
Recovering from Cloud Application Deployment
Failures through Re-execution

Ioannis Giannakopoulos1, Ioannis Konstantinou1, Dimitrios Tsoumakos2, and
Nectarios Koziris1

1 Computing Systems Laboratory, National Technical University of Athens, Greece
{ggian,ikons,nkoziris}@cslab.ece.ntua.gr

2 Department of Informatics, Ionian University, Greece
dtsouma@ionio.gr

Abstract. In this paper we study the problem of automated cloud ap-
plication deployment and configuration. Transient failures are commonly
found in current cloud infrastructures, attributed to the complexity of
the software and hardware stacks utilized. These errors affect cloud ap-
plication deployment, forcing the users to manually check and intervene
in the deployment process. To address this challenge, we propose a sim-
ple yet powerful deployment methodology with error recovery features
that bases its functionality on identifying the script dependencies and re-
executing the appropriate configuration scripts. To guarantee the idem-
potent script execution, we adopt a filesystem snapshot mechanism that
enables our approach to revert to a healthy filesystem state in case of
failed script executions. Our experimental analysis indicates that our ap-
proach can resolve any transient deployment failure appearing during the
deployment phase, even in highly unpredictable cloud environments.

1 Introduction

The evolution of cloud computing has aroused new needs regarding task au-
tomation, i.e., the automatic execution of complex tasks without needing human
intervention, especially in the field of application deployment. The users need to
be able to describe their applications, deploy them over the cloud infrastructure
of their choice without needing to execute complex tasks such as resource al-
location, software configuration, etc., manually. Through automation, they can
instantly build complex environments fully or semi automatically [18], enhance
portability through which they can easily migrate their applications into dif-
ferent cloud providers, facilitate the deployment of complex applications, by de-
composing the complex description into simpler and easier to debug components,
etc. Nevertheless, automated resource orchestration and software configuration
practices act as a prerequisite towards cloud elasticity [25], which dictates that
resources and software modules must be configured automatically as in [28].

To automate the application deployment, a number of systems and tools has
been proposed such as Heat [13], Sahara [14], Juju [12], CloudFormation [3],
BeanStalk [4], Wrangler [21], etc. The behavior of these systems is similar: They

first communicate with the cloud provider so as to allocate the necessary re-
sources and then execute configuration scripts in order to deploy the software
components into the newly allocated resources. The configuration process can be
facilitated through the utilization of popular configuration tools such as Chef [8],
Puppet [16] and Ansible [1]. Since each script may depend on multiple different
components (resources and software modules), each of the aforementioned sys-
tems creates a dependency graph in order to execute the configuration actions in
the correct order and synchronize the concurrently executed configuration tasks.

A shortcoming of the aforementioned approaches, though, is that they do
not take into consideration the dynamic and, sometimes, unstable nature of the
cloud. Services downtime due to power outages, hardware failures, etc. [5], unpre-
dictable boot times [6] closely related to the provider’s load are some of the fac-
tors that contribute to the instability of the cloud. Furthermore, unpredictability
is exaggerated by the fact that the current cloud infrastructures have increased
the complexity of the utilized software and hardware stacks [20], something that
contributes to the appearance of transient failures, such as network glitches [26],
host reboots, etc. These failures are short-but but can produce severe service
failures [11]. Furthermore, since the application deployment demands coopera-
tion and synchronization between multiple parties including the cloud provider,
the VM’s services and other external parties, it becomes apparent that these
transient errors are commonly found and can lead application deployment to
failure, leaving, in the worst case, stale resources that need manual handling,
e.g, a partially deployed application may have successfully created some VMs or
volumes that need to be deleted before triggering a new deployment.

To tackle the aforementioned challenges, we propose an application deploy-
ment methodology which is able to recover from transient infrastructure errors
through re-execution of the necessary scripts. Specifically, the deployment is
modeled as a set of scripts concurrently executed for different software modules
and exchanging messages, forming a directed acyclic graph. If a script execution
fails, our approach traverses the graph, identifies the scripts that need to be
re-executed and executes them. Since a script execution may be accompanied
with implicit side effects, we adopt a filesystem snapshot mechanism similar to
the mechanism used by Docker [9] which guarantees that a script execution re-
mains idempotent for all the filesystem-related resources, enabling our approach
to re-execute a script as many times as needed for the deployment to complete.
Through an extensive evaluation for complex deployment graphs, we showcase
that our approach remains effective even in unpredictable cloud environments.
Our contributions can be, thus, summarized as follows:

– we present an error recovery methodology that can efficiently restart partially
completed application deployments,

– we provide a powerful methodology, that allows to snapshot the filesystem
and easily revert into a previous state, in case of failure,

– we demonstrate that our approach achieves the deployment of complex ap-
plications in times comparable to the failure-free cases, even when the error
rate is extremely high.

