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Abstract— In this paper, we present a distributed system which
enables fast and frequent updates on web-scale Inverted Indexes.
The proposed update technique allows incremental processing
of new or modified data and minimizes the changes required
to the index, significantly reducing the update time which is
now independent of the existing index size. By utilizing Hadoop
MapReduce, for parallelizing the update operations, and HBase,
for distributing the Inverted Index, we create a high-performance,
fully distributed index creation and update system. To the best
of our knowledge, this is the first open source system that
creates, updates and serves large-scale indexes in a distributed
fashion. Experiments with over 23 million Wikipedia documents
demonstrate the speed and robustness of our implementation:
It scales linearly with the size of the updates and the degree of
change in the documents and demonstrates a constant update
time regardless of the size of the underlying index. Moreover,
our approach significantly increases its performance as more
computational resources are acquired: It incorporates a 15.4GB
update batch to a 64.2GB indexed dataset in about 21 minutes
using just 12 commodity nodes, 3.3 times faster compared to
using two nodes.

I. INTRODUCTION

Our era is characterized by what is referred to as “the data
explosion”: The amount of digital information worldwide will
exceed 1.8 zettabytes by the end of 2011, expected to increase
44-fold within this decade [1]. Semi or fully unstructured data
(created through social networking applications, blogs, etc.)
is growing at a rate of 80% each year with over 2 billion
internet users sharing, creating and updating their content. This
has proved to be an overwhelming trend for traditional data
management systems [2]. As data explodes in size, businesses
face the challenge of storing, managing and analyzing this bulk
of information efficiently. Industry leaders have dealt with this
problem utilizing clusters of commodity hardware combined
with scalable software.

The MapReduce framework [3] has been widely used for
resource-demanding, batch-processing operations. Its ability to
scale to a large number of commodity hardware nodes allows
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Fig. 1. A general model for indexing, updating and searching web-scale
information.

its extensive use for speeding up highly parallel operations
at a reasonable cost. Similarly, a new generation of data
stores, NoSQL databases [4], has been developed to enable
the storage and serving of large semi-structured datasets. The
term NoSQL is used to describe non-relational, horizontally
scalable data stores. In favour of scalability and high avail-
ability, these systems relax classic ACID guarantees. NoSQL
systems are perfect candidates for cloud infrastructures, as
their shared-nothing architecture enables them to scale by
simply acquiring more computational and storage resources
from a cloud vendor.

In order to take advantage of the available information, huge
datasets (many of which are freely available, either from public
APIs or published online [5]) have to be effectively indexed
(see Fig. 1). This is an extremely demanding task, considering
the volume and the diversity of the stored data. At the same
time, especially with the explosion of user-generated content,
the information available on the Web is constantly increasing
and changing. In Facebook, an average user creates 90 pieces
of content each month while more than 30 billion pieces of
content are shared each day [6]. In Twitter, the average number
of Tweets people send per day is over 140 millions with a
peak of about 7K Tweets per second [7]. Finally, each of
Wikipedia’s about 20 million articles is edited over 30 times a
month, with over 8K new articles added to the collection per
day [8].

This means that the content of the existing indexes becomes



frequently outdated and, as a result, users do not have access to
the new information. Together with the size of the input data,
this stresses the need for (possibly frequent) update operations
on the created indexes. Thus, the indexing scheme should
provide innovative techniques that will allow processing the
new and modified data and updating the existing index struc-
tures without rebuilding them from scratch. As the volume
of the modified data is usually orders of magnitude less than
the already indexed dataset, updating should ensure that users
have fast access to the new information on the Web. To the
best of our knowledge, works in [9], [10] are the only open-
source systems that offer distributed indexing and serving of
web-scale datasets. Yet, none of these approaches allows for
updates, requiring a rebuild of the Inverted Index in order to
provide the updated content to the users.

In this paper, we present HMR-Index-Updater1, an open
source, distributed processing architecture which allows up-
dating existing Inverted Indexes when a part of the dataset
is modified or new data is added. In order to speed up the
compute and storage-intensive update process, we leverage the
capabilities of MapReduce in combination with the horizontal
scalability and loose-schema features of a distributed, NoSQL
database, HBase [11]. By limiting the processing of the
existing dataset and minimizing the changes needed to the
index, the proposed technique significantly reduces the time
required for the update, which is now almost independent
of the size of the existing index and dataset. The updated
index is, finally, stored in HBase to support a large number of
concurrent users and achieve low response times under heavy
query load, using a commodity hardware cluster.

