
A Content-Based Approach for Modeling Analytics Operators
Ioannis Giannakopoulos

Computing Systems Laboratory,
School of ECE, National Technical

University of Athens, Greece
ggian@cslab.ece.ntua.gr

Dimitrios Tsoumakos
Department of Informatics, Ionian

University, Corfu, Greece
dtsouma@ionio.gr

Nectarios Koziris
Computing Systems Laboratory,
School of ECE, National Technical

University of Athens, Greece
nkoziris@cslab.ece.ntua.gr

ABSTRACT
The plethora of publicly available data sources has given birth
to a wealth of new needs and opportunities. The ever increasing
amount of data has shifted the analysts’ attention from optimizing
the operators for specific business cases, to focusing on datasets
per se, selecting the ones that are most suitable for specific oper-
ators, i.e., they make an operator produce a specific output. Yet,
predicting the output of a given operator executed for different
input datasets is not an easy task: It entails executing the operator
for all of them, something that requires excessive computational
power and time. To tackle this challenge, we propose a novel dataset
profiling methodology that infers an operator’s outcome based on
examining the similarity of the available input datasets in spe-
cific attributes. Our methodology quantifies dataset similarities and
projects them into a low-dimensional space. The operator is then
executed for a mere subset of the available datasets and its output
for the rest of them is approximated using Neural Networks trained
using this space as input. Our experimental evaluation thoroughly
examines the performance of our scheme using both synthetic
and real-world datasets, indicating that the suggested approach
is capable of predicting an operator’s output with high accuracy.
Moreover, it massively accelerates operator profiling in compari-
son to approaches that require an exhaustive operator execution,
rendering our work ideal for cases where a multitude of operators
need to be executed to a set of given datasets.
ACM Reference Format:
Ioannis Giannakopoulos, Dimitrios Tsoumakos, and Nectarios Koziris. 2018.
A Content-Based Approach for Modeling Analytics Operators. In The 27th
ACM International Conference on Information and Knowledge Management
(CIKM ’18), October 22–26, 2018, Torino, Italy. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3269206.3271731

1 INTRODUCTION
As big data technologies evolve, emphasis steadily expands to areas
not solely related to size. Undeniably, data volume has been the
decisive driving force behind big data technologies; in many cases,
the effectiveness of an algorithm relies entirely on the amount of
data it can access [37], leading to continuous efforts on scalability
and optimization. As datasets become increasingly abundant over

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’18, October 22–26, 2018, Torino, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6014-2/18/10. . . $15.00
https://doi.org/10.1145/3269206.3271731

heterogeneous sources and the requirement to fuse them is pressing,
distinct datasets and databases can no longer be viewed as isolated
components: Different datasets present inter-dependencies despite
their contrast in size, data-type, origin, schema, etc. Combining
data sources increases the utility of existing datasets, generating
new information and creating services of higher quality [34].

A different type of challenge shifts attention to the actual con-
tent: Content-based analytics processes data from social media
platforms for sense-making and knowledge generation. Similarly,
data content plays a key role in the quality of the insights derived in
applications such as recommendation systems, web advertising and
marketing, fraud detection, etc. In these cases, analysts increasingly
need to focus on “high-impact” data, i.e., intelligence that has the
best potential of driving strategic decisions. In the same manner,
many data scientists have recently made a case about medium data
analytics [1, 6], where the utility rather than the size of the data is
considered to be the critical factor.

The plethora of available sources and datasets that can be fed
to such content-sensitive services now creates an issue: Data sci-
entists need to decide which of the available datasets should be
applied for any given workflow independently. Yet, as modern ana-
lytics workflows have evolved into increasingly long and complex
series of diverse operators, evaluating the utility of immense num-
bers of inputs can be a daunting task. Even if modern runtime
environments (e.g., [4, 45]) and the Cloud paradigm [12] provide
the necessary tools to speedup the evaluation, the problem is par-
ticularly challenging because of (a) the blowup in the number of
available datasets, (b) the ever-increasing type and number of com-
plex operators that need to be executed and (c) the time constraints
that latency-sensitive operators pose.

For example, in the case of derivative pricing theory [26], ana-
lysts need to consider a multitude of Credit Default Swaps (CDS)
time series for different economic entities. These are provided as
input to mathematically complex operators so that financial indi-
cators, i.e., Value Adjustments (xVA), are extracted that quantify
the credit, funding and financial costs an institution faces during
derivative transactions. Selecting the appropriate CDS datasets for
extracting the respective xVAs for an entity is of key importance
for the indicator’s accuracy. Thus, an analyst needs to consider all
CDS datasets and execute the aforementioned operators for all of
them in order to select the ones that present certain characteristics
that make them more suitable for specific entities and maximize
accuracy. In a different domain, Security Information and Event
Management (SIEM) systems [40], commonly deployed to identify
and mitigate cyberattacks, increasingly fail to identify and stop
advanced persistent attacks because of their inability to cope with
the increasing amount of available datasets utilized to train them
[41]. These systems lack the analytics capabilities to process a vast

https://doi.org/10.1145/3269206.3271731
https://doi.org/10.1145/3269206.3271731

amount of data and, hence, their administrator needs to make a key
decision: Which datasets out of the available ones should be used in
order to train such a system to stop cyberattacks of a certain type in
tight time constraints? In both cases the data operators have access
to multiple datasets (CDS time series and SIEM training datasets
for the two cases respectively), however their outputs entirely rely
on the selection of a mere subset of them based on a set of prop-
erties that are neither known nor easily identified. For example,
one cannot decide a priori which CDS datasets are more suitable
for the xVA estimation for a given economic entity, even if experi-
ence or prior knowledge is available [20]. Similarly, it is impossible
to select the most appropriate SIEM training datasets (especially
under stringent time constraints) be used for training systems for
intrusion detection without actually training the system in order
to evaluate its output.

To facilitate dataset analysis, two complementary directions have
been suggested: Data Integration and Data Exploration. Data Inte-
gration approaches (e.g., [28, 39]) aim at presenting a unified view
of distinct datasets and focus on the systemic problem of fusing data
from heterogeneous sources. On the other hand, Data Exploration
approaches (e.g., [22, 44]) aim at producing dataset summaries in
order to inform the users about properties of the data, such as tuples
that encapsulate the most representative data patterns, dependen-
cies between tuple fields, statistical properties, etc. Although both
directions can be used to provide valuable insights for unknown
datasets, neither of them is designed to model an operator’s out-
put when executed for each of the available data sources. Instead,
their scope is mostly limited to summarize the datasets and extract
representative patterns for them without considering how these
datasets affect certain operators.

In order to bridge the gap between input datasets and the out-
put of many popular data operators, in this work we propose an
operator-agnostic dataset profiling mechanism. Rather that analyz-
ing or executing over each dataset separately, our work assesses the
similarity between the available datasets in light of data characteris-
tics that highly impact operator behavior, i.e., the data distribution,
the dataset size and the ordering of the data points. Based on the
dataset relationships, we infer knowledge about them. Each dataset
is then projected to a point in a low-dimensional metric space that
reflects the dynamics between them: Dataset similarity is analo-
gous to the distance among the respective points. Using this metric
space, datasets are sampled and a specific operator is applied to
each of the samples. Our framework models operator output us-
ing Neural Networks [27], allowing it to predict its performance
over all available datasets. One of the most interesting aspects of
the proposed methodology is that the computationally intensive
part of our work, i.e., the construction of the dataset metric space,
remains entirely operator-agnostic. The same constructed space can
be utilized for different operators without modifications. In order to
consider new operators, one should only repeat the operator execu-
tion for a small number of datasets in order to obtain a training set,
eschewing the computationally intensive part of reconstructing the
space from scratch. Our work shifts its effort towards measuring
the dataset inter-relationships and constructing the space that best
reflects them (which is an offline process), with the intention of
minimizing the time and cost of online modeling specific operators.
The contributions of our work are summarized as follows:

• Wepresent an efficient, operator-agnostic dataset profilingmethod-
ology, that estimates the similarity among the available datasets,
constructing a dataset space that best reflects their properties and
modeling the output of the applied operators utilizing Neural
Networks trained using this dataset space as input.
• We offer an open source Go prototype [8] of our work, through
which a user can execute the dataset profiling and export the
generated ML models for integration with other systems.
• We conduct a thorough evaluation of this approach, utilizing a
variety of datasets with different characteristics.

