappings ardyairdanguage for their
communication and alleviate the administrator’s load f@ation of mappings for the
new acquaintance. The peers accumulate the answers tledyerflom each peer; each
time they receive a new answer from a specific peer, they ctartpa current overall
respective similarity of answers by this peer. If this saritly exceeds a predefined user-
tuned threshold, the peer may decide to ask this peer to Begtsintee. The mappings
that are formed during the query position-answering betviieem are used as an initial
set of communication mappings.

Overall, the proposed methodology of making new acquag@siin the overlay
leads to the restructuring and, moreover, the gradualeriagt of the P2P system in
groups with common interests. Thus, we refer to it as thesteling process’. In what
follows we describe the details of the clustering procest e give the respective
algorithm. Also, we discuss the role of automatic schemachiag and the protocol
internals ofGrouPeer

5.1 Schema Mappings and Query Rewriting

The definitions in section 3.4 together with the followingesrformalize the basic no-
tions of a concept, a query and a mapping in forms suitabléhfoclustering process
we describe next.

Definition 4. Considering a source schema S and a target scheénaa@AV/LAV/GLAV
mapping between them (8 S) is the set{Cru(S S),Condu(S,S)}, where the set
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Input: the query to be rewritte@Q
Output: A mappingV or a set of mapping8/

— Step 1 Consider GLAV mappings:
o Make a seSing ay = {M,Msim} and initiateM = null® andMgjm = —co
e For each mappingM represented a€) : —Q” compute Mgin(Q,Q") =
Msim(Q,Q) - Msim(Q,Q")*; if  SimgLav.-Msim < Msim(Q, Q") replace
Sin’bLAv.M with M andSim;LAv.Msim with Msim(Q/7Q//)
— Step 2 Consider GAV mappings:
For each subgoaj; of Q:
o Make a seBiny; = {M,Mas} and initiateM = null andMas = —o
e For each mappind/ that matches the predicate gf computeMas(gj, M); if
Sinbj Mas < Mas(gj, M) replaceSin"@Ji .M withM andSimg,j Maswith Mas(gj, M)
Make the seSimgay = {Mgm/, Simy}, where Simy(Q, M) =1— W
— Step 3 Consider LAV mappings: e
For each subgoaj; of Q:
o Make a seBiny; = {M,Mas} and initiateM = null andMas = —
e For each mappiniyl that matches the predicate@f computeMas(gj,M);
e in the following cases:
* if all the query attributes of)j are in the head a1
* if a query attribute of g; is value constrained and this constraint is included
in the body of\
* if a query attributet of g; is joined with a subgoaf) that has not been
examined yet.
do: if Simy;.Mas < Mas(gj,M) replaceSiny;.M with M and Simy, .Mas with
Mas(gj, M)
o else (a query attributeof g;j is joined with an examined subga):
* if Simy,.M # M then doMas(gj, M) = Mag(gj, M) —w
* if Simy;.Mas < Mas(gj, M) replaceSinmy,.M with M and Siny,;.Mas with
Mas(gj, M)

Make the seBimay = {M 40, Simy}, whereSimy(Q, M) = 1— 2, Simy Mas+ 34 Wa

9
2 2ica Wi
— Step 4 Compar&SingLay-Msim, Simgay.Simy and Sim_ay.Simy; depeJndiﬁg on the
highest value of the three, repladé with one of the setSinmg ay.M, Singay. M,

Sim ay. M

*Msim(Q, @) is a function that quantifies the semantic similarity of two que@esnd
Q based on the proposed criteria.

@ null denotes that there is no mapping

Fig. 4. Algorithm for the selection of mappings for the query reimgt
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of concept correspondencesydS S) = {RA=R.A|RAc SR.A € S} holds un-
der the set of conditions CopdS S) = {R1.A= R,.B or Ri.A=constR;,R, € S or
Ri,R; € S}; const is a data value.

Obviously, for each pair of concep{fR A,R.A’'} that each belong to a different
schemaR A € SandR.A’ € S, and that are corresponded through a mappiii§g, S),
there is one such pair i€ry (S S). A set of mappings betwee® S is denoted as
M(SS).

For example, recall the mappiMistuartpe pavisps from Section 1. This mapping is
a set{Cry (StuartDB DavisDB),Condy (StuartDB DavisDB) }, where the set of con-
cept correspondences Bry (StuartDB DavisDB) = {Pid = Pid, Symptom= Ache
TreatDescr= Drug, DisDescr= DisDesct, where for convenience we have eliminated
the information about relations. Since the previous cpoadences hold without value
conditions:Condy (StuartDB DavisDB)} = {{VisitsDid = DiseaseDid},{Disease
Did = TreatmentDid } }.

Remember the mappingsiuartpa Lups- In the proposed form, the set of correspon-
dences is{Cry(StuartDBLuDB)} = {Pid = Insurancg, Symptom= AvgFeve} and
the set of conditions i€ondy (StuartDB DavisDB)} = {DiseaseDid = Treatment
Did}, {Age< 13}.

Definition 5. For each correspondence R= R.A' € Cry (S S) € M(S,S), the con-
cepts, RA, R.A’ are considered equivalent.

Example Assume that StuartDB poses the following query:
Qlstuartpe™:
SELECT T.Pid, T.Di sDescr, T.Synptom T.TreatDescr
FROM Treatment T
VWHERE T.Date > 01/01/2000

The representation of this query in the proposed form is:

QI ioe = {{{Pid,true}, {DisDescrtrue}, {Symptontrue},

{TreatDescytrue}, {Date> 01/01/2000} }. For simplicity we omit the relation names.
We assume that StuartDB and LuDB maintain the mapping

MstuartpeLupB (S€e Section 1). The rewriting @1lstyartps 0N LUDB is the follow-

ing:

Q1 upB.sr:

SELECT P.Insurance#, D.AvgFever

FROM Di sease D, Patients P

WHERE D.Did = P.Did, P.Age < 13

It is obvious thatQ1_,pg_ s cOincides withQy  ps_sr (Se€ Section 1). The set-of-
elements form o1, ,pp_g iS:
QL tdesr = {{{Insurance,true}, {DisDescr false}, {AvgFever

15 The condition of the query denotes that records with date after the dat&/2a00 are re-
quested. For convenience we use the symboltd denote this request in the query and the
following mapping.
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true}, {TreatDescrfalse}, {{Date > 01/01/2000Q false false},{DiseaseDid

= PatientsDid, true true}, {Age> 13 true true}}}. This form denotes that the con-
dition 'T.Date > 01/01/2000’ of the initial query is neither present nor S&d in
the rewritten version on LuDB. Also, there is one additiocahdition, 'P.Age< 13’,
which constraints more the initial query. Note that the ordethe elements in the
QLB oSl set is the same as in tH@1X,ps Sk thus, {Insurancg,true} corre-
sponds to{Pid,true}, and so on. It is obvious that two of the 'select’ elements of
Qlstyartps are missing fromQ1, ps_sr- QlLups_sr IS degraded by the ‘false’ elements,
the 'false’ condition and the new condition.