Experiments using different Wikipedia snapshots (23.7 mil-
lion pages with over 2 million updated documents), demon-
strate the speed and robustness of our implementation: Our
system scales linearly with the size of the updates and the
degree of change in the documents; it significantly increases
its performance as more computational resources are acquired
(decreases the time required to incorporate a 15.4GB update
batch to an indexed set from over 100 minutes to about 20
minutes when increasing the cluster size by a factor of 6);
and, finally, demonstrates almost constant update performance
regardless of the size of the underlying index, allowing very
frequent update operations on large indexes.

II. UPDATE TECHNIQUE

An Inverted Index stores a mapping from every term in-
cluded in the indexed dataset to a list of references to the doc-
uments that contain the corresponding term. This information
is usually stored using tuples of the form (term, list(doc re f )),
where “doc re f ” represents a reference, such as the document
ID, to a document that contains this term. By the term “index
record” we refer to a tuple of the form (term,doc re f ), which
indicates that this specific term is included in the document
referenced by doc re f .

1http://hmr-index-updater.googlecode.com

The update technique presented in this paper applies the
necessary changes only to the index records which refer to
the updated documents. In this way, we aim to minimize the
processing over the new and modified documents, performing
the necessary tasks only on a small relevant subset of the
whole dataset.

The technique focuses on achieving the following goals:

• The time required for the update has to be independent
of the size of the existing dataset and index, in order
to enable small and frequent updates on large Inverted
Indexes.

• The index must remain consistent and its structure unaf-
fected, in order to ensure the stability and the efficient
operation of the system, even after a big number of
updates.

• The update process must be able to be executed in a
scalable, parallelizable way to reduce the required time by
exploiting commodity cluster resources. In this way, the
index can be frequently updated even when the volume
of the updates is high.

A. Standard Update Procedure

The input of the proposed update technique is considered
to be a collection of new or modified documents. The new
documents simply need to be indexed and the created index
records have to be added to the existing Inverted Index. On
the other hand, the update process is more complicated for
updating existing documents: in this case, the index records
which refer to the old version of each document have to be
deleted, before the records of the new version are added to the
index. This requirement has two major implications. Firstly,
the older version of the document has to be retrieved and
processed in order to detect the records that need to be deleted
from the index. Secondly, these records need to be located in
the existing Inverted Index in order to be removed. Locating
and deleting the old index records is a demanding task and
the time required for this process is inevitably affected by the
schema used for the Inverted Index.

B. Inverted Index Schema in HBase

In order to speed up the update process, it is essential to
store the index using a structure that will allow fast record
discovery and deletion. However, this choice must not sacrifice
the index’s performance to user queries. To achieve that, we
leverage the unique characteristics of HBase. HBase has the
ability to scale horizontally and store millions of columns for
billions of table rows. In contrast with the traditional, relational
database systems, the schema of a table does not need to be
defined at the creation of the table, but can dynamically change
while the data is inserted or deleted. Each row can have a
different number of columns and their names may also vary
among rows. HBase indexes the columns of each row and as
a result ensures fast access to every table cell.

Based on these characteristics, we select a schema where
each row represents a term included in the Inverted Index and



each column of a row represents an element of the corre-
sponding list of document references: Each cell (row,column)
of the table represents a record (term,doc re f ) of the Inverted
Index. To obtain instant access to every record, we choose to
use the document ID as the column name. This means that we
can locate and delete specific index records simply by deleting
the corresponding cells, (term,documentID), without having
to scan the lists of references to identify the record that needs
to be removed. Using the indexes maintained for the columns
of each row, HBase allows fast deletion of specific cells and,
therefore, the time needed for the deletions is only slightly
affected by the size of the existing index.