Our evaluation indicates that our methodology models the behavior
of a wide variety of operators with remarkable accuracy (less than
2% of modeling error in the best case and less than 15% in most cases
when a mere 4% of the datasets are examined). Moreover, it presents
massive speedups (more than 20× in the best case) in comparison
to exhaustively executing the operators for the entirety of available
datasets. Finally, it can be customized in order to accelerate data
analysis and conduct less detailed dataset examination or increase
modeling accuracy when higher execution time is affordable.

2 PRELIMINARIES
2.1 Problem Description
Assume a set of datasets D = {D1,D2, · · · ,DN } and an operator
F . Each dataset Di , 1 ≤ i ≤ N , consists of tuples with the same
number of columns, containing arithmetic values. F accepts a single
dataset as input and produces a scalar output value:

F : D → R (1)

Each operator can be viewed as a function that projects any dataset
Di to a scalar value F (Di). The problem that this work addresses,
is the following: We seek for an approximation of the expression
F (Di) without exhaustively executing F for all datasets. This resem-
bles a typical function approximation problem: One can sample
D, execute F for the selected subset of datasets and utilize regres-
sion to approximate F for the rest of the datasets. However, this
method cannot be applied in this problem because D represents an
unordered set of datasets that do not belong to a metric space and
the relationships between them are unknown. Since all function
approximation approaches require D to be a metric space, i.e., the
distances between datasets to be known, regression cannot be used.

Albeit constructing a metric space for any given D is possi-
ble for a given distance function for each dataset pair in D, the
quality of the approximation is heavily affected by the choice of
this function. Ideally, the desired distance function must reflect
the distance between two datasets Di , D j , 1 ≤ i, j ≤ N , both in
the aforementioned metric space and in the operator’s output do-
main, i.e., if |Di − D j | < ϵ (|.| denoting the Euclidean norm) then
|F (Di)−F (D j) | < ϵ as well. If this property applies, the constructed
metric space can be accurately used by a model in order to predict
an operator’s output, since the topology of the datasets themselves
provide excellent hints on the behavior of the latter. Although this
may initially seem an operator-dependent procedure, we argue that
only a handful of distance functions that examine specific dataset
properties suffice to generate highly informative dataset spaces, that
facilitate modeling the behavior of diverse real-world operators.

2.2 Operators and Dataset Properties
Associating how a property affects an operator’s behavior generally
requires extensive knowledge regarding the operator’s design. Nev-
ertheless, we argue that there exist some fundamental properties
that, if examined, they can produce invaluable insight regarding an
operator’s behavior. Indeed, examining data interrelationships in
the light of a handful of fundamental dataset properties can gen-
erate a knowledge basis through which the behavior of different
operators can not only be explained but also predicted. These prop-
erties examined in this work are: (a) the statistic al distribution of
the datasets, (b) the dataset size and (c) the order of their tuples.
Distribution refers to the positioning of a dataset’s tuples and it is
a fundamental property that is implicitly or explicitly examined
during any data analysis task, as it uniquely characterizes the sta-
tistical behavior of a dataset. Size is an expression of the cardinality
of the dataset and it is commonly examined when the behavior of
an operator is affected by it. Order expresses the ranking of the
dataset’s tuples and is frequently examined when sequence matters.

Table 1: Operators and Dataset Properties
Operators Affected byClass Name

Aggregate
Functions

AVG Distribution
SUM Distribution +

SizeCOUNT

Density DBSCAN [23] DistributionLocal Outlier Factor [18]
ML Linear Regression Distribution

Spectrum Eigenvalue Estimation Distribution
Time-Series
Forecast

Holt-Winters [19] Distribution +
OrderARIMA [17]

These three fundamental properties highly affect a magnitude
of real-world operators. In order to showcase this, in this work, we
use popular operators from diverse domains, which are frequently
encountered either as isolated components or as part of greater and
more complex analytics workflows. The considered operators along
with the respective properties they are affected by are summarized
in Table 1. Each operator is formulated as per Equation 1. Specifi-
cally, the Aggregate Functions represent mathematical operations
that are applied to one or more dataset columns, producing a scalar
value. The Density class comprise DBSCAN [23] that executes the
popular clustering algorithm and return the number of formed clus-
ters and Local Outlier Factor (referred to as LOF) that executes the
algorithm presented in [18] and returns the percentage of tuples
that collect a score greater than 2 and are, thus, considered to be
outliers. The ML class consists of a fundamental Machine Learning
operator, i.e., Linear Regression. This operator is trained using a
dataset from D and return an estimate of the training error when
the model is tested with a given external dataset. The Spectrum
class contains an operator that returns the i-th eigenvalue (for a
given i) of the provided dataset, a procedure executed in various
workflows from dimensionality reduction [30] to clustering. Finally,
the Time-Series Forecast class comprises two operators [17, 19] that
forecast the i-th value of a provided Time-Series dataset.

The reason behind the choice of examining these operators is
threefold. First, all of these operators are popular and extensively
utilized in Data Science and Machine Learning applications, either
as part of data preprocessing (e.g., outlier detection, statistical anal-
ysis, etc.) or core learning workflows (e.g., supervised/unsupervised

learning). Second, their diverse characteristics enforce us to design
a generic solution that makes no assumptions regarding their in-
ternals. Third, Machine Learning workflows, parts of which are
frequently constructed with the above operators, are an excellent
domain for the problem this work addresses. As data scientists need
to be able to classify an increasing number of datasets [15] without
actually executing their complex workflows to them, the identi-
fication of the Right Data [14], i.e., data of high utility which are
essential for driving strategic decisions, is crucial. Finally, it should
not be overlooked that Table 1 does not contain a complete list of
operators. Although our work uses the mentioned operators for
evaluation, our methodology can be used for any operator affected
by the three mentioned data properties without modifications.

3 METHODOLOGY
3.1 Methodology Overview
The key observation that datasets with similar specific properties
impact certain operators in similar ways and, hence, make them
producing similar outputs, highlights a new dimension to the prob-
lem under investigation: If one quantifies the similarity between
all pairs of datasets and executes an operator for only a handful of
them, a first idea of F ’s domain would become available, as datasets
with high similarity would present similar behavior. Let us general-
ize this idea: Given the relationship between dataset similarity and
an operator’s output, we seek for a projection of the datasets in D
into a metric space D ′ (also referred to as dataset space) that best
reflects the resemblance among them. D ′ can be then utilized by F
as the domain space – according to Equation (1) – in order to project
the original datasets into the anticipated values. Interestingly so,
the relationships between datasets are independent of F , allowing
different operators to be applied to a unique D ′. For each operator,
one could sample D, estimate F ’s values for the selected datasets
Di ∈ Ds ⊆ D and approximate F for the rest of the datasets utilizing
Machine Learning (ML) techniques. Although F is applied to some
of the original datasets, i.e., F (Di),Di ∈ Ds is calculated, the ML
model is trained using D ′ as the input space and the approximated
operator F ′ is defined as: F ′ : D ′ → R. Essentially, D ′ comprises a
set of features that best characterize the datasets’ interrelationships.
Figure 1 depicts an overview of the suggested methodology.