Now suppose that the mapping between StuartDB and LuDB is:
M2styartDB LUDB:
Treatmengiyaripe(Pid, -, ., Symptom,_, ), Date > 01/01/2000:- Diseasgpg(Did,
AvgFever, ), Patientgypg(Insurance, Did, _, _), Age < 13, {Pid = Insurancg,
Symptom= AvgFeve}

The rewritten version 0f1siyaritps ON LUDB throughM2siartpgLups IS again
Q1Lups_sr- However, in this case the set-of-elements fornQaf ps_sr iS:
QL0Be or = {{{Insurance,true}, {DisDescr false}, { AvgFevertrue}, {TreatDescr
false}, {{Date> 01/01/2000Q falsetrue}, { DiseaseDid = PatientsDid,true,true},
{Age> 13 true true}}}. This denotes that the condition 'Date 01/01/2000’ is not
presentin the rewritten version but it is satisfied (throtighmappindv 2styartps LuDB)-

Example Furthermore, the set-of-elements formQ@f,pg s iS:
QoBe.sr = {{{Insurancg,true}, {DisDescr false}, {AvgFever
true}, {Drug, false},{Dosologyfalse}},{DiseaseDid = PatientsDid,true true},
{Age< 13 true true}}}.

Note that, even though the SPJ formQ@f,ps_sr and Q1 ypp_sr iS the same, their
set-of-elements forms differs because they are derivad filsferent initially posed
queries.

Essentially,Q;, keeps fromQ only the concepts and concept constraints that are
present in the mappings. AlsQ,, has more concept constraints ti@anNe say tha€,
is degraded by the set of missing concepts, non-satisfieddaet concept constraints.
In order to be compliant with the definition of tkat function described in the previous
section and in order foksim to produce correct results according to our assumptions
about query similarity, we have to make an adaptation to ¢@Belements form of
source queries when compared with target ones: the probigmates from additional
joins on relation keys on rewritten queries; these new caims do not correspond to
any of previous rewritings or the original query itself; hever, as stated in Section 3.1
we choose to consider these additional conditions as regeasd non-destructive to
the original query. Sinceat exports all concepts of the key join, it affects negatively
Msim. Therefore, when comparing such query versions we add teatiee queryake
condition elements that correspond to new key joins of thgetaquery. Specifically,
for each new key joil€n.E; = {Ci,true,true} we add to the source query the element
Cn.E = {G, falsetrue}.
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For example, the set-of-elements form@;yartpr sr aNdQLups_sr IS:
Qstuartpasr = {{{Pid,true}, {DisDescrtrue}, {Symptontrue}, {TreatDescitrue},
{Dosologyfalse} },{{VisitsDid = DiseaseDid, falsetrue},{DiseaseDid =
TreatmentDid, falsetrue}}}
Quupe_sr = {{{Insurancg,true},{DisDescr false}, { AvgFevertrue}, { TreatDescr

false}, {Dosologyfalse} },{{V.Did = D.Did, falsetrue}, {DiseaseDid = Treatment
Did, falsetrue}, { DiseaseDid = PatientsDid, true,true}, {Age< 13 true,true}}.

Note, that the order of the elements in Q& artpa sr,» QLubB_sr SEt IS the same asin
the Qorig; thus, for exampl&,ype_sr-Sl.{Insurance,true} correspondQorig-SI.{Pid,
true}, and so on. It is obvious that one of the 'select’ elementQgf; are miss-
ing from Qstuartpa sr and two more fronQ ypp_sr- AlSo, Qstuartpa sr has satisfied the
conditions 0fQqrig and no new ones, where@pg_sr has one new value condition,
{Age< 13 true ,true} and one new key joinfDiseaseDid = PaientsDid,true,true}.
WhenQLups._sr is compared for similarity witlQsuartpg sr, We add to the second a fake
condition{DiseaseDid = PatientsDid, falsetrue}.

Definition 6. Considering two relational schemas S v@th a mapping between them
M(S,S) = {Cru,Condy }, the successively rewritten version,@ {SI',Cn'} on S of

a query Q= {SI,Cn} on S based on §&,S) has:

- SI.E/ = SI.E; and CA.E/ = Cn.E; if pres = false,

- for Cn.E; = {G;,true true}, if C; € Condy, Cn.E; = {C;, prestrue}, pres= true or
pres= false, else ChE; = {C;, false false}

- there are new condition elements £ {C;,true,true} added in Q,.Cr, where G €
CondyA AE; € Cn such that Cr; = {C;, pres st}

- for all the rest SIE;, Cn.E; there are corresponding SE;, Cr.E; with pres= true,
st = true rewritten according to the rewriting algorithm.

Note that a concept of schenacan correspond to more than one concepts of
schemaB. In this case, the query dBiis rewritten to a set of queries 8, one for each
such correspondence. The results of the queries are uniftbdeturned to the query
initiator. This is compliant with the query rewriting algiirms ( [25], [30] and [3]).
For simplicity, in the rest of this work we assume that in acgfahappings (S S),
there is only one correspondence for each schema coRcapt Sor RA € S. The
generalization of the clustering algorithm to union of degis straightforward.

5.2 Description of the Clustering Process

In the following we describe the clustering process.

Query Propagation: Suppose that a query initiat®} initiates a queryQorig =
{SI,Cn}. B propagates to its acquaintees the{&rig, Wq,, }, Wherewg,;,, = {Ws|, Wen}
are two sets of weights that refer to the ‘select’ attribuied the ‘where’ conditions.
For example, thevs) = {wsy,, .., Ws),, } correspond to the members®f= {E,..,Emn}.
The weights declare the importance of the respective quemyent, range irf0, 1] and
add to the unity ws; + > Wen, = 1. By default, the values of the weights conform to the
criteria of section 3.2. However, the user may define weightes that are special to the
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posed query. Thus, hight values indicate thd;.Aj/E;.C; plays an important role in the
query and good rewritings of the latter are considered tlcarate rewriting ofA/C;.
On the other hand, low values wf show that the query initiator is flexible concerning
the rewriting ofAi/C;, i.e., not so accurate rewritings Af are accepted or th& is not
really important in the query semantics. For example, itagiral for join conditions
to be considered important and have high weight values.yBvegr on the query path
forwards to the next acquaintee not only the successivaliitten version, but also the
original query. Assume tha is a peer on the query path af¥, p is the version of
Qorig that has been successively rewritten through peer mappirigst reached pee
(includingP). Assume also that the next peer on the query pa# ihenP propagates
to P’ the following set:{Qorig,onng,erfp}. P’ has two options: it can either rewrite
and answeQorig Or Qsr_p.