C. Forward Index to Speed Up the Update

In order to identify obsolete records that have to be deleted,
the older versions of the modified documents must be retrieved
and processed. This is a demanding task in terms of computa-
tion and I/O, and can significantly increase the time required
for the update. However, these documents have already been
processed when the index was created or updated and, as a
result, reprocessing can be avoided by storing the document
terms that were included in the Inverted Index. To achieve
that, when a document is indexed, its terms are also stored in
a different data structure. This structure contains the terms of
each document using tuples of the form (doc re f , list(term))
and is widely known as the Forward Index. The Forward Index
is easily built while the documents are indexed and allows for
instant access to the records which need to be deleted during
the updates. At the same time, retrieving the Forward Index
of a document is more efficient than retrieving the document
itself, since the size of the indexed terms tends to be much
smaller than the size of the document, due to the elimination
of the duplicate words. The Forward Index technique achieves
faster updates through an increase in the required storage
space, certainly affordable given the decreasing storage costs.

D. Minimizing Index Changes during the Updates

In the update process described so far, all the existing index
records of a modified document have to be removed before the
records of the newer version can be added to the index. This
way, a large number of cells has to be deleted and re-inserted,
even for a minor modification in the document’s content.
Considering that modifications in documents are limited [12],
especially when the index is frequently updated, we present
an update strategy which minimizes the number of changes
required to the Inverted Index. More specifically, we compare
the Forward Index entries of the newer and older version of
each document in order to identify the terms which are not
common. A record of the Inverted Index has to be deleted
for each term which was included in the old version, but has
been removed from the new one, whereas a new record must
be added to the index for each term which is included in the
new version, but not in the old one. The common terms do
not require index changes. Although the comparison of the
Forward Indexes increases the complexity of the process, the
reduction in the number of the required changes significantly
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Fig. 2. The distributed update process

speeds up the index update, avoiding a large number of costly
HBase deletions and insertions.

III. DISTRIBUTED INDEX UPDATE PROCESSING

Although the proposed technique significantly speeds up the
index update, a centralized system would need a lot of time to
process the large volume of new and modified documents. For
this reason, it is essential to execute the update in a distributed
environment, in order to take advantage of the resources of
a large cluster. During the update, each document can be
processed independently and, then, the created index records
have to be merged in order to be added to the Inverted Index.
It is obvious that this application is perfectly suited to the
MapReduce logic. Utilizing the MapReduce framework, we
can easily distribute the processing across the nodes of the
cluster to reduce the time needed for the update. Moreover,
we can adaptively add or remove Mapper and Reducer pro-
cesses according to the dataset needs and the available cluster
resources.

Our system is built on top of Hadoop [13], an open-source
implementation of Google’s MapReduce. Hadoop consists of
a distributed file system called HDFS and a MapReduce
executing framework. Fig. 2 presents the workflow of our
distributed indexing system. The new and modified documents
are processed by a MapReduce job which updates the Inverted
Index and loads the Forward Index and raw content of these
documents to the corresponding HBase tables. When the
update is completed, new content is accessed through the
updated Inverted Index Table and Content Table. Considering
that the documents are already stored in HDFS, storing them
again in HBase seems redundant. However, in this way we can
leverage the database characteristics of HBase(caching, etc.)
to achieve lower response time to user queries.

A. The Map Phase

The new and modified documents dataset is split into chunks
which are processed in parallel by independent map tasks.
Each map task processes the documents of the corresponding
chunk according to Algorithm 1, emitting four different types
of key/value pairs. These are responsible for updating the
Inverted Index and loading the raw content and Forward Index
of the processed documents in HBase.



Algorithm 1 Processing the documents - Map phase
for all Document d ∈ myChunk do

Emit a content key/value pair: (d.ID, d.content)
Scan d to identify the terms that will be indexed
for all Term t ∈ d do

Insert t in Forward Index new f i
end for
Emit a Forward Index key/value pair: (d.ID, new f i)
Load from HBase the Forward Index old f i of d
if (old f i exists) then

Compare new f i to old f i
for all Term t : t ∈ new f i∧ t 6∈ old f i do

Emit an addition key/value pair: (t, d.ID)
end for
for all Term t : t ∈ old f i∧ t 6∈ new f i do

Emit a deletion key/value pair: (t, d.ID)
end for

else
for all Term t : t ∈ new f i do

Emit an addition key/value pair: (t, d.ID)
end for

end if
end for

B. The Combiner

In order to minimize the intermediate key/value pairs that
need to be transferred to the reducers, we use a simple
combine function which merges the intermediate key/value
pairs of each map task. More specifically, the combine function
merges the values of each key, creating a list of values, which
is finally emitted in only one key/value pair of the form
(key, list(values)).