SIMILARITY
ESTIMATION

DATASET
SPACE

PROJECTION da
ta

se
t

sp
ac

e

[N x k]

similarity
matrix

[N x N]

D1

D2

DN

. .
 . ML Model

Prediction

F(Di),Di∈Ds
D’

Figure 1: Methodology workflow
The Similarity Estimation module quantifies the similarities be-

tween datasets D1, · · · ,DN . The outcome of this process is a sym-
metrical N × N similarity matrix whose (i ,j) cell represents the
similarity between Di and D j . The similarity matrix is then ac-
cessed by the Dataset Space Projection module which transforms
the original similarities into a metric space. In this step, Multidi-
mensional Scaling (MDS) [25] transforms the similarity matrix into
a set of points in a low-dimensional (k-dimensional) space, with
the property that the distances between the points of the space
approximate the similarity represented by the original matrix. The
final outcome of the process is a N ×k matrix that represents the co-
ordinates of each dataset in the dataset space. Finally, an operator F

can be executed for a small subset of datasets Ds . Using the dataset
coordinates and the respective operator values, a Neural Network
is trained in order to approximate F for all datasets. Based on the
approximated dataset scores, interesting questions can be answered:
Which are the dataset(s) with the highest/lowest F values (e.g., with
the highest first eigenvalue), how many datasets’ output is around a
given F value (e.g., dataset with approximately 5 DBSCAN clusters),
retrieve the top-k datasets under certain output criteria (e.g., the
top-10 datasets with highest percentage of outliers), etc.

Essentially, our approach attempts to shift the computational
burden in the first phase of data analysis: Theworkflow presented in
Figure 1 is executed once in an offline manner for all datasets. This
offline part is entirely operator-agnostic: The similarity estimation
does not imply the execution of any operator and only the relation-
ships between the raw datasets are evaluated without considering
the type of the operator that may be applied to them. Whenever
a new operator emerges, it is executed for a mere subset of the
available datasets and its behavior is rapidly approximated with
minimal computation. In the long run, the overhead introduced by
the suggested approach is amortized and the avoided computation
linearly increases with the number of operators that need to be
executed for the analyzed datasets.

3.2 Similarity Estimation
The notion of similarity adopted in this work focuses on three
characteristics, namely the distributions of the datasets, their size
and tuple ordering. Based on these primitive properties, one can
compose arbitrary similarity expressions that efficiently express
multiple dataset aspects. The similarity between two datasets is a
real number in the interval [0, 1], 0 indicating total dissimilarity
and 1 indicating perfect similarity. We now examine the mechanism
that quantifies the similarity for each property in detail.
▷Distribution: There exist several methods used to quantify the
similarity of the distributions between two datasets. One of themost
popular methods used during data analysis, entails the identifica-
tion of the distribution in a closed form for each dataset separately
and the comparison of the probability density functions (pdf) in
order to extract the relationships between them. The extraction
of a pdf usually occurs in a trial-and-error manner, as different
distribution types are tested for each dataset, keeping the one that
maximizes a statistical fitness measure such as the p-value. Al-
though this analysis can provide great insight in the behavior of
a statistical sample, it also presents certain limitations. First, the
size of the sample plays a determinant role, as smaller datasets
may not present enough evidence to accurately identify the most
suitable pdf. Second, distribution-free datasets may be erroneously
represented. Third, the number of tested distributions needs to be
high in order to provide accurate data representations, increasing
the complexity of the computations. Yet for our problem, we are
not interested in the identification of each dataset’s pdf per se, but
we only want to estimate the extent at which the tuples of two
datasets overlap, i.e., their relative positions in the space. If two
datasets feature a large percentage of their tuples inside the same
regions, then they should have similar distributions.

Quantifying the overlap between two different statistical samples
(datasets) is the main idea behind the Bhattacharyya coefficient
(BC) [21]. Its estimation relies on partitioning two datasets into l

disjoint partitions, identifying the number of tuples that belong to
each of them and, finally, summarizing the root of the product of
the number of tuples for each region: BC = ∑li=1 √AiBi , where Ai
and Bi denote the number of tuples located in the i-th partition for
datasets A and B respectively. For two given datasets A and B, the
upper bound of the BC value is obtained when l = 1. In order to
compare BC values between different pairs of datasets that might
enumerate different tuples, we normalize BC with this upper bound,
reaching the following Distribution similarity function:

Distribution(A,B) =

∑l
i=1
√
AiBi

√
|A| |B |

(2)

One parameter that highly affects Equation 2 is the partitioning
setup. Specifically, both the partitioning algorithm and the number
of partitions affect the equation’s behavior, in different ways. The
choice of the partitioning algorithm is crucial for ensuring fairness
among different datasets, since certain partitioning schemes may
boost specific distributions and be unfair to others. It also needs
to be scalable to multiple dimensions, in order to successfully con-
sider datasets of high dimensionality. Voronoi partitioning [16] is a
popular partitioning setup that adheres to these properties. Each
partition (or cell) is represented by a centroid (seed). Each dataset
tuple is assigned to the partition represented by its closest centroid.
The partition problem is, thus, transformed to finding a set of seeds.
Albeit the estimation of the optimal seeds is NP-Hard, one can
generate them using k-means [36]. Since k-means’ solutions are
largely affected by the initial seed selection, in our work k-means++
[13] was utilized. In order to maximize fairness between datasets
and minimize any bias inserted by skewed distributions during the
centroid selection, we sample all the available datasets, keeping
a small percentage (1 – 5%) of each and generate a new one that
consists of all the sampled tuples. k-means is, then, executed for
this “merged” dataset, centroids are extracted and then used for
partitioning each dataset separately. The number of partitions (l) is
determined by the user. More partitions lead to a more fine-grained
examination whereas fewer partitions provide greater abstraction.

From a technical perspective, after the execution of k-means, the
estimated Voronoi diagram is utilized to partition all the available
datasets and, subsequently, the number of the tuples inside each
leaf is estimated. For each dataset, an in-memory array is generated:
The index of each array element represents the Voronoi cell id and
the value of the array element represents the number of tuples that
reside in the cell. The estimation of Equation 2 is then reduced
to obtaining the dot product of the respective arrays for A and
B. Repeating the procedure for every dataset pair provides the
final similarity matrix. Note that, the construction times of the
arrays, which entails the processing of the raw data, increases
linearly with the number of datasets. Essentially, these arrays act
as synopses of the datasets: The more the partitions, the more
accurate the representation and the more time-consuming is the
estimation of the dot product between each pair. Specifically, the
complexity of constructing a similarity matrix using Equation 2
equals O (Nnld ′ + Nnl + N 2l), where N is the number of datasets,
n is the maximum dataset size, l is the number of partitions and d ′
is the dimensionality of the domain of the datasets. The first factor
refers to the Voronoi diagram creation, the second one refers to the
synopsis creation for all datasets and the third refers to the matrix.

▷Order: The identification of the similarity between the ordering
of two datasets entails the estimation of the rank correlation co-
efficient [33], i.e., the measurement of the ranking between their
members. First, a sorted copy of the datasets is created: The columns
that are utilized for the sorting step are defined by the user, along
with their importance in the comparisons (by default all columns
are utilized in increasing column-id order), i.e., if X [1] > Y [1] then
X > Y . Based on the respective sorted copy for each dataset, the
rank array is generated. The i-th element of the rank array rep-
resents the position of the i-th element in the sorted copy, e.g.,
if the original array contains the elements X = [100, 99, 102] the
respective rank array is x = [2, 1, 3]. Given that, we provide the
rank similarity measure utilized in this work, that resembles the
Kendall rank correlation coefficient (τ) [31]:

Order (A,B) =
concord (a,b) − discord (a,b)

n(n − 1) +
1
2 (3)

in which, a and b represent the rank arrays of A and B respectively,
concord (a,b) returns the number of pairs (ai ,bi) and (aj ,bj), i , j
for which the rank of both elements agree, i.e., if ai > aj then bi >
bj or if ai < aj then bi < bj . discord (a,b) returns the respective
number of pairs whose rank disagree. When two pairs share the
same rank they are considered neither concordant nor discordant.
Note that the Kendall τ receives values in the interval [−1, 1], in
which 1 means that the two ranks completely match and −1 means
that the two datasets are sorted in reverse order. Since, in our case,
the similarity metric is expressed in the interval [0, 1], we scale
the Kendall τ accordingly, producing the above expression. The
complexity of constructing a similarity matrix using Equation 3
equals O (Nn log(n) + N 2n log(n)). The first factor relates to the
sorting step of all the datasets and the second factor relates to the
estimation of Order for each pair of datasets. Note that, although
Order seems to require the investigation of every pair of tuples of
the two datasets (quadratic time to the dataset size, i.e., O (n2)), a
merge-sort based implementation requires O (n logn) steps [32].
▷Size: The similarity between the size of two datasets is evaluated,
using the following expression:

Size (A,B) =
min(|A|, |B |)
max(|A|, |B |) (4)

Note that, Size (A,B) → 1, if |A| → |B |. The complexity of creating
a similarity matrix with Equation (4) isO (Nn+N 2): The first factor
represents the cost of counting each dataset’s tuples and the second
factor represents the evaluation of Size for each pair of datasets.
▷Combining different metrics: While certain operators may de-
pend on a single property, there exist cases one would want to
construct a similarity matrix that combines several ones. In such
cases, one can generate algebraic combinations of simpler matrices
that reflect more sophisticated similarity expressions. The form of
the algebraic expression (e.g., linear combination, matrix multipli-
cation, etc.) that combines the matrices is defined by the user and
expresses the importance of each component.

3.3 Dataset Space Projection
Although the information of a similarity matrix can be directly
used by a data engineer, this representation of information is cum-
bersome for three reasons: (a) The size of the matrix increases
quadratically with the number of datasets. (b) The matrix provides
limited information as it does not represent the relationships at
scale, e.g., one can easily identify a dissimilar – to the rest – dataset,

but the magnitude of the dissimilarity is not easily comprehensible.
(c) Most Machine Learning algorithms require the input metric
space to be expressed in a form where the coordinates rather than
the similarities of the input space points are known. Although a
category of nonparametric learning algorithms [10] do support re-
gression based similarities, these algorithms are less sophisticated
and are mainly used for simpler learning tasks. In order to address
these limitations, our methodology transforms the similarity matrix
into a dataset space where the positions of the datasets reflect their
similarities: Datasets that are placed closer to each other would be
more similar than the more distant ones.

Toward this direction, Multidimensional Scaling (MDS) [25] has
been used. MDS is a technique used to estimate the coordinates of a
set of points given a square matrix that quantifies the dissimilarity
between them. According to Classical MDS, the dissimilarity ex-
presses the Euclidean distance between the points, although, in the
general case, this dissimilarity can be expressed using any distance
function. MDS can also work based on matrices that represent sim-
ilarity. For clarity and in order to remain aligned to the literature,
we will describe MDS based on dissimilarity matrices. Either way,
similarity is easily transformed into distance using the following
transformation (s being the similarity and d the distance):

s =
√
1 − d,d = 1 − s2 (5)

where both s,d ∈ [0, 1]. Note that when s → 1, d → 0 and when
s → 0, d → 1. Any pair of transformation equations that respect
this property can be used instead, assuming that d is finite.

There exist several methodologies that execute MDS in order
to calculate a coordinates matrix. In this work, we utilize Classical
MDS [25] which expresses the problem as a matrix eigendecompo-
sition problem. In short, MDS entails the execution of eigenanalysis
to the dissimilarity matrix of size N × N , producing a list of eigen-
values [λ1, λ2, · · · , λN] in descending order and their respective
eigenvectors. Each eigenvector represents a dimension of the met-
ric space and its respective eigenvalue represents the variance it
captures. The number of eigenvectors to utilize is decided based on
the covered variance, expressed by the Goodness of Fit (GoF):

GoF =

∑k
i=1 λi∑N
i=1 λi

(6)

k being the number of eigenvectors to use. A common rule-of-
thumb is to set k to a value where GoF ≥ 0.75 [30].

Although MDS achieves to identify the dimensionality of the
final space and the initial dataset positions to it, the difference
between the distances obtained by the space and the matrix can
be further reduced through a non-linear projection. To this end,
after the execution of MDS, we apply Sammon mapping [42], a
non-linear space transformation that aims at slightly “moving” the
projected datasets in such a manner that their projected distances
best approximate the original dissimilarity matrix. Specifically, all
the datasets are initially assigned with the coordinates produced
through MDS. The distance between the projected and the target
distances is expressed by the Sammon Stress Es :

Es =
1∑

i<j di j

∑
i<j

(di j − d
∗
i j)

2

di j
(7)

di j denoting the distance between the i-th and j-th element from
the distance matrix and d∗i j the respective distance as measured
by the produced space. The execution of Sammon mapping entails

the use of an iterative optimization methodology such as Simulated
Annealing (SA) [43], until the Es value stops declining or a pre-
defined iteration threshold is exceeded. This reduction enables
the constructed space to better represent the information of the
similarity matrix, without increasing its dimensionality.

3.4 Modeling
After constructing the dataset space, Neural Networks (NNs) are
used for predicting a given operator’s outputs. A sample Ds ⊆ D
of datasets is obtained, the size of which is determined by the user.
An operator F is applied to every dataset in Ds and the output
values are provided as a training set to a NN. The trained model
is, subsequently, tested using a – disjoint from Ds – test set. NNs
were preferred against other Machine Learning methodologies due
to their efficiency and their ability to model arbitrary distributions.
The employed models comprise 1 hidden layer which is configured
according to the rule of thumb that “the optimal size of the hidden
layer is between the size of the input and size of the output layers”
[29]. Note that although model configuration greatly impacts its
accuracy, this topic outside the scope of our work.

4 EXPERIMENTAL EVALUATION
Experimental Setup: All experiments are conducted on a server
with two Intel Xeon E5645 processors running at 2.40GHz, 96G of
main memory and 2TB of hard disk, running Ubuntu 14.04.2 LTS
with Linux kernel 3.13.05. Our prototype is implemented in Go
(v.1.7.6). R (v.3.3.3) was utilized for MDS and NN training.

Table 2: Datasets and Operators
ID Description Datasets Tuples Operators

CLU Google Cluster 4797 46 – 2188 AVG, SUM,
Monitoring [2] COUNT (CNT),

HPO Household Power 1442 1263 – 1440 DBSCAN (DBS),
Consumption [35] Local Outlier F. (LOF),

WEA Weather Station 552 300 – 8766 Eigenvalue (EIG),
Recordings [3] Regression (REG)

NAS NASDAQ 231 252 Holt-Winters (HOL)Tech. Stocks [5]

WIK Wikipedia 4503 551 ARIMA (ARI)Page Visits [7]

Datasets & Operators: For the evaluation, five real-world sets of
datasets are utilized, provided in Table 2. CLU provides the moni-
toring metrics of 4797 physical hosts (each dataset contains metrics
from one host) of a data center at Google, running different tasks.
Each tuple comprises 14 metrics of one task and different hosts
run a varying number of tasks (ranging from 46 – 2188 tasks/host).
HPO contains 1442 datasets with daily power measurements of a
household in Denmark. The measurements usually take place every
minute (except for some days where outages were witnessed) and
each one comprises 7 features.WEA contains weather recordings
from 552 different weather stations (w.s.) in 6 countries during
2016. Different w.s. gather measurements in different time intervals,
hence, the number of tuples between different datasets ranges from
300 – 8766. All measurements comprise 6 features. For CLU, HPO
and WEA, we test the 7 operators presented in the right column
of Table 2. The Aggregate Functions are applied for one column
of each dataset, whereas Linear Regression is applied for HPO and
attempts to construct a linear model for predicting the active power
of a metering zone based on the rest of the metrics. NAS contains
various measurements of the NASDAQ Technology Sector stocks,

for the interval 2016/05/30 – 2017/05/30 (1 dataset represents 1
stock). Finally,WIK contains the number of visits for 4503 different
Wikipedia articles for an interval of 551 days. For NAS andWIK we
apply the two Time-Series forecasting algorithms. Throughout the
evaluation, we will refer to each operator using the dataset id and
the operator id (indicated in bold in Table 2). For example, HPO-LOF
refers to the Local Outlier Factor operator for the HPO dataset.
Methodology: To evaluate our methodology’s efficiency, we mea-
sure the accuracy of the trained ML model that predicts the value
of each of the operators. Specifically, we adopt the Normalized Root
Mean Squared Error, NRMSE = 1

ymax−ymin

√
1
N
∑N
i=1 (yi − ŷi)