Query Answering: As aforementioned, all peers own a query reformulation raech
nism that uses acquaintance mappings and query rewrigjogitims, but also a mech-
anism for automatic schema matching. Thiessuccessively rewrite®Qs, p t0 Qg pr
through the mappings betwe@andP’. Next, P’ determines which elements Qyig
are not rewritten irQg, p and uses automatic schema matching to determine an ad hoc
rewriting of them; the ad hoc rewritten elements are addeQsta» and produce an
augmented version of the latt€s, pr-

Moreover,P’ uses automatic matching to rewrite tQg;ig from scratch Qg p.
Hence, it can pick one of the two locally rewritten versioQg,, p and Qg pr in or-
der to answeQyqrig. The reason for considering an automatic rewritten versiote
original query is to recover poorly successively rewritidements: elements may be
poorly successively rewritten at some node on the query; plathe mapping chain
allows these elements to be successively rewritten fudhethey may not have the
chance to recover from the poor rewriting, even if there ishsa possibility through
automatic matching at some intermediate node. To demaashia, remember the ex-
ample of Section 1, where a ‘select’ attributeQ@y;ig is ‘Ache’ and this is successively
rewritten inStuartDBas ‘Symptom’ which is mapped to ‘AvgFever’ in the schema of
LuDB. However, the latter comprises an attribute ‘Ache’ which fiest the respective
element 0Qyrig. Yet, if Qqrig does not have the chance to be automatically matched and
rewritten from scratch, the original ‘Ache’ will be rew to ‘AvgFever’ through the
respective mapping.

P’ compares the two rewritten versior@s, pr and Qgr_pr, With Qorig, in order to
decide which one is morgimilar to original query, i.e., which version is semantically
closer to the original query. For thiB! uses a functioMsim,, (Qorig, Qrewr) that mea-
sures the similarity between the sour@gyrig, and the rewritten querfewr. In other
words, Msim, is the estimation of ped? about “how much” 0fQqig can be answered
by Qrewr- Msim, is a function that quantifies the semantic similarity of the gueries.

Depending on the values fsim(Qorig, Qar_p')» Msim(Qorig; Qsra_p'), P” @answers the
most information preserving version with respec@giq. P’ replies toR with a packet
that carries the original querQorig, and the answered version, i.e., the successively
rewritten version augmented with automatic matchi@gs, or the automatic matched-
rewritten versiorQy,, together with the resulted tuplg3es
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Ans (Qorig, Qx, RegQy)),x = ar or sra 9)

Answer Evaluation: The query initiator? evaluates the received answer with a
function EV(Qorig, Qx, Reg that is based OMsim:I and can take into consideration the
returned tuplefRegQx). Note thatMsirTH can be the same or a different function than
Msim,, - GrouPeeraims at finding mutual interests of pairs of peers by allovtireglatter
to have their own perspective on query, schema and data Sem@hat is expressed in
a quantitative way throughls;y). Hence, each peer is allowed to judge the similarity
of queries and the quality of received answers by its own meafe note that, at the
momentGrouPeerdoes not provide a mechanism for evaluating the query aisswer
Res automatically; this is a very difficult task and presumaiblgannot be automated
for general applications. Thu§rouPeerby default evaluates the structural similarity
of queries and respective answers. Yet, the evaluatiortitmgv can be implemented
in such a way so that the quality and appropriatene$¥estan be derived in a proper
way (for example, through human interaction).

P replies toP’ with its estimation details about the reformulation of timswered
query version: thusp} sends td® the set:

Sat(Qorig, Qx) = {sat(Ei,E/)|VE; € SI,CnAE/ € SI,Cr'},x =ar or sra (10)

which indicates the evaluation Bf for the satisfaction of each element in the origi-
nal query by the respective element in the answered rewstesion. Added condition
elements are not evaluated explicitly, since they are awansidered as deviations
from the original queryP’ can use these estimations in order to determine:

— for successively rewritten elements, if they were poorlyritten and if they should
be automatically rewritten.

— for automatically rewritten elements, how successful vileeeautomatically produced
mappings.

Using the above estimationg’, will make its final choice in establishing a better map-
ping with R .

Building Mappings: P’ can use th&Sat(Qorig, Q) values in order to make better
decisions about query rewriting the next time it receivesuarg fromP. P’ keeps
bad and good estimations separately and gradually builisnsa mappings witlf,
which gradually ameliorate automatic rewriting of quergreents orP’ for queries
initiated by R. Assuming that the schemas of pe&rsP’ are S, S, respectivelyP’
keeps bad correspondences of concepts in thBGelS,S). This set is augmented
bad correspondences reporteddyo P’ after answer evaluationB’ avoids correspon-
dences inBCr(S,S) when it attempts automatic matches on new incoming queries
from B . Oppositely,P’ uses good answer evaluationsRyfin order to produce map-
pings that will aid the automatic rewriting of new incomingegies ofR . Actually,

P’ uses pairs of incoming queries and their locally rewritted answered versions,
{Qorig; Qrewr} @s GLAV mappings, if the answer is evaluated positivelyPhyFurther-
more, P’ merges mappings it holds fé& whenever this is possible. Specifically, two
mappingsM1(S,S) = {Cru1,Condu1}, M2(S,S) = {Crm2,Condy2} are merged if
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the one is contained in the other, i@\ = Cry2. In this case mappings are merged
because the existence of both of them is pointless, sincertbés more general than
the other.AlsoM1, M2 are merged if they have different concept correspondahegs
hold under the same constraints, Cend,; = Condy, (see section 5.3). The merging
of mappings in this case aims solely at their compressiass, tih can be omitted in fa-
vor of mapping accuracy. Of course the automatic mergingagpmgs could be more
sophisticated and could produce GAV and LAV mappings. Yes, is out of the scope
of this work.

The produced mappings betweBnandP’ can serve as peer mappings in case the
two peers become acquainted.

Acquaintance Establishment:R accumulates tthirTH for answers coming from
P’. When the average of these estimations overcomes a thre@fipttlenP contacts
P’ and asks the latter to become its acquaintee.

The thresholdp shows on behalf oP; the requirement foinformation capacity
of peers in order for them to become direct neighbors. Tha teformation capacity
refers to the amount of information held in a database sclamés investigated in [20]
and other works such as [29] in the context of data and schetegration.

In the context of data exchange in P2P databases, we usertmigd refer to the
capacity of the information in terms of semantics, i.e.,aapis and their logical in-
terrelations. Thus, we use the intersection of the infoimnatapacities (in terms of
semantics) of two peers in order to decide if these shouldrecacquainted. Since
Msim measures the semantic relevance of two query schemas, eéheameasurement
of the intersection of the information capacities on acclateadMs;y, values. Therefore,
the threshol®p, refers to the lowest overall degree the common informatapacities
of two peers that is acceptable for the new acquaintance.

Next, we present in detail the algorithm of the describedteling procedure.

5.3 Clustering Algorithm

The algorithm includes two procedures running on each mewrthat runs for locally
initiated queries and one that runs for incoming queriesoAlve briefly present the
procedure that produces mappings between the query raplicthe initiator, based on
the original and reformulated version of the queries.