C. The Reduce Phase

The intermediate key/value pairs emitted by the map tasks
are grouped and sorted according to their key and then
transferred to the reduce tasks. These key/value pairs are
processed by the reduce tasks according to Algorithm 2, in
order to produce the output of the MapReduce job. As seen
in Fig. 2, the reducers have four independent output streams.
One of these streams deals with the deletion of index records
and uses the HBase Client API in order to access the HBase
and delete the corresponding cells. The other three streams,
which concern insertions to the Inverted Index, Forward Index
and Content Table, write the output key/value pairs directly to
HDFS using the HFile format. The HFiles are bulk loaded to
the corresponding HBase tables, which finally contain all the
updates.

The reason for bypassing the HBase API is that it is particu-
larly slow for bulk insertions: in this case, all the insertions are
first added to a write-ahead-log and then in a in-memory buffer
(MemStore). MemStore is periodically flushed to the disk in
HFiles. By directly creating the HFiles and bulk-loading them
in HBase we avoid the expensive intermediate interactions

Algorithm 2 Processing the intermediate key/value pairs -
Reduce phase

for all Key key do
if (key refers to an addition) then

for all Value v ∈ values do
Insert v in DataStructure ds, in order to sort them

end for
Sort the elements of ds in ascending order
/*The values are used as column names and they have
to be sorted in order to be bulk loaded to HBase*/
for all Value v ∈ ds do

Emit a key/value pair (key,v) in the Additions output
end for

else if (key refers to a deletion) then
for all Value v ∈ values do

Emit a key/value pair (key,v) in the Deletions output
end for

else if (key refers to the Forward Index) then
Emit a key/value pair (key,v) in the Forward Index
output

else if (key refers to the documents’ content) then
Emit a key/value pair (key,v) in the Content output

end if
end for

with the write-ahead-log and the MemStore needed for each
insertion.

D. Evenly Distributing the Reducers Load

In order to achieve maximum parallelism, the completion
time for all the tasks of each phase has to be approximately the
same. According to a recent study [14], the uneven distribution
of the input data can significantly increase the completion time
of a job, since a small number of map or reduce tasks may need
significantly more time to complete its execution compared to
the majority of the tasks. This usually happens because of
the skewed distribution of the input or intermediate key/value
pairs: few keys are extremely common, while the vast majority
appear very rarely.

This problem is tackled in the Map phase, as the framework
divides the input dataset in equally sized chunks, assigning
each chunk to an independent map task. However, in order
to ensure that the intermediate key/value pairs are evenly
distributed to the reduce tasks, we have to design a custom
partitioning function. The intermediate key/value pairs of our
job have either a document ID or a term as their key. Since
these types of keys are completely different, we prefer to
manage them independently.

There always exist two key/value pairs with the same key-
DocumentID: one for the content and one for the Forward
Index. Therefore, we simply need to ensure that each reducer
receives approximately the same number of keys. This can be
easily achieved using a hash function.

On the other hand, the word occurrences in natural lan-
guages follow a Zipfian distribution. As a result, the number of



key/value pairs per key-term varies significantly. For instance,
the term “the” appears in almost every document, whereas the
term “democracy” is a much more rare case. Therefore, even if
we ensure that all reducers receive the same number of terms,
the number of key/value pairs that each reducer will have to
process will vary, affecting the task execution time.

In order to overcome this problem, we have designed a
sampling MapReduce job, similar to those used in [15], [16],
which is executed before the update and partitions the range
of terms in R approximately equally sized partitions, where R
represents the number of reducers in our main job. The map
tasks process a representative sample of the dataset, according
to Algorithm 1, but emit simply a key/value pair (term,1)
for every term that has to be added or deleted. The job has
only two reducers. The first reducer receives all the key/value
pairs which refer to additions to the Inverted Index, whereas
the second one receives all the key/value pairs which refer to
deletions. Each reducer counts the number of occurrences of
each term and outputs a file containing the splitting points that
divide the sample terms in R equally sized partitions.

