
Towards an Algebraic Cost Model for Graph
Operators

Alexander Singh and Dimitrios Tsoumakos

Department of Informatics, Ionian University, Corfu, Greece
{p13sing, dtsouma}@ionio.gr

Abstract. Graph Analytics has been gaining an increasing amount of
attention in recent years. This has given rise to the development of nu-
merous graph processing and storage engines, each featuring different
models in computation, storage and execution as well as performance.
Multi-Engine Analytics present a solution towards adaptive, cost-based
complex workflow scheduling to the best available underlying technol-
ogy. To achieve this in the Graph Analytics case, detailed and accurate
cost models for the various runtimes and operators must be defined and
exported, such that intelligent planning can take place. In this work, we
take a first step towards defining a cost model for graph-based opera-
tors based on an algebra and its primitives. We evaluate its accuracy
over a state of the art graph database and discuss its advantages and
shortcomings.

1 Introduction

In recent years, we observe an increasing interest in Graph Data Analytics.
Initially driven by the surge in social graph data and analysis, graph analytics
can be utilized to effectively (and intuitively in many cases) tackle multiple
tasks in bioinformatics, social community analysis, traffic optimization in IoT,
optimization/robustness in power grids and large networks, RDF data, etc. In
graph analytics, the primitives of a data graph G, i.e., its vertices and edges are
mapped to problem entities and the respective relationships between them.

A continuously expanding set of approaches and tools have emerged, in order
to assist in efficient storage and computation of various algorithms over big data
graphs ((11; 2; 9; 1; 3), etc). These systems differ in one or more aspects, with the
most important being their storage and computation (or execution) model (16).
However, one size does not fit all: No single execution model is suitable for all
types of tasks and no single data model is suitable for all types of data. Modern
workflows consist of series of diverse operators over heterogeneous data sources
and formats. Multi-Engine Analytics has been proposed as a solution that can
optimize for this complexity and is gaining ground ever since (e.g., (6; 7; 12)).

One of the most critical challenges in such a multi-engine environment is
the design and creation of a meta-scheduler that automatically allocates tasks
to the right engine(s) according to multiple criteria, deploys and runs them
without manual intervention. For such a meta-scheduler to function properly,

accurate cost models of the operators utilized by the underlying platforms or
datastores must be defined or exported. The cost/performance tradeoffs will
be then evaluated by the scheduler in order to adaptively “mix-and-match”
operators to different engines in order to achieve a user-defined performance
function (relating to time, cost, accuracy, etc). Yet, while cost models have been
thoroughly studied in traditional systems (e.g, RDBMSs or traditional big data
platforms like Hadoop), this is not the case for Graph Analytics runtimes.

In this work, we take a first step towards this direction. Specifically, using
the algebra defined in (10), we describe the decomposition of common graph
operations down to primitive operators. We then devise a cost model and empir-
ically evaluate it using a state of the art graph database (3) loaded with varying
sizes and types of directed graphs and queries based on the presented decompo-
sitions. We assess the strengths and weaknesses of the resulting cost model and
identify factors that contribute to its accuracy. Defining an engine-based cost
model, that still originates from a general algebra, is a decisive step towards
multi-engine cost-based optimization of graph analytics workflows.

2 Related work

Inspired by the surging interest in graph databases, a number of works that
focus on foundations of graphs and graph-databases, RDF and triple-stores have
appeared.

An algebra for RDF Graphs was presented in (14), focused on querying large-
scale, distributed triple-stores on shared-nothing clusters. The authors present
the algebra as well as denotational semantics for it, while additionally presenting
some preliminary experimental results. Another algebraic framework, also focus-
ing on RDF data querying, was presented in (8). This work focuses on defining
an algebra to be used in the formal specification of an RDF query language. It is
presented as a set of extraction, loop, construction and other operators, focusing
on both the constructive and the extraction-related aspects of an RDF query
language.