Clustering Algorithm
On each peelP execute:
-the Query Initiator Procedure referringRoash,
-the Query Replier Procedure referringRasP’

Query Initiator Procedure
This procedure accumulates answers for locally initiateceries, sends evaluation
feedback to responding nodes and invokes the acquaintaocess for discovered sim-
ilar peers
Input: a set of candidate acquaintées)= | JAcq,Acq = {P,Evp }; theBp threshold;
a similarity measurésin, (Q,Qr).
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Initialization: Acq= 0

while (online)do:

{for each new locally initiated queiQorig = {SI,Cn} and user-definedyq,;, do:
Stepl propagate the s¢Qorig, WQ,, }

Step2 wait for answers t@orig

for each received pack@ins (Qorig, Qx, RegQx)) do:

-if {P',_} ¢ Acqdo Acq= AcqU {F’,0}

- updateP’’s evaluationE vip = E Vi + Msim (Qorig, Qx) - fun(RegQx))

- send toP’ the setsat(Qorig, Qx)

- if Ever > 0p askP’ to become an acquaintée

Query Replier Procedure
This procedure answers incoming queries, receives evahmmfor the answers and
builds mappings with the respective remote peers
Input: a set of candidate acquaintées)= | JAcq,Acq = {R, M (S, S),BCr(S,S)};
a similarity measur&sim, (Q, Qr);
Initialization: Acq= 0
while (online)do:
{for each received query pack«@!@orig,onng ,Qsr_p} originated from peeR do:
Stepl if B is new toP’ do AcqU {R,0,0}
Step2 automatically rewriteQorig to Qar_p UsingM (S, S) and avoidingBCr(S, S);
save the automatic mapping fQorig, Qar_p' } aSMaw(S,S)
Step3 successively reformulat®s,_p to Qg through the set of mapping® (S, S)
between the schem&sS of P, P’ respectively
Step4 - determine the set of elements that are not satisfi€irp;
- produce the mappin¥ls(S,S) using theMapping Production Procedure corre-
sponding to{ Qorig, Qsr_p' };
- automatically rewrite the non-satisfied element®gfp usingMs(S,S)UM (S, S)
as input mappings and avoidiBLr(S,S);
- produce the augment€g,, p/, save the automatically produced mappind/as(S,S):
- determine the s€iSl fs;_p/,Cnis_pr }, whereSl fs;_pr = | Skr_p'.Ej, VSkr_pr.Ej € Qgr_pr
for which pres= falseandCnfy_p = JCng_p.Ej, VCng_p.Ej € Qg _pr for which
st= false
- determine the sefSlty;_p/,Cnts, pr }, WhereSlt, pr = Sk, pr — Sl fyr_p @andCnty, pr =
Cng; p —Cnfy pr;
- produce the mappinils; (S, S) corresponding tdQorig, Qsr_p' };
- determine the sefSl forig, Cnforig }, WhereSl forig = U Sbrig-Ej for which the corre-
spondingSk;_p.Ej € Slfy;_p andCnfyrig = [UCnarig-E;j for which the corresponding
Cng p.Ej eCnfy pr ;
- automatically rewriteSl forig t0 Slfsq p andCnfyrig to Cnfga pr USiNgMs (S, S) U
M(S,S) as input mappings; produ€®;a p = {Slts;_pr USl fra pr,Cs, pr UCNfsra pr }
and save the automatic mapping{&fl forig, Sl fsra_p }, {Cnforig, Cnfsra p } INMsra(S, S)
Step5 calculateMsim(Qorig; Qar_p')» Msim(Qorigs Qsra_p'); if Msim(Qorig, Qar_p) > Msim
(Qorigs Qsrap'), produceRegQy, p) and setM (S,S) = M(S,S) UMau(S,S) else
produceRegQqa pr) and setM (S,S) = M(S,S) UM (S,S) UMgra(S, S)
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Step@ send toR the packeBAns (Qorig, Qx, Re$Qy)), x=ar_P’ or x = sra_.P’

Step7 receive fronP the seSat(Qorig, Qx); for the not satisfied elements, isat(E;, E/)
# 0, remove respective corresponden&rsrom mappings iM (S, S),i.e.YM(S,S) =
{Crym,Condy} € M(S,S) such thatCr € Cry, doCry = Cry —Cr; and addCr to
BCr(S,S)

Step8 merge contained mappings W (S,S) using theMapping Merging Proce-
dure}.

Mapping Production Procedure
Input: a pair of querie$Qorig; Qsr_p' }, Qorig = {SI,Cn}, Qsr_pr = {SI,Cn'}
Output: the mappins;(S,S) = {Crm,Condy }.
Initialization: Mg (S, S) = {0,0}
Stepl add toCry,, new correspondences for pa{/SI.E;, SI'.E/ }: for each pair of ele-
ments{SIE;, SI.E/} with E;. pres= E/. pres=true, create correspondenCe = E;.A=
E/.A’, and doCry,, = Crmg, UCT
Step2 update Crigrs Condy,, for pairs {CnE,
Cn'.E/}: for each pair of element&Cn.E;,Cn'.E]} with E;.pres= E/.pres=true:
- if E;.C = RA = constandE/.C = R.A’ = constcreate correspondent = RA =
R.A’, and doCondy,, = Condy,, UE;.CUE/.C andCry,, =Cry, URA=R.A’
- if E.C = (Ri.A1 = Ro.Az) andE/.C = (R|.A] = R,.A,) create the correspondences
Cr = {Ri.A; = R|.A|,R..A> = R,.AL}, and doCondy,, = Condy,, UE;.CUE/.C and
Crmg, =Cryg, UCT

Mapping Merging Procedure
Input: a set of mapping3/(S,S) = {Cry,Condu }
Output: the altered se/ (S, S)
{foreach paiM1(S,S) = {Crm1,Condy1},M2(S,S) = {Crm2,Condyz} € M(S,S)
do:
Stepl merge mappings witBry1 = Cryz2: if Cry1 = Cry2 andCondy1 NCondyz # 0,
mergeM1(S,S) andM2(S, S) by settingM1(S,S) = {Cru1,Cond}, whereCond=
Condys if Condy; € Condy2 or Cond= Condy, elsewise; removiM2(S,S) from
M(S,S)
Step2 merge mappings witBondy; = Condyz: if Condy1 = Condyz mergeM1(S,S)
andM2(S, S) by settingM2(S,S) = {Cr,Condy2} whereCr = Cry1 UCry2; remove
M1(S,S) from M (S,S).}.

At step 3 of the query replier procedure, the peer augmentsuhbcessively refor-
mulated query version using automatic rewriting. In ordedd so, the concepts @,
have to be translated into respective conceptd#y, so that the mappingd/ (S, S)
can be used as input to the automatic matcher and new mapgangse formed be-
tweenS andS. MappingsMgra andMgyt are produced by the peer’s schema matching
tool. MappingsMg, are created by the mapping production procedure that pesdoree
mapping for each pair of input querieQqrig, Qsr : essentially the queries form the
GLAV mappingQorig:-Qsr Where only the present elements are involved.