2

and theMedianAbsolute Percentage Error,MdAPE =median
1≤i≤N

����
yi−ŷi
yi

����,
where yi represents the actual operator value applied over Di , ŷi
represents its approximated value and ymin ,ymax represent the
minimum and maximum operator values respectively. MdAPE was
preferred against the Mean Absolute Percentage Error since it is
less susceptible to outliers. All the error metrics are estimated for
all the datasets, i.e., each operator was exhaustively applied over all
the available datasets for testing purposes, in order to avoid cases
where the model consistently fails to approximate specific dataset
space areas. Neural Network (NN) regression models are utilized
for modeling. Each model is trained by executing the operator over
a portion of the available datasets (this is referred to as the sampling
ratio). The construction of similarity matrices that combine more
than one dataset properties utilizes Equation 8:

Similarity (A,B) =
∑
X (wX · X (A,B)) (8)

in which X ∈ {Distribution,Order , Size} and ∑X wX = 1. Finally,
in order to decide on the dimensionality of the produced dataset
spaces, Equations 6 and 7 are used.

4.1 Dataset Space Construction
Webegin our analysis by generating five dataset spaces, one for each
set of datasets. ForCLU,HPO andWEA the similaritymatrix is solely
calculated with the Distribution property, utilizing 32 partitions for
the comparison. For NAS and WIK, the similarity matrix combines
the Distribution and Order properties with equal weights. Figures
2 (a) and (b) provide the GoF and Es values, respectively, when
obtaining dataset spaces of varying dimensionality whereas Figures
2 (c) and (d) provide 2-d projections of the constructed HPO and
WEA dataset spaces respectively.

Figures 2 (a) and (b) provide an estimate of the dimensionality
of the space that should be employed in order to retain the dis-
tances of the similarity matrix without information loss. As more
dimensions are employed, GoF increases and Es decreases, some-
thing that indicates that the constructed space retains the calculated
dataset distances more accurately. Observe that each set of datasets
presents different dimensionality requirements for an approxima-
tion of high quality:WEA andWIK require only 3 dimensions in
order to be transformed with GoF > 0.75, whereas HPO requires
7 dimensions and NAS and CLU require approximately 15. GoF’s
values are affected by the relationships between the datasets: The
more similar the distances between the datasets, the more dimen-
sions are required in order to generate an accurate representation
of the matrix. The Sammon mapping was successfully executed
only for 3 of the 5 cases, because CLU and WIK contained some

dataset pairs with distance 0. Since the Sammon mapping requires
no points to overlap, it could not be executed for sets that presented
this phenomenon. Observe how the Sammon mapping “corrects”
the dataset coordinates in order to reduce the number of required
dimensions. For example, although HPO’s GoF diagram indicates
that 7 dimensions are needed, Es presents a “knee” sooner than
that: Since Es presents similar values for 4 or 5 dimensions, one can
use fewer dimensions without losing in accuracy. Finally, the two
plots indicate that even for the sets with increased dimensionality
requirements, the application of MDS and Sammon mapping can
drastically reduce dimensionality as k ≪ N for all cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

G
o

o
d

n
e

s
s
 o

f
F

it

dimensions

CLU

HPO

WEA

NAS

WIK

(a) GoF

 0

 0.1

 0.2

 0.3

 0.4

 1 2 3 4 5 6 7 8 9 10

S
a

m
m

o
n

 S
tr

e
s
s
 (

E
s
)

dimensions

HPO
WEA
NAS

(b) Es

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

Cold Warm August

(c) HPO dataset space

-0.3

-0.1

 0.1

 0.3

-0.6 -0.4 -0.2 0 0.2 0.4

Northern Southern

(d)WEA dataset space

Figure 2: Dataset spaces, GoF and Es plots
Figures 2 (c) and (d) demonstrate that a visual examination of

the dataset spaces provides valuable information to a data analyst,
as datasets with similar behavior are projected closer. In the HPO
case, one can observe that the datasets are positioned according
to the day of the year they were collected (only datasets of 2008
are depicted for legibility reasons) and they are organized in three
clusters: Datasets from cold and warm days of the year and datasets
from August. Note the interesting pattern: The household’s energy
consumption is much higher during the colder days (due to energy-
hungry heating devices), decays during the warmer days and is zero
during August. Similarly, this behavior is also exhibited forWEA
(only depicting Swedish w.s.): The obtained datasets are clustered
according to their geographic location and form two groups: The
Northern ones (that present lower temperatures) and the Southern
ones (with warmer and less humid climate).

4.2 Operator Modeling
For each set of datasets, we construct the similarity matrices based
on the properties their operators are affected by, i.e., Distribution
and Size for CLU, HPO andWEA (settingwDistr ibution = wSize =

0.5 to Equation 8) and Distribution and Order for NAS and WIK
(wDistr ibution = wOrder = 0.5) and, subsequently, execute MDS
to obtain the respective dataset spaces. We, then, train Neural Net-
works utilizing different sampling ratios that vary from 4% to 32%.
In Table 3, we provide the error metrics and the execution speedup.
Modeling Quality: The NRMSE andMdAPE columns of Table 3
provide the modeling error of our approach (less is better). Gen-
erally, we can observe that increasing sampling ratios lead to de-
creased modeling errors. Examining each operator class in isola-
tion, the Aggregate Functions, present low modeling errors for all

datasets. Interestingly, when only a mere 4% of datasets is exam-
ined, one can approximate the operators values with an MdAPE
that varies from a minimal 2 to 15% for most cases (e.g., HPO-AVG
produced less than 2% for all sampling ratios), with the exception
of CNT that presents the highest MdAPE for CLU and WEA. In
comparison to the other aggregate operators, CNT is the one that
presents values closest to 0, something that contributes to increased
MdAPE without actually indicating poor approximation [38]. The
Density based operators (LOF and DBS) also present a robust be-
havior, measured both in terms of NRMSE and MdAPE. LOF can
be modeled with remarkable accuracy (6.5% MdAPE when 4% of
the datasets are considered) and improves with increasing sam-
pling ratios for all datasets. The least accurate operator of this class
is DBS that presents a modeling error that quickly reduces with
increasing sampling ratios. This operator presents an interesting
pattern: Some datasets with different distributions (which are evi-
dently located in distant positions in the dataset space) presented
similar outcomes, i.e., number of clusters. This unavoidable situ-
ation means that there does not exist a monotonic relationship
between an operator’s scores and their position to the dataset space.
This means that the model needs to obtain more samples in order
to increase its accuracy, hence the error degradation with increas-
ing sampling ratios. REG and EIG also present robust behavior
for all the examined datasets. EIG in particular, presentedMdAPE
less than 10% for all the examined datasets. This means that one
can approximate the value of the most important eigenvalue of
each dataset with a minimal error through actually running the
operator for a minimal subset of the available datasets. On the
contrary, the Time-Series operators exhibit a seemingly abnormal
behavior where they present low NRMSE and abnormally high
MdAPE that declines fast with increasing sampling ratios. As in
the CNT operator case, the fact that both HOL and ARI produce
values close to 0 leads to increased MdAPE values. The fact that
these values decline fast with the sampling ratio means that while
more knowledge is obtained, the approximated scores increase and,
hence, MdAPE decreases. In a nutshell, the demonstrated errors
indicate that our methodology successfully approximates all the
considered operators. The fundamental idea behind our approach,
that dataset spaces constructed in such a manner so as to reflect
the relationships between them, facilitates the training of Machine
Learning models that accurately approximate the behavior of the
operators.
Speedup: The Speedup and Amortized Speedup columns of Table
3 provide an estimate of the time needed to approximate each op-
erator in comparison to exhaustively executing them for all datasets