The partitioning function of our main job loads the splitting
points, for both the addition and the deletion key/value pairs,
and chooses the reducer for each key using the function:

f (key) =
{

i if key < SP[i], i ∈ [0,R−2]
R−1 if key > SP[R−2]

where SP represents an array containing R-1 splitting points
for the additions or the deletions depending on the key type.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

To evaluate the performance of our indexing system, we
conduct experiments using publicly available datasets from
Wikipedia. Wikipedia creates a snapshot of all its pages every
month. As pages are constantly updated and new ones are
created, using snapshots from different dates allows us to test
the performance of our update system. In our experiments,
we use the snapshots created on April 5, 2011 and May 26,
2011 and the changes between them as the update dataset.
The size of the first dataset (default initial dataset) is 64.2 GB,
containing 23.7 million documents2, while the new/modified
documents dataset (update-dataset) corresponds to 15.4 GB
and 2.2 million documents respectively.

By default, our cluster consists of 8 worker nodes (increased
to a maximum of 12 nodes) plus a single machine in the role
of the HDFS, MapReduce and HBase Master. Each worker
node has 2×Quad-Core Intel Xeon E5405 CPUs at 2.00GHz
with 12MB L2 cache and 8 GB of RAM (6 GB RAM for the
Master). All nodes are operating on 64bit Debian Linux and
are interconnected with Gigabit Ethernet.

We utilized Cloudera’s distribution for Hadoop and HBase,
Hadoop v.0.20.2-CDH3 and HBase v.0.90.3-CDH3, to take

2We refer to the term document in contrast to a Wikipedia article. An
article may link to multiple documents (e.g., due to redirects) which contain
the actual content. Thus, we define documents to be the unit of processing in
our evaluation.
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advantage of their extra features. To achieve maximum re-
source utilization, we allow each worker node to spawn 6 map
and 6 reduce tasks (creating a total of 48 map and 48 reduce
tasks for the default runs) with a heap size of 1024 MB for
the reduce tasks. We disabled Hadoop’s speculative execution,
which reduces the cluster’s effective capacity, executing every
task more than once for redundancy. Finally, we set the number
of reducers in our jobs to 80, to increase load balancing during
the Reduce phase. The rest of the settings for both Hadoop
and HBase were left unaffected.

Before performing the update experiments, we have to
create the Inverted Index from the initial dataset. Our system is
capable of building a new Inverted Index without any change:
If the Forward Index Table is empty, then every document is
regarded as a new one and all its terms are added to the empty
Inverted Index. Our system needs approximately three hours
to process this dataset and load the documents’ content and
the Inverted and Forward Indexes to HBase.

B. Evaluating our Design Choices

As described in the previous sections, in order to speed up
the update process, we decided to employ specific optimiza-
tions:
• Use the Forward Index of the existing documents,
• Bulk load the output in HBase,
• Run a sampling job to evenly distribute the load to the

reducers,
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• Compare the two different versions of each document to
minimize the changes required to the index.

First, we measure the impact in performance and the respective
gains that each of these features provides. Specifically, we
measure the update completion time of our system with
and without each of these optimizations for two modes of
document indexing: Index the whole document (Full) and
index only the title (Title). Results are presented in Fig. 3.

Comparing the different versions of each document is the
most important optimization for full-text indexing, boosting
performance by a factor of 2.6. Deleting and re-inserting all
the terms of the updated documents creates a large volume of
intermediate key/value pairs, which has to be transferred across
the network and processed by the reducers, but, also, a large
number of HBase deletions and insertions. Comparing allows
us to minimize these volumes, speeding up the update process.
However, the effect of this optimization is not as prominent in
the title-only indexing (1.2X faster). In this case, the number of
indexed terms is orders of magnitude smaller and, as a result,
the time required for processing the documents and loading
them in HBase dominates the total time for the update.

Using the Forward Index of the older version of the
documents improves the performance of our system in both
cases (1.8 and 2.4 times faster respectively). This optimization
enables us to avoid retrieving the whole document from HBase
and rescanning it, which results in decreasing the I/O and
computational cost. On the contrary, the significance of Bulk
Loading is affected by the volume of the indexed terms. As
a result, it considerably reduces the update time for full-text
indexing (over 30%), but not for title-only indexing (about
16%). Finally, sampling the input dataset to balance the load
between the reducers does not significantly improve the per-
formance of our system (4-6%). Because of the comparison,
the amount of the intermediate key/value pairs is relatively
small and, therefore, their uneven distribution does not have
an important impact on the update time.