XXX

Example Suppose thaorig is translated t@,ups_ideal With the obvious correspon-
dences. Then, we obtain the following GLAV mapping:
MipavisDB LuDB:
Visitspavispe(Pid, _, Did),Diseasgavispe(Did, _, Ache), Treatmemkyisps(Did, Drug,
_):-Disease,pg(Did, -, Drug), Patientg,pg(Insurance, Did, _, Ache),{Pid = Insurancé}

When the query replier gets the evaluation of the initiatarfreshes the existing
mappings by removing bad correspondences. These onespti@skde, inBBCr(S, S).

As a final step mappings are merged in order to avoid redundattthing infor-
mation. Thus, mappings that are contained in others (wighcthssical meaning) are
eliminated.

Example Remember the mapping:
MstuartDB LuDB!
Treatmengiyaripe(Pid, _, -, Symptom,, .):- Diseasgyps(Did, AvgFever, ), Patients,ps
(Insurancg, Did, _, ), Age < 13, {Pid = Insurancg, Symptom= AvgFevek

Suppose that StuartDB and LuDB create a new mapping, thatiiesto the above,
but less restrictive:
MStyartDB LuDB" _ _ _ _
Treatmengiyaripe(Pid, _, -, Symptom,, .):- Diseasgyps(Did, AvgFever, ), Patients,ps
(Insurancg, Did, _, -), {Pid = Insurancé, Symptom= AvgFeve}

Then, the merging oMstuartor Lube, M§uaripe Lups €liMminates the first, since it is
contained in the second.

Also, mappings with the same constraints are summarizedemaapping with the
same constraints that contains all the respective cormelgmzes. Again, suppose that
StuartDB and LuDB have the mappiMstuartpa Lups @and they create the mapping:
MgtyartpR Lubs*

Treatmengiyaripe(_, -, Symptom,, _, ):- Diseasgpg(Did, AvgFever, ), Patientsyps(_,
Did, ., .), Age < 13, {Symptom= AvgFeve}

The M, aripa Lups IS €liminated sincstuarpr Lups contains the correspondence
Symptom = AvgFever of the first.

5.4 Clustering Example

To give an example of the clustering process we refer to thatsdn of the motivating
example in Section 1. Dr Davis poses the qu@gyig Which is successively rewritten
asQstuartpa sr 0N StuartDB and a®_,_sr on LUDB. The successively rewritten version
QLups_sr is augmented with the select attribute Disease.Drug usitap@atic matching.
Thus, the augmented successively rewritten query on LuDiBeifollowing:

QLuDB_sra:

SELECT P.Insurance#, D.AvgFever, D.Drug
FROM Di sease D, Patients P
WHERE D.Did = P.Did, P.Age < 13
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Also, the peer of Dr Lu uses automatic matching in order toritevirom scratch the
original queryQorig. With automatic matching, the concept ‘Ache’ Qg is matched
to ‘Ache’ on LuUDB rather than ‘AvgFever’ which was the chomfesuccessive rewriting.
However, automatic matching fails to discover that the epte ‘Pid’ and ‘Insurancg
both refer to the patients’ unique id. The produced query is:

QLubB.ar:

SELECT D. Ache, D.Drug
FROMV Di sease D, Patients P
VWHERE D.Did = P.Dd

The Dr Lu peer calculates the value for the similarity fuactrepresented by equation
(6) without weights for the rewritten versions:

Msim(QoriQp QLubB.sra) = 1-(2+1)/7 = 4/7,

Msim(Qorig, QLuDB,ar) =1-3/7=4/7

The original queryQorig has 5 'select’ attributes and 2 conditions. Thus, there are 7
query elements to be rewritte@, yps_sra 2 Of the ’'select’ attributes are not rewritten
and there is 1 additional condition. @ ypg_ar there are no additional conditions. Yet,

3 of the 'select’ attributes 0Qqrig are not rewritten. Note that the combination of the
join constraints 0Qqrig is rewritten to a single join i upp_sra and iINQLupga_ar; thus,

all of them are satisfied.

The peer decides to answer Qg,ps_sra VErsion since it is considered safer than
QLupB_ar in terms of rewriting. Thus, it sends back to Dr Davis the agrspacket:
AnsLuDB(Qorig , QLuDB_sra, Re$QLupB sra) )»

The query initiator evaluates the received answer with #meMsin function (for
simplicity we assume that the returned tuples are not takenadccount). Thus, Dr
Davis decides that the correspondence ‘Ache’ = ‘AvgFeverhot satisfying; how-
ever, the rest of the correspondences seem fine. Dr Davissstioe similarity value
Msim(Qorig, QLubB_sra) and replies to Dr Lu with the evaluation. Thus, the Dr Lu peer
creates the first possible mapping with the peer of Dr Davis:

MpavisDB LuDB:

Visitspavisps (Pid, _, Did), Diseasgavisps (Did, _, _), Treatmentavisps (Did, Drug, ):-
Diseaseyps(Did, -, Drug),Patients,pg (Insuranceg, Did, _, ), {Pid = Insurancé}

Note that the mapping created on LuDB refers to the entirersehof the latter but
only to a portion of the schema encapsulate@ing of the remote peer of Dr Davis.
Moreover, Dr Lu keeps ‘Ache’ = ‘AvgFever’ as a bad correspameck. Further on, let us
assume that Dr Lu receives again the s&@pg initiated by Dr Davis through the peer
of Dr Stuart. Again the successively rewritten version is gheviousQ, pg_sr. This
time Dr Lu knows that ‘Ache’ is badly matched with ‘AvgFevemd thus removes this
correspondence fro@,yps_sr- It concludes with the following augmented successively
rewritten version:

QLupB_sra’
SELECT P.Insurance#, D.Ache, D.Drug

FROM Di sease D, Patients P
VWHERE D.Did = P.Did, P.Age < 13
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Using the new mapping, the peer of Dr Lu rewri@sig automatically as:
Q,LuDB,ar:

SELECT P.Insurance#, D.Ache, D.Drug
FROM Di sease D, Patients P
WERE D.Did = P.Dd

Note thatQ[ ,pg 4 IS the quenQLupe._ideal described in Section 1 as the ideal translation
of Qorig On LUDB. The peer of Dr Lu calculates the value for the sinitiyafunction
(equation (6)) for the rewritten versions:

Msim(Qoriga Qll_uDstra) =4/7, Msim(Qorig7 Ql/_uDBfar) =5/7

Dr Lu decides to answer the automatically rewritten versidius, it sends back to Dr
Davis the answer packet:

Ang ,pB(Qorig, Q ups_ars R€$Q ups_ar))- Dr Davis replies to Dr Lu that all matchings
in the rewritten query are satisfying; Dr Davis decides thataverage value ®flsjy, of

the answers by Dr Lu is enough for asking him to become hisaintpe. Dr Lu forms
the mappindMp,ispe Lups ©f Section 1. The mapping merging procedure eliminates
Mpavisbe LubB SINCEMp4vispe Lups CONtains all the correspondences of the first and the
two mappings have the same constraints. The two peers glhead a mapping to start
their acquaintanceVljy,,ispg LuDB:

5.5 Discussion on otheGrouPeer Issues

In this section we discuss some details about the netwodkiagacteristics odBrouPeer
Furthermore, we discuss the usage of automatic schemain@tatGrouPeerand the
feasiblity of our approach.