A SPARQL algebra to be used as the foundation for optimizing SPARQL-
queries was presented in (15). The authors define set-based semantics for SPARQL
via a set algebra, further providing algebraic equivalence rules to be used for op-
timization purposes. They also identified fragments of SPARQL together with
their complexity classes. Another SPARQL-related work was presented in (5), fo-
cusing on the transformations from SPARQL to the more traditional relational
algebra framework. The author discusses this transformation framework, the
mismatch between SPARQL and relational semantics and additionally outlines
an SQL-based translation.

An algebra and related equivalence rules on transformations of graph patterns
in Neo4j’s property graph model is presented in (10). A set of operators for
retrieval and selection of edges and nodes is discussed. These operators result in
the output of graph relations. Additionally, a set of equivalence rules is presented
to aid in query optimization. A demonstration shows how these equivalences

can be used to algebraically transform Cypher queries at the logical level, and
a performance example is given, in terms of database hits, comparing the query
evaluation plan found by Neo4j to the one given by the equivalences.

A presentation of a foundational framework for RDF databases is made by
Arenas et al. (4), which includes a sound-and-complete deductive system focused
on RDF-graph entailment. The work also includes discussions of algebraic syntax
and compositional semantics for SPARQL, its expressive power, complexity con-
siderations of evaluating various fragments of it and the optimization of SPARQL
queries. A discussion on the issue of RDF-based queries in an RDFS framework
is also included and an extension of SPARQL with navigational capabilities is
presented.

3 Algebraic Framework

3.1 Data Model

The data model in this work is based on the notions of property graphs and
graph relations (see (10)), defined as follows:

Definition 1. Property Graph
Let G = (V,E,Σv, Σe, Av, Ae, λ, Lv, Le) be a property graph, where V is a set
of nodes, E is a set of edges, Σv is a set of node labels, Σe is a set of edge
labels. We also have that Av is a set of node properties, while Ae is a set of
edge properties. Let D be a set of atomic domains, then a property αi ∈ Av is a
function αi : V → Di ∪ {ε} assigning a property value from a domain Di ∈ D
to a node v ∈ V , if v has property ai - otherwise ai(v) returns ε. Accordingly,
a property αj ∈ Ae is a function αj : E → Dj ∪ {ε} which assigns a property
value from a domain Dj to an edge e ∈ E, if e has property αj, else aj(e) = ε.
Finally, λ : E → V ×V is a function that assigns nodes to edges, Lv : V → Σv is
a function that assigns labels to nodes, and Le : E → Σe is a function assigning
labels to edges.

Definition 2. Graph Relation
Let G be a property graph. Then, a relation R is a graph relation if the following
is true:

∀A ∈ attr(R) : dom(A) = V ∪ E (3.1.1)

where attr(R) is the set of attributes of R (i.e., columns) and dom(A) is the
domain of attribute A.

3.2 Base Operators

Our algebraic framework is built on the definition of two primitive operators,
getNodes and expand (10). These two operands can then be composed in order
to produce higher-level graph operations. We proceed with their description,
assuming a static graph G to operate on.

Definition 3. getNodes Operator
Consider a property graph G. The getNodes operator (denoted by ©) takes
as argument a label x and outputs a graph relation with a single attribute x
containing all the nodes of G:

val(©x) = V, (3.2.1)

sch(©x) = 〈x〉 (3.2.2)

Where val(R) is the set of tuples in R and sch(R) is the schema of R.

Definition 4. expand Operator
Consider a property graph G. The expand operator, which takes as inputs a
relation R, an attribute x ∈ attr(R) and a new attribute label y, works by ex-
panding the graph relation R to include the immediate neighbors of nodes under
x reachable by an ingoing or outgoing edge. It does so by adding a new column
y to R, containing the nodes than can be reached by an ingoing or outgoing edge
(see below) from nodes of x. It comes in two variants, an expandIn (denoted by
↓yx) operator that selects neighbors that are reachable by ingoing edges, and an
expandOut (denoted by ↑yx) which selects based on outgoing ones respectively:

val(↑yx (R)) = {〈t, e, v〉|t ∈ val(R) ∧ e ∈ E ∧ λ(e) = (t.x, v)} (3.2.3)

sch(↑yx (R)) = sch(R)‖〈xy, y〉 (3.2.4)

where val(R) is the set of tuples in R, sch(R) is the schema of R, and ‖ denotes
concatenation of schema tuples. The semantics of ↓yx can be defined in much the
same way:

val(↓yx (R)) = {〈t, e, v〉|t ∈ val(R) ∧ e ∈ E ∧ λ(e) = (v, t.x)} (3.2.5)

sch(↓yx (R)) = sch(R)‖〈yx, y〉 (3.2.6)