(more is better). Specifically, the speedup equals T (i)
op

SR×T (i)
op +TSM+TMDS+TML

,

whereT (i)
op is the execution time of the i-th operator for all datasets,

SR is the sampling ratio,TSM is the time needed to construct the sim-
ilarity matrix, TMDS the time of executing Multidimensional Scal-
ing and Sammon mapping and TML is the time needed to train the
Neural Network. Considering that TSM , TMDS are only paid once
for each set of datasets, we also calculate the Amortized Speedup
where T (i)

op is replaced with ∑i T (i)
op , i.e., the execution time for all

operators for each case. The examination of the Speedup column
indicates that the sampling ratio is inversely proportional to the

Table 3: Modeling Accuracy and Execution Speedup of Operators

Operator NRMSE MdAPE Speedup (×) Amortized Speedup (×)
4% 8% 16% 32% 4% 8% 16% 32% 4% 8% 16% 32% 4% 8% 16% 32%

CLU-AVG 0.086 0.079 0.073 0.066 0.125 0.114 0.100 0.082 3.21 2.84 2.32 1.69

16.34 9.88 5.52 2.93

CLU-SUM 0.085 0.077 0.070 0.063 0.182 0.158 0.136 0.114 3.21 2.84 2.32 1.69
CLU-CNT 0.115 0.108 0.104 0.097 0.433 0.401 0.377 0.339 3.21 2.84 2.32 1.69
CLU-DBS 0.098 0.093 0.088 0.083 0.201 0.191 0.173 0.152 5.69 4.63 3.83 2.19
CLU-LOF 0.082 0.074 0.070 0.066 0.146 0.136 0.125 0.110 12.13 8.17 4.94 2.76
CLU-EIG 0.069 0.063 0.058 0.053 0.089 0.079 0.071 0.060 4.27 3.65 2.83 1.95
HPO-AVG 0.104 0.096 0.088 0.084 0.013 0.012 0.011 0.010 3.93 3.4 2.67 1.87

20.27 11.20 5.91 3.04

HPO-SUM 0.070 0.065 0.056 0.051 0.149 0.135 0.122 0.113 3.93 3.4 2.67 1.87
HPO-CNT 0.098 0.079 0.069 0.061 0.115 0.104 0.092 0.084 3.93 3.4 2.67 1.87
HPO-DBS 0.124 0.119 0.114 0.111 0.146 0.141 0.133 0.128 8.30 6.23 4.16 2.50
HPO-LOF 0.064 0.061 0.055 0.052 0.068 0.063 0.061 0.057 16.64 9.99 5.55 2.94
HPO-EIG 0.071 0.069 0.067 0.065 0.065 0.063 0.059 0.055 7.33 5.67 3.90 2.72
HPO-REG 0.073 0.071 0.071 0.069 0.162 0.150 0.134 0.124 11.33 7.80 4.80 2.72
WEA-AVG 0.089 0.074 0.068 0.059 0.035 0.025 0.020 0.018 2.68 2.42 2.03 1.53

18.72 10.71 5.77 3.00

WEA-SUM 0.075 0.068 0.063 0.057 0.114 0.078 0.059 0.047 2.68 2.42 2.03 1.53
WEA-CNT 0.119 0.106 0.091 0.080 0.324 0.284 0.244 0.214 2.68 2.42 2.03 1.53
WEA-DBS 0.182 0.180 0.176 0.171 0.323 0.328 0.303 0.288 6.06 4.88 3.51 2.25
WEA-LOF 0.126 0.123 0.115 0.110 0.118 0.113 0.107 0.093 16.71 10.02 5.56 2.94
WEA-EIG 0.035 0.032 0.031 0.029 0.024 0.021 0.019 0.018 5.59 4.57 3.35 2.18
NAS-HOL 0.093 0.090 0.086 0.084 0.700 0.445 0.333 0.283 0.65 0.63 0.60 0.55 3.45 3.03 2.44 1.75NAS-ARI 0.095 0.090 0.085 0.084 0.773 0.548 0.341 0.262 2.94 2.63 2.17 1.61
WIK-HOL 0.018 0.018 0.018 0.018 0.812 0.686 0.582 0.353 0.17 0.16 0.16 0.16 1.42 1.34 1.21 1.01WIK-ARI 0.019 0.019 0.019 0.019 0.595 0.488 0.324 0.237 1.27 1.20 1.10 0.93

achieved speedup. Lower sampling ratios indicate that an operator
is executed to less datasets and, hence, the achieved speedup is
greater. The exact value of the speedup is directly related to the
complexity of the operator.When the employed operator is complex
and its execution time is large, as in the LOF cases, the achieved
speedup approximates the optimal one, which is 1

SR . For example,
HPO-LOF presents a speedup of 16.64× when 4% of the datasets are
considered. On the contrary, when the operator is less complex, the
achieved speedup is limited (e.g., CLU-AVG presents a speedup of
3.21 when 4% of the datasets are considered), because the construc-
tion time of the similarity matrix and the MDS execution is not
counterbalanced by the avoidance of operator executions. Neverthe-
less, when the similarity matrix construction and MDS execution
is amortized to more than one operators, the achieved speedup
largely increases. This is visible for the first 3 sets of datasets where
the achieved speedup closely approximates 1

SR . For example, the
amortized speedup of HPO is 20.27 for a sampling ratio of 4%. This
highlights the power of the suggested methodology. As more oper-
ators emerge, they utilize the previously computed dataset space
and the amount of avoided computation increases linearly with
their number. However, if the cost of constructing a dataset space
is high, the achieved speedup may require many more operators
in order to counterbalance the offline cost. The NAS and WIK sets
require more computation time for the construction of their sim-
ilarity matrices since the Order property entail the evaluation of
Equation 3 which is more expensive than the previous cases. This
is the reason behind the lower speedup values encountered to NAS
and WIK. Nevertheless, an increasing number of operators will,
eventually, lead them to save an increasing amount of execution
time and, hence, accelerate the analysis for these cases as well. Ev-
idently, the observed speedup is strongly affected by two factors:
(a) the complexity of the operators and (b) the complexity of the
similarity expression. Avoiding the execution of complex operators
leads to higher speedups as soon as the similarity expression is

efficient. For example, CLU-LOF presents a remarkable speedup of
16.64 both because the operator’s execution time is increased and
due to the low complexity of the similarity expression. Therefore,
it is crucial to obtain similarity expressions that are both efficient
in terms of expressiveness and complexity.

4.3 Combining Similarity Metrics
We now evaluate the impact of combining multiple similarity met-
rics for the WEA case to our scheme. Each weather station col-
lects measurements in different intervals and, thus, the size of the
datasets varies between 300 – 9000 tuples. We construct two similar-
ity matrices based on (a) the Distribution similarity property and (b)
the Size similarity property. Based on those, three more similarity
matrices are constructed where (wDistr . ,wSize) equals to (0.2, 0.8),
(0.5, 0.5) and (0.8, 0.2). All matrices are then transformed to 5-d
dataset spaces and, subsequently, model WEA-AVG and WEA-SUM
for each space, utilizing sampling ratios between 2% – 20%. The
modeling part is executed 20 times and Figure 3 depict the results.