2 Deployment and Configuration Model

Assume a typical three-tier application consisting of the following modules: a
Web Server (rendering and serving Web Pages), an Application Server (imple-
menting the business logic) and a Database Server (for the application data).
For simplicity’s sake, we assume that each module runs in a dedicated server
and the application will be deployed in a cloud provider. If the application de-
ployment occurred manually, one should create three VMs and connect (e.g., via
SSH) to them in order to execute scripts that take care of the configuration of
the software modules. In many cases, the scripts need input that is not available
prior to the resource allocation. For example, the Application Server needs to
know the IP address and the credentials of the Database Server in order to be
able to establish a connection to it and function properly. In such cases, the
administrator should manually provide this dynamic information.

In order to automate the deployment and configuration, we need to create
a communication channel between different application modules in order to ex-
change messages containing such dynamic information. Such a channel can be
implemented via a simple queueing mechanism. Each module publishes infor-
mation needed by the rest of the modules and subscribes to queues, consuming
messages produced by other modules. The deployment scripts are executed up
to a point where they expect input from another module. At these points, they
block until the expected input is received, i.e., a message is sent from another
module and it is successfully transmitted to the blocked module. The message
transmission is equivalent to posting a new message into the queue (from the
sender’s perspective) and consuming this message from the queue (from the re-
ceiver’s perspective). In cases that no input is received (after the expiration of
time threshold), the error recovery mechanism is enabled. To provide a better
illustration of the deployment process, consider Figure 1. In this Figure, a de-

(1) (2)

A A’

BB’

tim
e

Fig. 1. Message exchange between modules

ployment process between two software modules named (1) and (2) is depicted.
The vertical direction represents the elapsed time and the horizontal arrows
represent message exchange3. At first, both (1) and (2) begin the deployment
process until points A and A′ are reached respectively. When (1) reaches A,
it sends a message to (2) and proceeds. On the other side, (2) blocks at point
A′ until the message sent from (1) arrives and, upon arrival, consumes it and

3 Note that message transmission might not be instant (as implied by the Figure)
since consumption of a specific message might occur much later than the message
post, but the arrows are depicted perpendicular to the time axis for simplicity.

continues with the rest of the script. If the message does not arrive, then the
recovery procedure is triggered, as described in Section 3.

From the above description it is obvious that when a module needs to send
a message, there is no need to wait until this message is successfully received by
the other module. However, in some cases, this blocking send may be desired.
For example, take the case where two modules negotiate about a value, e.g.,
a randomly generated password assigned to the root account of the Database
Server. Assume that module (1) (the Application Server) decides on the value
and sends it to module (2) (the Database Server). Module (1) must ensure that
the password is set, prior to trying to connect to the database. To this end, (2)
can send an acknowledgment as depicted between points B and B′. In this con-
text, it becomes apparent that the message exchange protocol can also function
as a synchronization mechanism. This scheme represents a dependency graph be-
tween the application’s modules, since each incoming horizontal edge (e.g., the
one entering at point A’) declares that the execution of a configuration script de-
pends on the correct execution of another. Schemes like the one presented at Fig.
1 present a circular dependency, since both modules (1) and (2) depend on each
other, but on different time steps. Various state-of-the-art deployment mecha-
nisms do not handle circular dependencies (e.g., Openstack Heat [13]) since they
do not support such a message exchange mechanism during the application con-
figuration. Furthermore, such a circularity could easily lead to deadlocks, i.e.,
a case in which all the modules are blocked because the wait input from an-
other (also blocked) module. We assume that the user is responsible for creating
deadlock-free deployment descriptions.