GrouPeer Protocol Internals In the following we describe basic algorithm internals,
specifically the query routing scheme and the additiontaelef acquaintances.

1) Routing:Our method utilizes informed walks with a TTL parameter idenrto
propagate queries to nodes in the overlay. The requestéryddpwalkers, each fol-
lowing independent paths. A node forwards a query to thehteigs) whose schemas
have the highest similarity value w.r.t. this query.

2) Adding/dropping acquaintee®/e augment our clustering algorithm by allowing
the dropping of existing neighbors in order to gradually ioye on the random initial
setup: New acquaintees are added whenever the local éealaserage is ovep and
existing ones are dropped when its value is be@pwvow, provided we have received
at leastT HRreplies from that node. This confidence parameter is impbttaensure
that the local evaluation is based on an adequate numbereoieguWe also define a
maximum number of connections per peer, MAXDEGREE, whialtde a neighbor
addition to be preceded by the dropping of the neighbor wighsimallest schema sim-
ilarity if this limit is reached. A link is dropped whenevéret local evaluation average
is belowBp 0w, provided the degrees of both nodes are at least MINDEGREES. T
ensures that peers do not get disconnected from the network.
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Automatic Schema Matching Schema matching is a fundamental issue in the database
field, from database integration and warehousing to theynpraposed P2P data man-
agement systems. As discussed in [36], most approachesstpribblem are semi-
automatic, in that they assume human tuning of parametatiaal refinement of
the results. This is also the case in some recent P2P datageraeat approaches
(e.0., [33]).

However, in our context, schema matching assists querymeflation and its per-
formance is boosted with increasing input mappings. Thus,feasible to use a tool
that produces schema matches without human interferepeeifigally, well-known
matchers such as [10, 26, 34] and [9] benefit substantialiy fexisting mappings and
correspondences and are able to produce good matchingsdoratee first. In our case,
successively rewritten query elements as well as mappirggiiped with earlier feed-
back from the query initiator can provide enough aid to thHeesta matching tool, so
that it can discover further matchings. In addition, the that we limit our study to
simple SPJ queries that do not require complicated rewstimakes the problem eas-
ier to solve, (clearly, considering more complicated qeermay even make the use of
schema matching tools impossible). In general, our metloes dot expect automatic
schema matching tools to discover more sophisticatedaatabther than simple cor-
respondences.

Furthermore and in our context, automatic matchers areuslsd to rewrite queries
from scratch, without any input mappings. In this case, walaithe inherent capa-
bility of matchers to discover correspondences betweesetiosemantically related
words based on their internal general dictionaries. Adogty, the role of matchers is
to reveal a possible close semantic (and even structutatjae of the two schemas.
For example, assume that two remote peers have almost the drama. Then, an
automatic matcher could certainly find out their schemalanity. Similarity between
source and target schemas is observed in domain-specificams. The reason is
that: a) they store the same kind of data, b) there are spedificies for designing
databases of specific domains and c) there are popular datpbaducts used in vari-
ous fields. In our example, private doctors in general andialbe doctors in particular
have to store the same kind of information, which is not of dewariety: i.e., they
care about listing their patients, their medical histgrtbsir patients’ visits, their own
diagnosis and their own prescriptions for their patientsrédver, it could be the case
that some of these specialists use the same commerciabtstire their information.
Obviously, for peer-databases with so similar schemas asi@avisDB and StuartDB,
query rewriting can be done easily, even with speculatidtiseoschema mapping.

6 Performance Evaluation

To evaluate the performance GfouPeer we use a message-level simulator written in
C. By default, we randomly choose 100 nodes that play theafalee requesters, each
making 100 queries to the system. We present results fo040@e random graphs
(an adequate number of participants regarding our matigadpplication) with aver-
age node degrees around 4, created byBIRETE [27] topology generator. Results are
averaged over 20 graphs of the same type and size, with 180m@ach.
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For the schemas stored at each node, we use two initialoetdtschemas, whose
tables and attributes are uniformly distributed at nodée. ifhitial schema comprises 5
tables and 33 attributes. Seven attributes are keys witkahdb11l mappings (corre-
spondences) between them. Each peer stores 10 random ¢ébtens (attributes) on
average. Queries are generated randomly on the schemalofezpeester. They are
formed on a single or multiple tables if applicable (join fas) by randomly select-
ing. Thus, peer similarity and schema/query similarityaseontrolled. The kind of the
initial schemas or the kind of queries that are used do naiénfte the experimental
results. The latter can be influenced by parameters thattdfie initial similarity of
peer schemas and queries, i.e. the size of the initial schehmsize of peer schemas
and the size of the queries. We experimented with largernsakg90 attributes over
12 tables) and a flat 100-attribute single table (no mappb&gaeen attributes). Be-
cause the creation of the individual schemas is computeergéed, an increase in the
schema reduces the amount of the default similarity betweeles (unless more at-
tributes are distributed per node). Nevertheless, the itapbobservation is that, in all
cases(GrouPeermaintains its relative advantages and behaves in a siragaidn.

Our basic performance metrics are the average similarigcouracyof answers
to the original queries (i.e., the structural similarity to answered query over the
original one evaluated at the requester), as well as the euoflmodes that provide an
answer. The accuracy is confined to the structural simjlatitce it aims at studying
the effectiveness of th@rouPeerclustering process without human intervention.

Clustering Results For the automatic rewriting of the original query, we sintalthe
possible erroneous outcome by altering the “perfect” rémgiby 50%. This is then
gradually ameliorated through our learning process. Wehg&emaximum number of
allowed hops per query TTL=6, the number of deployed walkets 3, as well as
Bp = 0.7 andBp Low = 0.3 using a threshold parameterfiR=5 replies. Acquaintees
can be dropped for nodes who have more than two neighborally;iwe assume that
the returned tuples do not play any role to the answer evafuat

In this study we present experiments that focus on paramétat can affect the
relative clustering in a non-predictable way. These are:nihmber of queries per re-
quester, the size of the queries, the number of requestdditidnally, we check the
clustering performance for queries that contain congsgjoins).