We remind here that AVG is only affected by the Distribution of
the datasets whereas SUM is affected both by Distribution and Size.
Figure 3 (a), showcases that the most informative space, i.e., the
one with the least error, is constructed using only the Distribution
property and the sole consideration of Size creates a space with no
information as regardless of the increasing sampling ratio, the error
is not reduced. However, when constructing spaces that combine
both parameters, the size seems to be ignored. Interestingly, when
the respective weights are equal or when favoring the important
property, e.g., as in the (0.8, 0.2) case, the model is practically un-
affected by the consideration of the Size. On the contrary, when
an operator is affected by both properties, as in the WEA-SUM
case, the spaces born from the combination of the primitive ma-
trices are far more informative than the primitive ones and lead
the models to increase their accuracy which is, in turn, increas-
ing with the sampling ratio. This practically means that when a

space is constructed using a combination of dataset properties, the
simpler operators tend to ignore the non-interesting – to them –
properties and do not present degraded modeling accuracy. On the
contrary, the operators that do require the property combinations
to be reflected to the space, are modeled much more efficiently than
considering one property at a time. Finally, in cases where the users
are knowledgable about the applied operator, the adjustment of the
weights can result in a dataset space that best projects the property
of interest, e.g., Distribution in theWEA-AVG case.

 0.04

 0.08

 0.12

 0.16

 2 4 6 8 10 12 14 16 18 20

N
R

M
S

E

Sampling Ratio

WEA-AVG Operator

Distr.
Size
0.2,0.8
0.5,0.5
0.8,0.2

(a)

 0.055

 0.065

 0.075

 0.085

 2 4 6 8 10 12 14 16 18 20

Sampling Ratio

WEA-SUM Operator

(b)
Figure 3: Combining data properties

4.4 Distribution Similarity Granularity
We now evaluate the impact of the number of partitions (l) during
the examination of the similarity of Distribution. Based on HPO, we
calculate 8 different similarity matrices, using different numbers
of partitions. Each of them is, subsequently, transformed to 5-d
dataset spaces and, finally, a NN model for HPO-AVG is trained,
using three different sampling ratios (2%, 8% and 16%). Recall that
HPO-AVG is only affected by the Distribution of the datasets. The
modeling part is repeated 20 times and in Figure 4 (a) we provide the
median modeling error. Figure 4 (b) depicts the execution time of
the similarity matrix construction and MDS and Figure 4 (c) depicts
Es when different dimensionality is employed for varying l .

Figure 4 (a) presents an interesting finding: Although an increas-
ing l (between 4 – 64) seems to decrease the modeling error, as more
partitions imply that the similarity comparison is more detailed,
increasing l beyond a point seems to increase the error. In fact, for
higher sampling ratios, it is preferable to utilize a smaller l value
rather than a higher one, as for the 16%, the error for l = 4 is lower
than the error in the l = 256 case. This finding is explained when ex-
amining Figure 4 (c): The utilization of more partitions increases the
level of detail for the similarity estimation and, hence, an increasing
number of dimensions is necessary in order to accurately transform
the similarities to a dataset space. Since all cases from (a) comprise
5 dimensions, the similarity matrices with more partitions are less
accurately projected and, hence, less accurately modeled. Therefore,
there exists a clear dependency between l and k : More partitions
require space of higher dimensionality. Furthermore, the execution
time presents another interesting pattern: The time needed to con-
struct the matrix increases linearly with l but MDS seems to require
more time when fewer partitions are employed. Fewer partitions
leave more room for the “optimal” dataset placement in 5 dimen-
sions and SA needs more time to converge to this point. However,
constructing similarity matrices with increased number of parti-
tions and, hence, dimensions, does not always benefit the analysis.
To evaluate this, in Figure 4 (d) we provide the median error of
NN models trained considering only 8% of the available datasets,
using spaces of different dimensionality (horizontal axis), estimated

using three different l values. For higher l values, more dimensions
need to be utilized to decrease the modeling accuracy. However,
the utilization of more dimensions than actually needed (e.g., when
l = 64 there is no need to use more than 5 dimensions) leads to
complex models and the modeling accuracy degrades. There exists
an opportune area for selecting the appropriate dimensionality.

 0.045

 0.055

 0.065

 0.075

 0.085

 4 8 16 32 64 128 256 512

N
R

M
S

E

partitions

SR=2% SR=8% SR=16%

(a)

 0

 4

 8

 12

 16

 20

4 8 16 32 64 128
256

512

T
im

e
 (

s
e
c
)

partitions

Similarity Matrix
MDS

(b)

 0

 0.1

 0.2

 0.3

 1 2 3 4 5 6 7 8 9 10

S
a
m

m
o
n
 S

tr
e
s
s
 (

E
s
)

dimensions

l=8
l=64

l=128
l=256

(c)

 0.045

 0.055

 0.065

 0.075

 0.085

 1 2 3 4 5 6 7 8 9 10

N
R

M
S

E

dimensions

l=16 l=64 l=256

(d)

Figure 4: Distribution Similarity Granularity

5 RELATEDWORK
The idea of combining data from different sources in order to in-
crease their utility is the key idea behind Data Integration. The
work in [34] outlines the requirements for the implementation of
data integration systems and provides the theoretical models to
express the basic operations over distinct datasets. The authors
focus on query answering and reasoning using the distinct datasets
and attempt to unify them in the most transparent way. On the
contrary, our work exploits the differences between the distinct
datasets and targets to model them, creating a feature space to
model the operators’ behavior. Ground [28] is a data context ser-
vice that focuses on the creation of the appropriate metadata that
informs the data scientist on the possible use of each dataset. The
context of the data retains information regarding the representation
of the dataset, details about how data was created and version-
ing history, in order to keep track of data updates. CrossCat [39]
focuses on analyzing high dimensional data. It relies on mixture
modeling and Bayesian structure learning. It evaluates each data
column separately, constructs different views of the data and uses a
separate non-parametric mixture to model each view. Although this
work attempts to obtain better knowledge for existing datasets, it
does not take into consideration the relationships between different
datasets.

The identification of the key properties of a dataset is the target
of Data Exploration. Data Canopy [44] demonstrates the power of
statistical analysis over unknown datasets in order to infer knowl-
edge. The main idea of this work lies on generating a set of basic
aggregates, which can be synthesized in order to infer knowledge
without constantly accessing the raw data. Data Canopy, similarly
to our work, highlights the necessity of statistically analyzing the
datasets once and utilizing the analysis for consequent tasks. Yet, in

this work, we are interested in predicting complex analytics opera-
tor performance considering more complex statistical properties
for the datasets (such as distribution) than simple aggregates. AIDE
[22] is a database exploration system using Active Learning. It im-
plements an iterative methodology, in which it requests feedback
from the users whether the returned tuple is of interest to them.
While the users provide more responses, AIDE isolates the interest-
ing areas of the database and returns them to the user in the form
of SQL queries. This work is driven by the assumption that the user
is unaware of the database and only provides yes/no responses. On
the contrary, our work requires no feedback from the user and the
“interesting” datasets are determined by operator performance.

Finally, data profiling and instance selectionmethodologies tackle
a similar problem to this work but from a different angle. [24]
presents works that address the challenge of instance selection for
active learning. In this setup, a classifier is trained in an online
fashion and the labels of the training points are either unknown
or hard to be obtained. The objective of these approaches is to pro-
vide efficient heuristics to select a subset of points that minimize
the classifier’s uncertainty under given cost constraints. Similarly,
Zombie [11] is a system that conducts input selection for feature en-
gineering. The main idea of this work is to focus on the appropriate
tuples of a given dataset in order to accelerate feature selection for
machine learning tasks. Although the concept of data utility is com-
mon between these works and our approach, our work emphasizes
not on tuple selection but on highlighting the differences between
different datasets. Moreover, the results of our work can be used
with different utility functions through applying different operators
for the same spaces. Finally, [9] presents different approaches to-
wards data profiling that aim at automatically extracting metadata
for given datasets. This metadata can, in turn, be utilized for cluster-
ing and categorizing them according to their usage and utility for
different operators. Our work is also based on this idea and extends
it: Using a unique (i.e., not operator-dependent) knowledge basis,
our methodology can infer the outcome of diverse operators when
applied to datasets that belong to the same clusters.