This message exchange mechanism can easily be generalized so as to be ap-
plied when an elasticity action is applied, i.e., a dynamic resource allocation
during the application’s lifetime. A simple elastic action can be decomposed
into three steps: (a) the preparation step, where scripts are executed in order to
prepare the application for a resizing action, (b) the IaaS communication step,
so as to allocate/deallocate resources and (c) the post action step, where the ap-
plication is configured in order to function properly after the IaaS action. Steps
(a) and (c) can be expressed with a similar messaging/synchronization mecha-
nism described before; Step (b), on the other hand, entails the communication
with the cloud provider to orchestrate the application in the infrastructure level.
Through the composition of such resizing actions, it is possible to express a com-
posite resizing action affecting many application modules in parallel. Finally, the
same mechanism is applied in cases where a module consists of multiple module
instances (e.g., different nodes of a NoSQL cluster). In these cases, each mod-
ule instance is addressed as a new entity and interacts with the rest modules
separately.

3 Error detection and recovery

We now describe the mechanism through which the deployment errors are iden-
tified. During the deployment process, a module instance may send a message

to another module. This message may contain information needed by the later
module in order to proceed with the its deployment, or it could just be a synchro-
nization point. In any case, the second module blocks the deployment execution
until the message arrives, whereas the first module sends its message and pro-
ceeds with the execution of its deployment script. In the case of an error, a
module will not be able to send a message and the receiver will remain blocked.
To this end, we set a timeout period that, if exceeded, the waiting module broad-
casts messages to the other modules informing them that an error has occurred.
From that point on, the error recovery mechanism takes control, evaluates the
error, as we will shortly describe, and performs the necessary actions in order to
restore the deployment procedure. Many modules may only consume messages
and not create any. In such cases, a possible failure is identified with the same
mechanism in the final part of the deployment. When a module finalizes its de-
ployment, it broadcasts a message informing the rest modules that the process
is finished. When all the modules receive these messages from the rest modules,
the process is considered finished. Eventually, even when a module does not need
to send a message, a possible failure of its execution will be identified at the final
state of its execution, since it will not send a termination acknowledgment.

Error recovery is based on the repetition of the execution of scripts/actions
which led the system to a failure. Given the previously described error identifi-
cation mechanism, at some random point a module stalls waiting for a message
from another module. It then broadcasts a special message informing the other
modules that the deployment may have failed. A master node is then elected
(among the existing modules) and this node undertakes the responsibility to ex-
ecute the health check algorithm. When it identifies that a script execution has
failed, it backtracks and informs the responsible module that it should repeat
the execution of the scripts before the failure. For example, assume the more
complex example provided in Figure 2.

(1) (2)

A A’

tim
e

(3)

B B’

CC’

Fig. 2. More complex deployment example

Assume that an error is identified in B′, meaning that (2) did not send a
message to (3). Since (2) had received a message from (1) in A′, this means that
the problematic script is the one executed between A′ and B. Let’s repeat the
same example now, but assume that the problem is now found in C ′. After point
A, (1) will remain blocked until (3) sends a message when point C is reached.
If the timeout is exceeded, then (1) triggers the Health Check mechanism. In
that case the master (any of (1), (2) or (3)) module will backtrack until all the
dependencies for each state are resolved, and finally identify whether a failure
occurred or the scripts needed more time to finish. If a problem did occur, the
master node informs the responsible module and this module, accordingly, re-

executes the necessary scripts. From the above analysis, it becomes apparent
that the absence of a message is indicative of a possible failure. The reason
behind this absence, though, remains obscure: A script might have finished its
execution and attempted to send a message but the message never reached the
communication channel due to unreliable network. Our approach views all the
possible alternatives in a unified manner since we make the assumption that
the communication channel is also unreliable and address the channel’s errors
as deployment errors.

(a) (b)

Fig. 3. Deployment and dependency graph of Figure 2

In order to identify the dependencies between the different software modules,
we address the problem of error recovery as a graph traversal problem. The idea
is that the messaging/synchronization scheme is translated in a graph represent-
ing the dependencies between different modules. For example, the deployment
represented in Fig. 2 can be translated as shown in Fig. 3 (a). The arrows in this
Figure represent either a script execution (vertical edges) or a message exchange
(horizontal edges). The top nodes represent the state of each VM exactly after
the VM bootstrapping has finished. The bottom graph nodes represent the final
state of the deployment for each module. The intermediate nodes correspond to
intermediate states of the modules, where messages are sent and consumed. At
the end of the process, all the modules exchange messages once more, to verify
that the process is successfully finished. Since receiving and sending messages in
the same module may lead to a deadlock, we serialize the modules’ actions and
enforce them to first send any messages and then block to receive them.