Apart from the aforementioned operators, we will also utilize the traditional
relational algebra operators: select (σ), project (π) and join (./), which operate
on graph relations with similar semantics to the traditional sense. As an example
of the definitions above, consider the example of applying ↑yx (©x) on a graph
G, as shown in Figure 1.

3.3 Cost Model

We now define space and time costs for the getNodes and expandIn/expandOut
operators. We note that the cost model is implementation-specific with multi-
ple practical factors such as algorithmic implementation, the underlying data
structures, relational operator implementation, etc having an effect on it. For
simplicity, we consistently assume bare-bones implementations, i.e., graphs im-
plemented as lists V,E containing nodes and edges (as node-tuples) respectively,
joins using naive loop algorithms, etc. This assumption does not compromise our

Fig. 1. Example of operations on graph

methodology, as factors can be modified and be “plugged in” to match the im-
plementation at hand. We measure cost in terms of both (predicted) space/row
count of the relations produced by each operator and (predicted) time/primitive
operations taken to compute each query. The cost of the getNodes operator only
scales with respect to the number of nodes present in our graph:

SpaceCost(©label) = O(|V |) (3.3.1)

OpCost(©label) = O(|V |) (3.3.2)

The costs of the expandIn and expandOut operators scale with respect to
the size of the input graph relation, as well as the average number of ingoing/out-
going edges per node of our graph respectively:

SpaceCost(↑targetLabel
sourceLabel R) = O(dout · SpaceCost(R))

SpaceCost(↓sourceLabel
targetLabel R) = O(din · SpaceCost(R))

(3.3.3)

OpCost(↑targetLabel
sourceLabel R) = O((|E|·SpaceCost(R)) +OpCost(R))

OpCost(↓sourceLabel
targetLabel R) = O((|E|·SpaceCost(R)) +OpCost(R))

(3.3.4)

where R is a series of operations resulting in a graph relation, and din and dout
is the average number of ingoing and ougoing edges per node in G, the property
graph we operate on.

Note that computing the cost for compositions of operators is done via re-
cursion. For instance:

SpaceCost(↑yx (©x)) = (dout · SpaceCost(©x)) = dout · |V | (3.3.5)

OpCost(↑yx (©x)) = O(|E|·SpaceCost(©x) +OpCost(©x) = O((|E|·|V |) + |V |)
(3.3.6)

4 Graph Operator Decomposition

In the following subsections we describe decompositions of frequently-used graph
operations using the operators defined above.

4.1 Finding cycles

Consider the task of querying a graph database for cycles. This is a popular oper-
ator found in many use cases (e.g., SPARQL query processing (13)). Expressing
this query in terms of the base operators depends on the edge orientations we
want to consider. For example, if we are to consider squares (cycles of size 4)
formed with outgoing edges, the query can be expressed as seen in the left sub-
figure of Figure 2. Similarly, we can make use of expandIn operators for the
ingoing case, or even mix the two operators to find cycles of mixed, but defined
beforehand, edge orientations.

σx.id=u.id∧x.id6=y.id6=z.id 6=w.id

↑uw

↑wz

↑zy

↑yx

©x

σu.id=y.id∧x.id6=y.id6=z.id 6=w.id

↑uz

↑zw

./a,x

↑yx

©x

↑wa

©a

Fig. 2. Two alternative decompositions of the square query.

Another way to translate the above square query can be seen in the right
subfigure of Figure 2. Note that both queries will return graph relations that
potentially contain rows that describe the same cycle – each one traversing a
cycle’s nodes in a different order.