Figure 5(a) shows the performance of our algorithm by vayytime number of
queries posed by each of the 100 randomly selected regsieGer method manages
to return far more accurate results, achieving a similarftground 85% in the steady
state. The accuracy increases fast as more queries aredsremice new acquaintees
are added and neighbors with no contribution are droppedaldée present in more
detail the experimental results f@rouPeerby analysing them in the respective val-
ues for answering the automatically rewritteQa{ °) and the augmented rewritten
versions of Qsra) the query. Both the automatically and the augmented coiisec

16 Actually, since we do not assume the existence of an automatic matcher gimihkation
other than the straightforward one that can produce id correspoasleheQ;, is reduced to
the original query. Thus, the experimental results show that even éowdhst situations of
automatic matching, the clustering procedure performs very well.
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rewritten queries are answered with more precision. Ouhaw$ learning feature al-
lows the automatic rewriting of the original query to impeowver time as mappings
are built between requester-replier pairs. Our clustenmeghanism helps into bring-
ing more information-rich nodes closer to requesters whlsh increases the accuracy
of the consecutive rewritings. Our scheme is compared agidaive which uses the
same forwarding scheme as our method but answers only tlesgicely rewritten
query version. Our method can never fall beldaives performance but steadily per-
forms better with more queries. Moreover, note that for Irgqper requester (thus, for
an overlay on which no clustering is performed), answerireyaugmented consecu-
tively rewritten version is still better than answering fhlain consecutively rewritten
version (Naive. Also, answering the original query, without classicalwriting it,
gives low quality results without clustering the overlaindily, our scheme is almost
as bandwidth-efficient adaive since the few additional messages reported are due to
the communication between sources and requesters dugrigaming mechanism, as
well as the messaae exchanae when a new acauaintance is made.
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=--o GrouPeer rewritten Qu — | ¢ -° Naive ]
—= Naive s
- . o =
s s
= 2
57 s
£ £
2N 7}
50 |
20 | | 20 | |
1 10 100 1 10 100
Queries per Requester Queries per Requester

(a) Similarity of answered versions to t (b) Similarity of answered versions of join
original query forGrouPeerand Naive over queries over variable queries per requester
variable queries per requester.

=
(=3
=]

T T

o---o 500 requ

— o—o 100 requ T
*--x 10 requ -

©
o

80

70

60

% of optimal clustering

508

20 Ll Ll
1 10 100
Queries per Requester
(c) Ratio of GrouPeeis clustering versus the
optimal, given an equal number of acquaintees

Fig. 5. Experiments on the clustering procedure
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Table 1. Performance varying the number of query attributes

Similarity |Clustering
attr = 2,queries=100 0.87 80.2%
attr = 2,queries=500 0.89 82.1%
attr = 4,queries=100 0.80 86.1%
attr = 4,queries=500 0.84 88.4%
attr = 6,queries=100 0.71 83.0%
attr = 6,queries=500 0.76 84.5%
attr = 8, queries=100 0.67 80.0%
attr = 8,queries=500 0.71 81.0%

Next, we monitorGrouPeets performance by specifically tracking join queries in
the same setting as the previous experiment. Figure 5(byssitioe results for our
method and two different versions dfaive The regular one we described before
(which allows the rewriting of a join query even if the joimiet mapped — lik&rouPee)
and one that returns an empty query if the join(s) are noepvesl. As before, we notice
that GrouPeerperforms at least as good as the original naive method arwklgun-
creases in accurate answers as more queries are genetetedofie strict naive method
returns more similar results for few queries compared tosscheme. This happens as
this method favors a complete (and thus more accurate)timeguriNevertheless, this
comes at a cost of retrieving an answer from about 1/3 of teespbatGrouPeergets
answers from.

We also examine the quality of the clustering process as asmgfdocating nodes
with similar schemas. For each requester, we measure tmagavsimilarity with its
acquaintees at the end of the querying process and compaith ithe best possible
scenario: Having all topa nodes in the overlay with schemas most similar to the ini-
tiator being its acquaintees, whareis equal to the total number of acquaintees this
node has at the end of the querying process. We report tleeafathe actual average
similarity to this optimal value in Figure 5(c).

Our methodology achieves clustering that is very closeadtist achievable value
in the steady state, while its quality quickly reaches thael. As more nodes become
active, the process improves, sinc&rouPeemodes can take advantage of their neigh-
bors’ knowledge/connectivity. The ideal restructuring@sd to be achieved because of
the random initial connectivity: The most similar nodes mayall receive queries and
thus are not considered by the clustering process. Spdlgifitades may either be out-
side the query range or be left out of walkers’ paths. By hgwitore active nodes, our
method effectively reduces the influence of the latter,esiquery initiators get replies
by better nodes, taking advantage of other requestersecing. Figure 5(c) shows that
in the steady state and with 10, 100 and 500 requestgosiPeerachieves 77%, 88%
and 91% of the optimal clustering respectively. We can ifie@8% of the optimal
nodes in the entire network by having only 10% active nodesesath of them con-
tacting at mosk x TTL = 18 nodes per query (this amounts to less than 2% of the
peers).
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Table 1 summarizes the performancezsbuPeerwith a different number of query
attributes (each requester making 100 or 500 queries). &atimber or attributes per
query increases, the accuracy of the answers slightly dsipse a smaller percentage
of attributes has the chance to be satisfied. Note that thi&ygo&the clustering in-
creases up to a point, after which it starts to slightly dasee This is due to the fact that
there are two competing factors that affect the clusternoggss: The more attributes in
a query, the more precise the clustering process becomes,tsie initiator learns more
information for its schema as a whole; the query similanthich affects clustering
through theEv function), on the other hand, decreases with the numbetridfaes.

We tested our method in graphs of different sizes (from 100Kkmodes) and dif-
ferent connectivities (power-law). Results of these ruescaalitatively similar to the
presented ones.

7 Related Work

The Chatty Web [1] considers P2P systems that share semettgted or structured in-
formation. The authors are concerned about the graduahdatjon, in terms of syntax
and semantics, of a query that is propagated along a netvatink [However, the Chatty
Web approach considers peers that own very simple reldtschamas and GAV map-
pings with their acquaintees. Instead, we are interestetbire complex peer schemas
and we consider GAV, LAV or GLAV mappings.

In [42], the authors propose optimization techniques fargueformulation in P2P
data management systems. They focus on minimizing the tregrdf a query and
pruning the respective propagation path in order to avoitimdant reformulations.
Additionally, it is indicated that pre-computation of theegy reformulation path-tree
proves to accelerate the reformulation procedure dedptdisadvantage of the neces-
sary maintenance of pre-computed mappings. Our approagedcsfically designed for
large-scale unstructured overlays. First, it evades mafitation at peers poor in query-
relevant information by adaptively choosing the versiorhaf query to be answered.
Moreover, while the work in [42] requires central knowledufethe system structure,
our scheme enables nodes to operate in a completely ddcadrashion, utilizing the
standard lookup operations to refine their local knowledge.