Fig. 4 depicts the portion of time spent during the different
steps of our update process (full-text indexing). The dominat-
ing task, taking up about 70% of the time, is the indexing
process itself. Thus, the most advantageous optimizations in
our system (i.e., comparisons and Forward Index method)
point to this step. The loading of the content itself takes up

20% of the time, with the Bulk Load optimization contributing
to minimize this portion. Sampling the input and loading
the updated Forward and Inverted Index records take up
about 10% of the time, with sampling being the least time-
consuming stage.

C. Evaluating the Performance of our System

One of our main goals is to provide efficient updates over
web-scale datasets, with minimum deterioration over the size
of the processed data. Fig. 5 presents the performance of our
system for different update sizes over an existing Inverted
Index created from our default initial dataset. In both full-
text and title-only indexing, the time required for the update
is linear to the size of the input, which is consistent with the
theoretical analysis. Our results show that increasing the size
of the applied update by a factor of 10 increases the update
time by a factor roughly equal to 6. This linear growth pattern
allows efficient processing of large datasets.

An equally important characteristic is the system’s ability
to complete the update in time almost independent of the
existing index size. Fig. 6 shows the performance of our
method for different sizes of the existing Inverted Index.
The update dataset is the same in all experiments, containing
approximately 400K documents (≈5 GB). According to Fig.
6, the update time is almost constant for all index sizes, as for
over 4 times larger existing index, the update time increases by
less than 6%. The results of these experiments prove that by
utilizing the horizontal scalability of HBase and the schema
described in Section II-B, we are able to frequently update
large Inverted Indexes.

The results in Fig. 3 show that comparing the different
versions of the modified documents significantly speeds up
the update process. This optimization, as described in Section
II-D, is based on the fact that, although a large number of
documents gets updated, the changes in the content of these
documents are minimal. For this reason, we would like to
examine the behaviour of our system with a variable amount
of changes in the modified documents. Fig. 7 presents the
update completion time in relation to the percentage of the
documents’ content that has been modified. An increase in
the content changes results in a proportional increase in the
number of intermediate key/value pairs as well as in the
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number of deletions and insertions in HBase. The results
presented in Fig. 7 are consistent with the theory, since the
time required for the update is linear to the volume of the
intermediate key/value pairs and the HBase operations. This
diagram shows that for an 18-fold increase in the amount of
modifications per document, the update time increases by a
factor of 1.6 (significantly lower than the time required without
this optimization as shown in Fig. 3). This trend is followed by
the indexing curve which increases linearly with the amount
of changes. On the other hand, loading the index updates
to HBase increases at a much slower pace, exhibiting times
between 0.5 and 2.5 minutes.

D. Varying the number of cluster resources

A major requirement from modern systems is the ability
to take advantage of the large number of hardware resources
available in a cluster and increase their performance when
more processing power, storage, network throughput, etc.
are provided. The tools our system utilizes have inherent
scalability features: Hadoop enables any task to be undertaken
by a variable number of Map and Reduce tasks which work
in parallel. Increasing the number of Mappers and Reducers
results in a decrease in the size of the data each task is required
to process independently and, therefore, in a decrease in the
completion time of the MapReduce job. Similarly, HBase
enables horizontal partitioning of a large dataset among the
cluster’s nodes, thus distributing both upload and query load.

To demonstrate the scalability of the update process in
relation to the available hardware resources, we measure the
update time over the default initial and update datasets using a
variable number of worker nodes, ranging from 2 to 12. Since
each node spawns 6 mappers and 6 reducers, the respective
number of processes ranges from 12 to 72 (mappers and
reducers separately). Fig. 8 presents the results. Our system is
able to greatly increase its performance, when more resources
are added: For both full-text and title-only indexing, the total
update times are reduced by 70%. This is an important cloud
application requirement, since extra nodes are acquired by a
cloud vendor in an easy and inexpensive manner.