We can now compute the costs of these two queries. We know that both
queries will return the same results after the final selection, namely all the
squares found in our graph. We also cannot compute the space costs for such
a selection without knowing more about the number of squares in our graph.
Thus, we only consider the costs up to that selection. For the first query, the
cost is1:

SpaceCost(↑uw ◦ ↑wz ◦ ↑zy ◦ ↑yx (©x)) = O(dout
4 · |V |) (4.1.1)

OpCost(σK◦ ↑uw ◦ ↑wz ◦ ↑zy ◦ ↑yx (©x)) = O((|E|·(dout3 · |V |)) + (|E|·(dout2 · |V |))+
(|E|·(dout · |V |)) + (|E|·|V |) + |V |)

(4.1.2)

1 we use the notation ◦ to denote composition of functions

where K → u.id = y.id ∧ x.id 6= y.id 6= z.id 6= w.id. For the second query,
we begin by observing that the two inputs of the join are essentially the same
relation. From that we can deduce that the resulting relation has the same size
as the first input multiplied by dout (since for each row in the first argument,
we’ll get dout rows in the joined relation), and so we can replace SpaceCost((↑wa
©a) ./a,x (↑yx ©x)) with dout

2 · |V |. For the operations cost we use OpCost(A ./
B) = (SpaceCost(A) ·SpaceCost(B)) +OpCost(A) +OpCost(B), based on the
complexity of a nested loop join (for simplicity). We also set OpCost(σA) = |A|.
The costs are then the following:

SpaceCost(↑uz ◦ ↑zw ((↑wa ©a) ./a,x (↑yx ©x))) =

O(dout
2 · SpaceCost((↑wa ©a) ./a,x (↑yx ©x))) (4.1.3)

OpCost(σK◦ ↑uz ◦ ↑zw ((↑wa ©a) ./a,x (↑yx ©x))) =

O((dout
3 · |V |)+(|E|·(dout2 · |V |))+(|E|·(|V |·dout))+((dout

2 · |V |) · (dout2 · |V |))+
(|E|·(dout · |V |)) + (|E|·(dout · |V |))) (4.1.4)

The above queries can be readily expanded to detect cycles of length greater
than 4. In general, we could also consider squares with edges of any orientation
by including both variants of the expand operator in our expression and filtering
appropriately. Finally, we might be solely interested in cycles “centered” around
a specific type of node, for instance nodes with a name attribute whose value is
“Alice”. In such a case, we can include an additional selection operation in the
above trees, right after the bottom-most ©x operation.

4.2 Random Walk, Path, and Star-path

Another frequently used graph query is that of performing an n-step random
walk, starting from a specified node x. Such a query can be used to detect s− t
connectivity using very small amounts of space. To this end, we can introduce
a new operator RandRow(R) which selects a random row from a graph relation
R. An example of a 2-step random walk, starting from a node with id = ID is
depicted by the left subfigure of Figure 3.

Another interesting path operator is the star-path. In a star-path we wish
to find a path between two nodes of interest and further want to expand the
resulting graph relation to also include the neighbors of all nodes between the
two terminals. We can make use of the random walk procedure to find n-length
paths. For example, if we want paths of length n = 2, assuming the terminal
nodes have ID1, ID2 respectively, there is only one inbetween node and our query
can be seen in the right subfigure of Figure 3. If successful (i.e., there exists a
path of length 2 between the two terminals), it would add all the neighbors of the
inbetween node under the attributes “a”, for those connected to it via outgoing
edges, and “b”, for those connected via ingoing ones.

RandRow

↑zy

RandRow

↑yx

σx.id=ID

©x

↓ay

↑by

σz.id=ID2

↑zy

RandRow

↑yx

σx.id=ID1

©x

Fig. 3. A random 2-walk (left) and a star-path between ID1 and ID2 (right).

4.3 Grid query

By appropriately combining multiple square queries we can create a new operator
that detects grids in a graph. To do this, we require access to a function that,
given a graph relation R, adds a new attribute uniqueV alues to it, containing
the number of unique values per row (see Figure 4 for an example). Once again,
structuring our query appropriately is largely dependent on the specific edge
orientations we need to consider.