Assume now that, at some point, an error occurs. The master node first
parses the deployment graph as presented in Fig. 3 (a) and creates the depen-
dency graph, as depicted in Fig. 3 (b), which is essentially the deployment graph
with inverted edges. Then, it executes Algorithm 1 where the dependency graph
is traversed in a Breadth First order, starting from the node where the failure
was detected and the healthy states are, then, identified. Specifically, if a visited
node is not healthy, then the graph traversal continues to its children, else the
traversal stops. In this context, healthy states are considered to be the inter-

mediate configuration states (nodes on the graph) that have been reached by
the deployment execution without an error. This way, the algorithm manages
to identify the most recent healthy intermediate states reached by each module.
With this information, one can easily identify which steps should be repeated.

Algorithm 1 Health Check Algorithm

Require: transpose deployment graph T , failed node n
Ensure: list of healthy nodes frontier
1: failed ← {n}
2: frontier ← ∅
3: while failed 6= ∅ do
4: v = pop(failed)
5: for t ∈neighbors(T, v) do
6: if failed(t) then
7: failed← failed ∪ {t}
8: else
9: frontier ← frontier ∪ {t}

10: end if
11: end for
12: end while
13: return frontier

In various cases, script re-execution means that a module must publish a new
message and its content may be different for each execution. For example, if a
module creates a random password and broadcast it to the rest modules, each
script re-execution generates a new password. In other cases though, the content
of the message might be the same: e.g., when a module sends the IP address of
the VM that is hosted into, the content of the message remains the same since
it is independent from the script execution. In the former case, the modules
that depend on the script-dependent messages should be re-executed as well. For
example, if the Application Server sends a new password to the Database Server,
this means that the Database Server should be reconfigured so as to reflect
this change (even if the Database Server presented no errors), otherwise the
Application Server will not be able to establish a connection with the later. Our
approach views all the messages that are exchanged between different modules
as script-dependent and forces the re-execution for each module that depends on
a specified message. The script-independent messages should be transmitted at
the first steps of the deployment so as to avoid pointless script re-execution. Such
a practice is also followed by other popular deployment tools such as Openstack
Heat, since all the script-independent information is considered known to every
software module, prior to the execution of the configuration scripts.

To further clarify the algorithm’s execution, we provide an example in which
we demonstrate the way that the Health Check algorithm traverses the depen-
dency graph when an error occurs in Fig. 4. Fig. 4 (a), (b) and (c) demonstrate
the iterations of the algorithm, until the healthy nodes (green nodes) are iden-

(a) (b) (c) (d)

Fig. 4. Example of Health Check algorithm

tified. Fig. 4 (d) demonstrates the scripts that are re-executed so as to continue
with the deployment (identified as blue edges). Two notes must be made at
this point. First, the incoming vertical edge to the node in which the error was
identified need not be re-executed. This is attributed to the fact that the script
execution must have been successful, else the module would never have reached
to the point where it expects a message, thus the Health Check mechanism would
not have been triggered. Second, it is obvious that script-dependent messages
need to be resent and demand script re-execution only when they are sent and
not when they are consumed by a script. When a module need to re-consume an
message generated by another module, we assume that the message is already
available through the communication channel and the sender does not need to
resend any information.

4 Idempotent script execution

The idea of script re-execution when a deployment failure occurs, is only effective
when two important preconditions are met: (a) the failures are transient and (b)
if a script is executed multiple times it always leads the deployment into the same
state, or, simpler, it always has the same side effects, i.e., it is idempotent. In
this, section we discuss these preconditions and describe how are these enforced
through our approach.

First, a failure is called “transient” when it is caused by a cloud service and it
was apparent for a short period of time. Network glitches, routers unavailability
due to a host reboot and network packet loss are typical examples of such failures
caused by the cloud platform but, in most cases, they are only apparent for a
short time (seconds or a few minutes) and when disappeared the infrastructure
is completely functional. Various works study those types of failures [26] and
attribute them to the complexity of the cloud software and hardware stack. Al-
though most cloud providers protect their customers from such failures through
their SLAs [17], they openly discuss them and provide instruction for failures
caused by sporadic host maintenance tasks [7] and various other reasons [19].
Since the cloud environment is so dynamic and the automation demanded by
the cloud orchestration tools requires the coordination of different parties, script

re-execution is suggested on the basis that such transient failures will eventually
disappear and the script will become effective.