Results presented in Fig. 8 allow us to draw some additional
conclusions: The most time-consuming task is the indexing

part, which demonstrates excellent scalability (5 times faster
from 12 to 72 tasks) to the number of nodes. Because of
the highly parallel nature of the update-indexing process, the
amount of gain is not significantly reduced even when the
number of available Mappers/Reducers gets higher. Content
load also gets faster, but to a smaller extent (2.3X). The
increase in the number of HBase nodes does not seem to have
a proportional increase in the performance of bulk loading
operations. Finally, sampling the input and loading the index
updates (for the Inverted and Forward Indexes) take up a small
amount of time and, therefore, their performance does not
significantly contribute.

V. RELATED WORK

Researchers have long realized the limitations of centralized
systems to process the huge volume of data available on the
Web. As a result, research has often focused on designing
distributed architectures that speed up the processing of Web
datasets, exploiting the resources of multiple machines [17].
In 2004, Google presented MapReduce [3], a distributed plat-
form that simplifies the implementation of distributed applica-
tions on large commodity hardware clusters. The MapReduce
framework allowed a significant speed up in the creation of
Web content indexes.

A large number of content analysis systems has been built
on top of Hadoop, some of which specifically deal with
the distributed creation or serving of Inverted Indexes. Ivory
[18], for example, distributes the index creation through a
MapReduce job, while HIndex [19] and Sphinx [20] support
distributed search on their indexes. In [21], various distributed
indexing approaches are compared. Moreover, this work ex-
amines whether the MapReduce model is suitable for Inverted
Index creation. To the best of our knowledge, the only open
source systems which perform both index creation and serving
in a distributed way are [9] and Katta [10]. Katta combines
Apache Lucene [22] with Hadoop in order to distribute the
index creation and partitions the created index into “shards”
which are served through independent Katta Nodes, controlled
by a Katta Master. The system described in [9] distributes
the index creation using Hadoop and stores the Inverted Index
through HBase. Although all these systems significantly speed



up the creation of the Inverted Index, the index has to be
periodically rebuilt in order to include the updates made to the
indexed dataset. Considering the size and the rate of change of
Web documents, search engines cannot afford rebuilding their
indexes from scratch.

Google Caffeine [23] is a new indexing scheme which
constantly updates the existing index with the new content
found on the Web and provides the users with fresher results.
Yet, Google Caffeine is a proprietary system used only by the
Google search engine. Apache Solr [24], on the other hand,
is an open source enterprise search platform which supports
distributed search and allows updates. However, index creation
and updating are centralized and, therefore, cannot scale.
To overcome this shortcoming, Lucid Imagination developed
LucidWorks [25], a free but closed source system built on top
of Solr. LucidWorks distributes documents among the nodes of
a cluster, making each node responsible for indexing, updating
and serving a subset of the dataset. Both Solr and LucidWorks
do not utilize the comparison optimization, simply deleting the
old version of each modified document before indexing the
new one.

VI. CONCLUSIONS

The data available on the web is growing at an amazing
rate. By utilizing modern distributed architectures we are
able to combine the hardware resources of large clusters
in order to cope with this huge volume of data. However,
speeding up the processing is not always sufficient. A large
number of applications demand incremental processing of the
updates over the existing datasets whose volume is usually
orders of magnitude larger than the newly added data. Our
system combines incremental and distributed processing in
order to enable fast and frequent updates on web-scale Inverted
Indexes. Our update technique allows us to process only the
new or modified documents and minimize the changes required
to the index, reducing the update time. Moreover, applying this
method through the MapReduce framework and using HBase
as the storage layer, we manage to parallelize the update
process incurring significant gains as the number of concurrent
tasks increases.

Through our experimental evaluation, our system exhibits
update times linear to the size of the applied updates and
almost independent of the existing index size. Consequently,
large Inverted Indexes can be frequently updated to provide the
users with fresher results. At the same time, utilizing Hadoop
and HBase, our system has the ability to scale to a large
number of commodity machines, achieving great performance
at a reasonable cost. Using 8 worker nodes, our system is
capable of updating a full-text index of all Wikipedia docu-
ments, applying over 15 GB of updates, in only 34 minutes,
when building the index from scratch requires more than 3
hours. Through an increase in the number of participating
nodes, performance improved by a factor of up to 3.3.
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