5 Experiments

5.1 Experimental Setup

We have implemented the aforementioned algebra of graph operators and rela-
tions in Python using Neo4j (community edition 3.1.2) as the graph database
and the Neo4j Python Driver neo4j-driver to facilitate communication with
it. The platform was setup on a 8GB, Ubuntu 16.04 VM. Data graphs were
generated using the NetworkX Python library. The queries benchmarked consist
of a random 4-path and two square queries but modified to match a cycle with
vertex/edge pattern x ← y → z ← w → x (see Figure 5), so as to include both
ingoing and outgoing edges and be of more interest than the plain query shown
above. The actual time and space costs for queries presented in the benchmarks
were obtained by averaging over 10 random graph relations samples for each of
the queries executed. Queries that resulted in empty relations (i.e., happened
to start on nodes that no cycles where centered on) were discarded. The pro-
jected time and space costs were obtained by applying our cost model, using

σuniqueV alues=9

./c,h,k,r

πp,q,r,s

σN

↑ts

↑sr

↑rq

↑qp

©p

πk,l,m,n

σM

↑on

↑nm

↑ml

↑lk

©k

πf,g,h,i

σL

↑ji

↑ih

↑hg

↑gf

©f

πa,b,c,d

σK

↑ed

↑dc

↑cb

↑ba

©a

Fig. 4. Grid query, where K ← a.id = e.id ∧ a.id 6= b.id 6= c.id 6= d.id, L ← f.id =
j.id ∧ f.id 6= g.id 6= h.id 6= i.id, M ← k.id = o.id ∧ k.id 6= l.id 6= m.id 6= n.id,
N ← p.id = t.id ∧ p.id 6= q.id 6= r.id 6= s.id

node count, edge count, indegree/outdegree, etc., statistics provided by the Net-
workX library (see Table 1). To compare the projected number of operations to
actual time costs in seconds, the projections were multiplied by constant factors.

Table 1. Statistics for graphs used in our benchmark, grouped by type of graph.

Type Node Count Edge Count Average Indegree/Outdegree

Small Random 35 [242-1190] [6.9143-34]

Dense Random [1K-10K] [5046 - 49639] 5.06

Sparse Random [1K-10K] [1998 - 19887] 2.04

Scale-Free [1K-10K] [2138 - 21439] 2.16

5.2 Results and Discussion

We now present the results of our benchmarks that compare the predictions of
our cost model against actual costs obtained from Python implementations of
each query over a Neo4j database.

We start with an idealized situation: Consider a small graph of fixed node
count n = 35, where each node has a probability p to connect to any other
node in the graph. By steadily increasing p we slowly approach a regular graph,

σx.id=u.id∧x.id6=y.id6=z.id 6=w.id

↑uw

↓wz

↑zy

↓yx

©x

σu.id=y.id∧x.id6=y.id6=z.id 6=w.id

↓uz

↑zw

./a,x

↓yx

©x

↓wa

©a

Fig. 5. The two square queries, thereafter referred to as SqrOne (left) and SqrTwo
(right).

a situation in which our model’s predictions will theoretically perfectly match
the actual results. For the two square queries mentioned before, we showcase
the results in Figure 6 (graphs generated using the gnp random graph function
of the NetworkX Python Library, with increasing p). We note that the model
accurately predicts size costs and also provides good results for the time costs.

Yet, a very small close-to-regular graph rarely reflects real life data. In the
next benchmarks, we consider the projected and actual costs of two square
queries on three sets of graphs: A pair of sparse (with average indegree/out-
degree of around 2) and dense (average indegree/outdegree of around 5) random
graphs, generated using the gnp random graph with increasing n, and a set of
scale-free graphs generated using scale free graph2. For the two sets of random
graphs, we can see in Figures 7 and 8 that our cost model reasonably describes
the size behavior of the queries as well as the time behavior of the first square
query, while it is not as accurate for the second one. For the scale-free graphs, we
note in Figure 9 that the cost model we have described so far fails to capture the
behavior of the actual queries. The structure of the graphs is largely responsible
for this – the presence of large “hubs”, i.e., nodes that have a very large number
of ingoing and outgoing edges. This is especially true for the ingoing case, where
such hubs heavily skew the indegree statistics from a median of 0 to an average
of 2, the same as the outdegree average which however has a median of 1.