However, in the general case, if a script is executed multiple times it will
not always have the same effect. For example, take the case of a simple script
that reads a specific file from the filesystem and deletes it. The script can only
be executed exactly once; The second time it will be executed it will fail since
the file is no longer available. This failure is caused by the side effects (the file
deletion) caused by the script execution, which lead the deployment to a state
in which the same execution cannot be repeated. To overcome this limitation,
we adopt a snapshot mechanism to capture the VM’s filesystem prior to script
execution, allow the script to be executed and in case of failure revert it to the
previous healthy state. This mechanism is based on building the VM’s filesystem
through the composition of different layers. The base layer consist of the VM’s
filesystem. Any layer on top of this contains only the updated files along with
their new content. The revert action is equivalent to removing the top layer of
the filesystem and the script’s side effects are vanished. To ensure the idempotent
property, we generate a new layer prior to each script execution. This way, the
side effects of each script are “undoable” and, in case of failure, we guarantee
that the VM’s filesystem will be identical to the one before the failed script
execution.

From a technical perspective, there exists various solutions which can be
utilized to achieve this snapshot mechanism. In our approach, we utilize AUFS
(Another Union FileSystem) [2], which is a special case of a Union Filesystem.
AUFS allows different directories to be mounted on the same mountpoint where
each directory represents a layer. The ordering of the directories determines the
order of the layers into the filesystem. The addition of a new layer or the re-
moval of an unwanted layer is equivalent to creating and removing a directory
respectively. Different solutions such as overlayfs [15] and btrfs [27] could also
be utilized, but all these solutions are equivalent in terms of practicality and
only differ in terms of available features and performance. Since this snapshot
mechanism is adopted by Docker [9], a popular Linux Container implementa-
tion, we utilized AUFS since it is considered to be the most stable and achieves
the highest performance among the proposed solutions [10]. Finally, we must
note that through the previously described mechanism we guarantee that only
filesystem-related actions remain idempotent. Any actions that have side effects
towards non disk based or external resources, e.g., external API calls, memory
state updates, etc., cannot be addressed by our approach and, thus, cannot be
reverted.

5 Experimental Evaluation

A deployment can be expressed in multiple different ways for one application
and the execution time can vary greatly according to the used scripts. We test
our methodology for various deployment graphs, as the one depicted in Figure
3, for different sizes (number of nodes and edges) and different failure probabili-

ties. The number of vertical paths represents the number of modules (or module
instances). The number of states inside a vertical path is expressed as the num-
ber of levels of synchronization. For each graph, we create a random number
of messages, i.e., two nodes belonging to the same level of different module are
connected with an edge with a specified probability. This measure expresses the
cohesion of the graph that is defined as the degree of dependency between differ-
ent modules. Finally, during the deployment each vertical edge (script execution)
may fail with a specific probability. We will study how these parameters affect
the duration of the deployment process measured not in absolute time, since
time is dependent to the duration of each resizing script and it greatly varies
between different applications, but in number of edges.

Each module begins from an initial node of the deployment graph (for each
module) and terminates in a terminal node (for the respective module). The
longest path traversed, is equal to the duration of the deployments. Each module
stalls when an error occurs, as described in the previous sections. We divide this
path with the number of steps needed for the deployment in the optimal case,
that is if no failures occurred. The results are presented in Figure 5. The left most
Figure describes the relationship between the Error Rate of the scripts and the
Relative Execution time for increasing number of deployment levels, whereas the
right Figure depicts the same relationship for an increasing number of application
modules. The cohesion factor defined as the possibility for one module to have
an outgoing edge in a specific node is set to 0.2. For each graph size we created
100 random graphs and for each graph we executed the deployment algorithm 5
times. The graphs depict the averages of those runs.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 0.05 0.1 0.15 0.2