PeerDB [33] facilitates relational data sharing without achema knowledge. Query
matching and rewriting is based on keywords (provided byugers). A two-step pro-
cess is described: First all nodes within a TTL radius areamiad, returning prospec-
tive answer meta-data. Then the user selects the ones¢hale@vant to the local query
and the requester directly contacts the selected sourdess#a for the results to the var-
ious rewritten versions of the query. Instead, our appreacploys an automated tech-
nique based on a combination of successive query rewritidgaery-schema match-
ing, while it utilizes bandwidth-efficient walks insteadtbg costly flooding scheme.

The works in [18] and [21] deal with data exchange betweersp&ef. [18] presents
a significant approach to the heterogeneity issue in P2Phaatagement and proposes
a language for schema mediation between peers. Also, therayiresent an algorithm
for query reformulation based on local-as-view as well asbagl-as-view query an-
swering. In [21], the authors describe mechanisms for tictadation of data exchange
policies on-the-fly based on ECA rules. They also proposengrgé architecture for
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peer-databases and elaborate on the establishment arnshaimit of acquaintances
between peers.

Beyond the above significant works, there are plenty that teaked about seman-
tics and semantic clustering of peers. The work in [8] is ofhéhe first to consider
semantics in P2P systems and suggest the construction ahsieraverlay networks,
i.e. SONSs. Later on, other researchers have attempted teygmt the a priori static for-
mulation of SONSs: the work in [39] suggests the dynamic awoesion of the interest-
based shortcuts in order for peers to route queries to nbdéaite likely more capable
of answering them. Inspired by [39], the authors in [44] Haban [19] exploit implicit
approaches for discovering semantic proximity based ohitttery of query answering
and the least recently used nodes. In the same spirit the iw¢tR] presents prelimi-
nary results about the clustering of the workload on thepepllar systems e-Donkey
and Kazaa.

Some of the well-known projects that have dealt with the tatarogeneity prob-
lem in P2P systems are [2, 16, 32, 41]. Edutella [32] is a sehkased network that
holds RDF data. Peers have services (e.g. quering, mappiegjating etc) that they
share with other peers. Peers can formulate complex qubeeare translated in wrap-
pers to queries on the Edutella Common Data Model. Peersteegheir services and
the kinds of queries they can answer to mediators. Thedatiige the incoming queries
to peers that are probably able to answer them. Edutellairst@resting effort towards
the solution of the heterogeneity problem both of data andss. However, it is not
focused on semantic clustering of peers and does not preppsésticated methods for
distributing queries to semantically relevant peers.

GridVine [2] is another project worth of attention. Basedeostructured (i.e. imple-
menting a DHT algorithm) P2P overlay network, P-Grid, Giirt/achieves the man-
agement and mapping of complex data and schemas of metaSgegeifically, RDF
data and schemas are hashed and indexed in peers. P-GBdgfeeto a common un-
derlying tree structure of characters. Each peer is agsdcigith a tree leaf, and thus,
with a string. GridVine allows schema inheritance and tieation and index of transla-
tion links that map pairs of schemas. Peers query RDF triplsimg the mapping links,
queries are iteretively or recursively forwarded to pekas tan answer them. Although
GridVine is an interesting approach and offers many featuetated to semantics, the
efficiency of the search algorithm is based on the underlfiHJ, thus the structured
form of the overlay, and not to semantic clustering of peers.

Similarly, pSearch [41] is a project that employs a DHT aitdon to build a solution
to the problem of data semantic diversity in peers. SpetliifigaSearch creates a se-
mantic overlay by mapping overlay nodes to physical nodesGAN [38]. Documents
as well as queries of peers are represented as semanticsveldiese are the keys to
store, index or search the documents in CAN. The Vector Sitacke| (VSM) and the
Latent Semantic Indexing (LSI) are used to create the seonagttors. As GridVine,
pSearch bases search efficiency on the structured form avitrday, and, thus, does
not solve the semantic diversity problem in an unstruct@®2@ system. Another disad-
vantage is that documents of newly-joined peers, with tefrasare not encapsulated
in the existing vector, cannot be indexed by them.
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Finally, Bibster [16] is a project that exploits ontologiaorder to enable P2P shar-
ing of bibliographic data. Ontologies are used for impatitata, formulating and rout-
ing queries and processing answers. Peers advertise ¥peirtise and learn through
ontologies about peers with similar data and interests.

Beyond semantic clustering, the work in [37] looks into tihehlpem of discovering
connectivity clusters of nodes in P2P networks, detectiegitansmission of the same
qguery multiple times at the same node.

8 Summary

In this paper we describe@rouPeer a methodology to solve the query degradation
problem in P2P data management systems in the absence af gtbiema information.
The key characteristic of our method is to allow peers tocsdites appropriate rewritten
version of the query to answer. Incorporating efficient ek between query initiators
and content providers, we achieve the discovery of rematespen query propagation
paths that are rich in interesting information but veiledoopr path predecessors.

In effect, with the described procedure we manage to surpesdoundaries of
successive query rewriting and reach hidden peers pettineaquested information.
Moreover, we have achieved the gradual training of remotesie@ order to ameliorate
query rewriting and give more accurate answers. Beyondpksrs develop candidate
mappings with remote peers using their feedback about thktyjef query answers.
These mappings facilitate the possible acquaintance guoedetween the respective
peers. Nevertheless, all these benefits have been achieeedh the sole exploitation
of queries posed in the system. Without any additional gees or metadata, peers are
enabled to discover remote peers with interesting infoionat

During this work, we also discussed and proposed techniguesckle the impor-
tant issues of query rewriting and query similarity in thetext of unstructured P2P
database systems.

InGrouPeer‘active’ peers, in terms of the number of initiated queried ¢he num-
ber of answered ones, are compensated more with informaiiout remote peers, than
inactive ones. Consequently, the P2P overlay is progregsolustered in groups of
peers with similar interests.

Experimental results show th&rouPeernodes quickly identify the vast major-
ity of best available peers by contacting only a very smathhar of peers per query.
The clustering process effectively increases the qualitii@returned results. Actually,
clustering according to interests of peers benefits theesisdely query rewriting pro-
cedure, since peers on query paths are steadily orderetdatgto schema similarity.
In addition, successively rewritten queries have the chamtravel longer paths before
being totally degraded due to poor peer mappings. The owésbetter quality of peer
query answers.

Currently, we extendsrouPeerwith a 'grouping’ technique that can follow the
clustering process. Actually, the grouping process irggadreate explicit groups from
implicit clusters of peers. Specifically, the grouping msg will create a schema that
is representative of the interests of the peers that belorgath cluster. The groups
(and therefore the group schemas) can be used in order téoaateleven more the
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the quality of query answering but also facilitate the jofmew peers in the groups
according to their interests.

In the near future we intend to implemeaitouPeeras a real system and experiment
with the clustering technique as well as with the query @ntiy and reformulation
approaches on real data and situations.

Finally, in the future we intend to applgrouPeerto P2P overlays that handle data
other than relational. We will focus on data that conform todels with more expres-
sive power, such as the 'Resource Description FramewaekRDF). We presume that
the potential of theGrouPeerapproach will become more apparent for data with rich
semantics.
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