To deal with such a discrepancy in our model we need to modify it ac-
cordingly. An easy fix, assuming input graph structure was available, would
be to replace the dout and din factors with new ones that take hubs into con-
sideration. We do this by replacing dout with OutGoingmax/dout and din with
InGoingTrimmedmax/dTrimmedin, where OutGoingmax is the maximum out-

2 Using default arguments: alpha=0.41, beta=0.54, gamma=0.05, delta in=0.2,

delta out=0

Fig. 6. Space and time costs (actual and projected) of the two square queries on small
random graphs with increasing probability p of any two nodes connecting.

Fig. 7. Space and time costs (actual and projected) of the two square queries on dense
random graphs with increasing N.

degree, dTrimmedin is the trimmed average of indegrees, and InGoingTrimmedmax

is the maximum indegree after trimming : We only need to “trim” the top 1%
nodes (ordered by indegree) to obtain the predictions in Figure 9. We can see
that the modified costs more closely model the behavior of the actual queries
and capture the difference between the two queries: The first one consumes more
time and space than the second one, due to its use of more expandOut operations
with high dout factors as opposed to the second one which uses more expandIn
operations.

Respective results for random four-walks follow the same general trends and
can be found in the Appendix.

5.3 Including label information in the cost model

So far, we have discussed queries that only make use of global, non label-specific,
statistics such as the average in/out-degree. However, it is also of interest to
consider graphs that embellish edges with “label” or “type” data. To include
such information in our cost models we must consider the cases where the labels
are used in a query. Such a case, perhaps the most common one, is an expansion
followed by a selection based on the label type:

query = σxy.label=“labelType”◦ ↑yx R (5.3.1)

In computing the costs of such a query, we can modify our cost model to include
factors specific to the presence of labels. Note that the above query contains a
selection operation, and as we discussed in paragraph 4.1, computing the space
costs of a projection is very difficult unless we are supplied with relevant statistics
which we can use to deduce costs. Fortunately, in this specific case, such infor-
mation can be garnered from label-related statistics such as the in/out-going
degree of a node per label type. As such, we can make use of this to modify our
space cost as follows:

SpaceCost(query) = O(dlabelType
out |R|) (5.3.2)

where we use a superscript to denote the average degree as it pertains to a specific
label type. As an example, suppose we take the sparse random graphs used in
the previous experiments and assign to each edge a label l ∈ {label0, label1} with
a 0.3 probability of labeling it label0, and 0.7 of labeling it label1. We can then
compute the relevant statistics of in/out-degrees per label, whose sums should
agree with the “global” degrees din/dout we’ve used before. Now consider the
following query which makes use of a projection on the labeled edges:

query = σxy.label=“label0”◦ ↑yx ◦©x (5.3.3)

Then Figure 10 shows the relevant row-count benchmark of the actual query as
well the projected costs from the default cost model and the cost model presented
above. In general, it is quite more difficult to devise a cost model that includes
label-related factors, as opposed to the label-agnostic one we have discussed

Fig. 8. Space and time costs (actual and projected) of the two square queries on sparse
random graphs with increasing N.

Fig. 9. Space and time costs (actual and projected via default and modified models)
of the two square queries on scale-free graphs with increasing N.

earlier. One reason for that is the global behavior of the operators, in that they
do not differentiate between labeled edges at all: getNodes fetches all nodes in a
graph and expandIn/expandOut operate on all edges regardless of their label.
Despite this difficulty, it is crucial to develop a cost model that includes such
label-specific data, since much information about the characteristics of a graph
can be found by examination of label-related metrics.

Fig. 10. Space costs (actual and projected) of query(5.3.3) using both the default cost
model and the one modified to include label-related factors.