6 CONCLUSIONS
In this paper, we tackled the problem of modeling the behavior
of an operator given a large set of input datasets. We proposed a
novel methodology that relies on estimating the similarity between
distinct datasets, based on their distribution, ordering and size.
Through these similarities, knowledge inferred about the datasets is
transformed to a low-dimensional space and utilized by ML models
to approximate the behavior of a given operator for all the available
datasets. In practice, this approach proved capable of achieving
very accurate performance models, while it can gracefully degrade
its efficiency over customizable gains in execution cost.

REFERENCES
[1] 2014. The Big Problem Is Medium Data. http://goo.gl/5nYrrz.
[2] 2015. Google Cluster Monitoring Dataset. https://github.com/google/cluster-

data/. Online; accessed Feb 2018.
[3] 2016. National Centers for Environmental Information.

https://www1.ncdc.noaa.gov/pub/data/noaa/. Online; accessed May 2017.
[4] 2017. Apache Flink. https://flink.apache.org/.
[5] 2017. Google Finance API. https://www.google.com/finance/historical.
[6] 2017. Medium Data is the New Sweet Spot. https://goo.gl/mnxnEx.
[7] 2017. Web Traffic Time Series Forecasting. https://www.kaggle.com/c/web-

traffic-time-series-forecasting/data. Online; accessed Feb 2018.

[8] 2018. Data Profiler source code. https://github.com/giagiannis/data-profiler.
[9] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling relational

data: a survey. The VLDB JournalâĂŤThe International Journal on Very Large
Data Bases 24, 4 (2015), 557–581.

[10] Naomi S Altman. 1992. An introduction to kernel and nearest-neighbor nonpara-
metric regression. The American Statistician 46, 3 (1992), 175–185.

[11] Michael R Anderson and Michael Cafarella. 2016. Input selection for fast feature
engineering. In Data Engineering (ICDE), 2016 IEEE 32nd International Conference
on. IEEE, 577–588.

[12] Michael Armbrust, Armando Fox, Rean Griffith, and Joseph others. 2009. Above
the clouds: A berkeley view of cloud computing. Technical Report. Technical Report
UCB/EECS-2009-28, EECS Department, University of California, Berkeley.

[13] David Arthur and Sergei Vassilvitskii. 2007. k-means++: The advantages of
careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms. Society for Industrial and Applied Mathematics, 1027–1035.

[14] Ricardo A Baeza-Yates. 2013. Big Data or Right Data?. In AMW.
[15] Peter Bailis, Edward Gan, Kexin Rong, and Sahaana Suri. 2017. Prioritizing

attention in fast data: Principles and promise. CIDR (2017).
[16] Adrian Bowyer. 1981. Computing dirichlet tessellations. The computer journal

24, 2 (1981), 162–166.
[17] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. 2015.

Time series analysis: forecasting and control. John Wiley & Sons.
[18] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000.

LOF: identifying density-based local outliers. In ACM sigmod record. ACM.
[19] Chris Chatfield. 1978. The holt-winters forecasting procedure. Applied Statistics

(1978), 264–279.
[20] Kyriakos Chourdakis, E Epperlin, MARC Jeannin, and James Mcewen. 2013. A

cross-section across CVA. Nomura. Available at Nomura: http://www. nomura.
com/resources/europe/pdfs/cva-crosssection. pdf (2013).

[21] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. 2000. Real-time tracking
of non-rigid objects using mean shift. In Computer Vision and Pattern Recognition,
2000. Proceedings. IEEE Conference on, Vol. 2. IEEE, 142–149.

[22] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. 2016. AIDE: An Ac-
tive Learning-Based Approach for Interactive Data Exploration. IEEE Transactions
on Knowledge and Data Engineering 28, 11 (2016), 2842–2856.

[23] Martin Ester, Hans-Peter Kriegel, et al. 1996. A density-based algorithm for
discovering clusters in large spatial databases with noise.. In Kdd.

[24] Yifan Fu, Xingquan Zhu, and Bin Li. 2013. A survey on instance selection for
active learning. Knowledge and information systems 35, 2 (2013), 249–283.

[25] John C Gower. 1966. Some distance properties of latent root and vector methods
used in multivariate analysis. Biometrika (1966), 325–338.

[26] Jon Gregory. 2010. Counterparty credit risk: the new challenge for global financial
markets. Vol. 470. John Wiley & Sons.

[27] Simon Haykin. 1994. Neural networks: a comprehensive foundation. Prentice Hall
PTR.

[28] Joseph M Hellerstein, Vikram Sreekanti, Joseph E Gonzalez, James Dalton, Akon
Dey, Nag, et al. 2017. Ground: A Data Context Service.. In CIDR.

[29] TH Jeff. 2005. Introduction to Neural Networks with Java, Heaton Research.
[30] Ian T Jolliffe. 1986. Principal Component Analysis and Factor Analysis. In

Principal component analysis. Springer, 115–128.
[31] Maurice George Kendall. 1948. Rank correlation methods. (1948).
[32] William R Knight. 1966. A computer method for calculating Kendall’s tau with

ungrouped data. J. Amer. Statist. Assoc. 61, 314 (1966), 436–439.
[33] William H Kruskal. 1958. Ordinal measures of association. J. Amer. Statist. Assoc.

53, 284 (1958), 814–861.
[34] Maurizio Lenzerini. 2002. Data integration: A theoretical perspective. In Proceed-

ings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems. ACM, 233–246.

[35] Lichman. 2013. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml
[36] Yoseph Linde, Andres Buzo, and Robert Gray. 1980. An algorithm for vector

quantizer design. IEEE Transactions on communications 28, 1 (1980), 84–95.
[37] Sam Madden. 2012. From databases to big data. IEEE Internet Computing (2012).
[38] Spyros Makridakis. 1993. Accuracy measures: theoretical and practical concerns.

International Journal of Forecasting 9, 4 (1993), 527–529.
[39] Vikash Mansinghka, Patrick Shafto, Eric Jonas, Cap Petschulat, Max Gasner, and

Joshua B Tenenbaum. 2016. CrossCat: a fully Bayesian nonparametric method
for analyzing heterogeneous, high dimensional data. The Journal of Machine
Learning Research 17, 1 (2016), 4760–4808.

[40] David R Miller, Shon Harris, Allen Harper, Stephen VanDyke, and Chris Blask.
2010. Security Information and Event Management (SIEM) Implementation (Net-
work Pro Library). McGraw Hill.

[41] Peter Schlampp. 2016. Spark takes on the big security threats.
http://www.ibmbigdatahub.com/blog/spark-takes-big-security-threats.

[42] John W Sammon. 1969. A nonlinear mapping for data structure analysis. IEEE
Transactions on computers 100, 5 (1969), 401–409.

[43] Peter JM Van Laarhoven and Emile HL Aarts. 1987. Simulated annealing. In
Simulated Annealing: Theory and Applications. Springer, 7–15.

[44] Abdul Wasay, Xinding Wei, Niv Dayan, and Stratos Idreos. 2017. Data Canopy:
Accelerating Exploratory Statistical Analysis. In Proceedings of the 2017 ACM
International Conference on Management of Data. ACM, 557–572.

[45] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster computing with working sets. HotCloud (2010).

http://archive.ics.uci.edu/ml

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Description
	2.2 Operators and Dataset Properties

	3 Methodology
	3.1 Methodology Overview
	3.2 Similarity Estimation
	3.3 Dataset Space Projection
	3.4 Modeling

	4 Experimental Evaluation
	4.1 Dataset Space Construction
	4.2 Operator Modeling
	4.3 Combining Similarity Metrics
	4.4 Distribution Similarity Granularity

	5 Related Work
	6 Conclusions
	References