R
e

la
ti
v
e

 E
x
e

c
u

ti
o

n
 T

im
e

Error Rate

Levels:5

Levels:10

Levels:20

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 0.05 0.1 0.15 0.2

R
e

la
ti
v
e

 E
x
e

c
u

ti
o

n
 T

im
e

Error Rate

Modules:5

Modules:10

Modules:20

Fig. 5. Relative Execution Time vs Error Rate

In both graphs it is obvious that an increase in Error Rate leads to increased
Relative Execution Time. The left graph shows that deployments described with
less steps per module are higher affected by an increase in the Error Rate than
the ones with a large number of levels per modules. More levels lead to execution
of more scripts, thus more scripts will probably fail. However, each failure costs
less, since the repetition of one script will traverse a smaller portion of the graph

and eventually, as seen from the comparison with the optimal case, the overall
overhead inserted by the re execution declines with the number of levels. The
deployments depicted in this figure consist of 20 modules. On the contrary, appli-
cations that consist of many modules are affected more by an increase in the Er-
ror Rate (on the rightmost Figure). The five modules case is deployed 1.5 slower
than the optimal case (when the error rate is 0.2), while simultaneously, the 20
modules case is deployed 1.7 times slower. This means that when the number of
modules quadruples, the increase in Relative Execution Time is less than 15%,
making our methodology suitable for complex applications, consisting of multi-
ple modules and many synchronization levels per module. Comparing with the
traditional deployment tools, where no error recovery mechanisms are employed,
it is obvious that the termination of the deployment occurs orders of magnitude
faster, since the probability for a successful deployment is (1−ER)(M ·N), where
ER is the Error Rate, M equals the number of application modules and N is
the number of deployment levels for each module. This quantity grows expo-
nentially with the application’s complexity making these tools unsuitable for
complex applications deployed in unpredictable environments.

6 Related work

Automated cloud application deployment and configuration is a widespread
problem, evolving with the expansion of cloud computing. Various systems, both
in industry and academia, have been proposed in order to handle application de-
ployment and scaling. In the Openstack ecosystem, Heat [13] and Sahara [14]
have been proposed. Heat is a generic deployment tool used to define and con-
figure deployment stacks that involve different resources (e.g., VMs, volumes,
networks, IP addresses, etc.) and target to automate their management and or-
chestration. Heat retains a simple deployment model where it assumes that any
script-independent information is available to each VM prior to the script execu-
tion and it does not support cyclical dependencies between different application
modules. It also retains autoscaling capabilities, by monitoring the allocated re-
sources and performing simple rule based actions in order to scale the running
applications. Sahara (the ex Savannah project) is targeted to the deployment
and configuration of Data Processing systems, such as Hadoop and Spark. Both
tools integrate solely with Openstack and do not provide error recovery features.

The AWS counterparts of these tools are [3] and [4]. CloudFormation is a
generic tool, relevant to Openstack Heat and it retains a similar deployment
model where the user defines the different resources that should be allocated
along with configuration scripts that are responsible for the software configu-
ration. Elastic BeanStalk is primarily used for deploying specific applications
(e.g., Web Servers, Load Balancers, etc.) into the Amazon cloud and also pro-
vide elastic capabilities. Finally, Canonical Juju [12] is another system used for
deployment and scaling. Different modules are organized as charms. A charm
is, essentially, a set of configuration files that determine the way through which
a software module is configured and deployed and how it interacts with other

modules. The user can choose from a set of preconfigured charms and com-
pose complex applications structures. All the aforementioned systems target to
provide a level of automation through which a user can easily deploy and con-
figure their application. However, the dynamic cloud nature is not taken into
consideration since in case of failure the deployment is aborted and the user
must manually resume it or cancel it. On the contrary, our approach allows the
re-execution of failed scripts so as to automatically resume the deployment.

Similar to the previous systems, there exist standalone tools specializing
in creating an identical application environment, mainly for development rea-
sons. The most representative is [18]. It cooperates with popular configuration
management tools, such as [8], [16] and [1] and creates an identical virtualized
application environment, supporting multiple hypervisors and cloud providers.
Runtime orchestration and scaling are not considered, though. Furthermore, in
[21] Wrangler is proposed, a system that bases its functionality in script execu-
tions (called plugins). The philosophy of this system is similar to our approach;
However error recovery is not considered. In [23], a data-centric approach is pre-
sented formulating resources as transactions, exploiting their ACID properties
for error recovery. However, each action should have an “undo” action in order
to participate in a transaction, which is a stronger hypothesis than the idempo-
tent property enforced by the layered filesystems proposed in this work. In [22]
a synchronization framework for Chef [8] is introduced: The user can introduced
“breakpoints” into the execution of Chef recipes so as to synchronize the ap-
plication configuration. This work identifies the need for synchronization when
a cloud application is deployed; However, it does not handle transient deploy-
ment failures. Finally, in [24] an approach through which the cloud APIs are
overridden in order to obtain knowledge about the status of their commands.
This work is not focused on the application configuration as the current work is;
However, it identifies the error-prone nature of the synchronous cloud providers
and suggests a solution for transforming the unreliable cloud APIs into reliable
calls with predictable outputs.