6 Conclusions

In this work we have presented an initial step towards creating algebraic cost
models for various graph operators. Based on a simple model, we have demon-
strated how various path operations can be decomposed and modeled utilizing
the primitive operators, and how their costs can be computed. Our initial results
show that, for a popular Graph DataBase, such modeling can quite accurately
predict operator performance and cost. While implementation and internal com-
putation models are important in devising model APIs, the structure and dis-
tribution of the graph itself can be of paramount importance. Thus, sampling,
summarization techniques and sound knowledge in Network Science emerge as
possibly critical factors towards the next steps in graph analytics modeling.

Bibliography

[1] Apache Hama. https://hama.apache.org/

[2] Apache Spark graphX. http://spark.apache.org/graphx/

[3] Neo4j. https://neo4j.com/

[4] Arenas, M., Gutierrez, C., Pérez, J.: Foundations of rdf databases. In: Rea-
soning Web. Semantic Technologies for Information Systems, pp. 158–204.
Springer (2009)

[5] Cyganiak, R.: A relational algebra for sparql. Digital Media Systems Lab-
oratory HP Laboratories Bristol. HPL-2005-170 35 (2005)

[6] Doka, K., Papailiou, N., Giannakouris, V., Tsoumakos, D., Koziris, N.: Mix
’n’ match multi-engine analytics. In: 2016 IEEE International Conference
on Big Data. pp. 194–203 (2016)

[7] Duggan, J., Elmore, A.J., Stonebraker, M., Balazinska, M., Howe, B., Kep-
ner, J., Madden, S., Maier, D., Mattson, T., Zdonik, S.: The bigdawg poly-
store system. ACM Sigmod Record (2015)

[8] Frasincar, F., Houben, G.J., Vdovjak, R., Barna, P.: Ral: An algebra for
querying rdf. World Wide Web 7(1), 83–109 (2004)

[9] Gonzalez, J., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: Dis-
tributed Graph-Parallel Computation on Natural Graphs. In: Proceedings
of the 10th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 12) (2012)

[10] Hölsch, J., Grossniklaus, M.: An algebra and equivalences to transform
graph patterns in neo4j. In: EDBT/ICDT 2016 Workshops: EDBT Work-
shop on Querying Graph Structured Data (GraphQ) (2016)

[11] Kang, U., Tong, H., Sun, J., Lin, C.Y., Faloutsos, C.: GBASE: A Scalable
and General Graph Management System. In: Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. KDD ’11 (2011)

[12] LeFevre, J., Sankaranarayanan, J., Hacigumus, H., et al.: MISO: Souping up
big data query processing with a multistore system. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data (2014)

[13] Papailiou, N., Tsoumakos, D., Karras, P., Koziris, N.: Graph-Aware,
Workload-Adaptive SPARQL Query Caching. In: Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data. SIG-
MOD ’15 (2015)

[14] Savnik, I., Nitta, K.: Algebra of rdf graphs for querying large-scale dis-
tributed triple-store. In: International Conference on Availability, Reliabil-
ity, and Security. pp. 3–18. Springer (2016)

[15] Schmidt, M., Meier, M., Lausen, G.: Foundations of sparql query optimiza-
tion. In: Proceedings of the 13th International Conference on Database The-
ory. pp. 4–33. ACM (2010)

[16] Yan, D., Bu, Y., Tian, Y., Deshpande, A., Cheng, J.: Big Graph Analytics
Systems. In: Proceedings of the 2016 International Conference on Manage-
ment of Data. SIGMOD ’16 (2016)

7 Appendix

7.1 Random 4-walk benchmarks

For the random 4-walks, we first note that SpaceCost(RandRow(R)) = 1, so
final space costs collapse to 1. For the time costs, we present Figure 11. We note
that, in this case, both default and modified models fare well in their predictions
– this can be attributed to the simplicity of the query and the fact that it uses
only expandOut operations.

Fig. 11. Space and time costs (actual and projected via default and modified models)
of 4-walk queries on graphs with various connectivity probabilities.