7 Conclusions

In this paper, we proposed a cloud deployment and configuration methodology,
capable to overcome transient cloud failures through re-executing the failed de-
ployment scripts. Our methodology resolves the dependencies among different
software modules and identifies the scripts that should be re-executed so as to
resume the application deployment. To guarantee that each script will have the
same effect, we utilize a layered filesystem architecture through which we snap-
shot the filesystem before the script execution and, in case of failure, revert it
to the previous state and retry. Our evaluation indicates that our methodology
is effective even for the most unstable cloud environments and it is particu-
larly effective for application that consist of many different modules exchanging
multiple messages throughout the process.

References

1. Ansible. http://www.ansible.com/home
2. AUFS. http://aufs.sourceforge.net/
3. AWS CloudFormation. http://aws.amazon.com/cloudformation/
4. AWS Elastic BeanStalk. http://aws.amazon.com/elasticbeanstalk/
5. AWS Incident. https://goo.gl/f959fl
6. AWS Instances Boot Times. http://goo.gl/NQ1qNw
7. AWS Maintenance. https://aws.amazon.com/maintenance-help/
8. Chef. https://www.chef.io/chef/
9. Docker Container. https://www.docker.com/

10. Docker: Select a storage driver. https://goo.gl/o383To
11. Google App Engine Incident. https://goo.gl/ICI0Mo
12. Juju. https://juju.ubuntu.com/
13. Openstack Heat. https://wiki.openstack.org/wiki/Heat
14. Openstack Sahara. https://wiki.openstack.org/wiki/Sahara
15. Overlay Filesystem. https://goo.gl/y0H76w
16. Puppet. http://puppetlabs.com/
17. Rackspace SLAs. https://www.rackspace.com/information/legal/cloud/sla
18. Vagrant. https://www.vagrantup.com/
19. VMware vCloud Automation Center Documentation Center.

http://goo.gl/YkKNic
20. Jennings, B., Stadler, R.: Resource management in clouds: Survey and research

challenges. Journal of Network and Systems Management 23(3), 567–619 (2015)
21. Juve, G., Deelman, E.: Automating Application Deployment in Infrastructure

Clouds. In: Cloud Computing Technology and Science (CloudCom), 2011 IEEE
Third International Conference on. pp. 658–665. IEEE (2011)

22. Katsuno, Y., Takahashi, H.: An Automated Parallel Approach for Rapid Deploy-
ment of Composite Application Servers. In: Cloud Engineering (IC2E), 2015 IEEE
International Conference on. pp. 126–134. IEEE (2015)

23. Liu, C., Mao, Y., Van der Merwe, J., Fernandez, M.: Cloud Resource Orchestration:
A Data-Centric Approach. In: Proceedings of the biennial Conference on Innovative
Data Systems Research (CIDR). pp. 1–8 (2011)

24. Lu, Q., Zhu, L., Xu, X., Bass, L., Li, S., Zhang, W., Wang, N.: Mechanisms and ar-
chitectures for tail-tolerant system operations in cloud. In: 6th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 14) (2014)

25. Mell, P., Grance, T.: The NIST Definition of Cloud Computing (2011)
26. Potharaju, R., Jain, N.: When the network crumbles: An empirical study of cloud

network failures and their impact on services. In: Proceedings of the 4th annual
Symposium on Cloud Computing. p. 15. ACM (2013)

27. Rodeh, O., Bacik, J., Mason, C.: Btrfs: The linux b-tree filesystem. ACM Trans-
actions on Storage (TOS) 9(3), 9 (2013)

28. Tsoumakos, D., Konstantinou, I., Boumpouka, C., Sioutas, S., Koziris, N.: Auto-
mated, elastic resource provisioning for nosql clusters using tiramola. In: Cluster,
Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Sym-
posium on. pp. 34–41. IEEE (2013)

