
Brown Dwarf: A P2P Data-Warehousing System

Katerina Doka
katerina@cslab.ntua.gr

Dimitrios Tsoumakos
dtsouma@cslab.ntua.gr

Nectarios Koziris
nkoziris@cslab.ntua.gr

School of Electrical and Computer Engineering
National Technical University of Athens, Greece

ABSTRACT
In this demonstration we present theBrown Dwarf, a distributed
system designed to efficiently store, query and update multidimen-
sional data. Deployed on several commodity nodes, our system
manages to distribute large volumes of data over network peers
on-the-fly and process queries and updates on-line through coop-
erating nodes that hold parts of a materialized cube. Moreover,
it adapts its resources according to demand and hardware failures
and is cost-effective both over the required hardware and software
components. All the aforementioned functionality will be tested
for various datasets and query loads.

Categories and Subject Descriptors
H.3.4 [INFORMATION STORAGE AND RETRIEVAL]: Sys-
tems and Software—Distributed systems

General Terms
Design

Keywords
Data Warehousing, Data Cube, P2P

1. INTRODUCTION
Data warehousing has become a vital component of organiza-

tions and companies, which heavily rely on data analysis in order
to identify behavioral patterns. Moreover, constant data analysis is
needed to immediately detect real-time changes in trends. Yet, data
warehouses present a strictly centralized and off-line approach in
terms of data location and processing ([5, 6]). Even some works
proposing distributed warehousing systems ([2, 1]) basically just
interconnect a number of warehouses, maintaining their centralized
functionality.

We have created an always-on, distributed data warehousing sys-
tem, theBrown Dwarf (BD) [3], where geographically spanned
users, without the use of any proprietary tool, can share and query
information. Moreover, it employs a robust and efficient adaptive
replication scheme, perceptive both to workload skew and node
churn using only local load measurements and overlay knowledge.

2. SYSTEM DESIGN
The essence ofBD is the distribution of a highly effective, cen-

tralized structure, theDwarf [5], over the nodes of an unstructured
P2P overlay on-the-fly. Each vertex of the dwarf graph (dwarf
node) is designated with a unique ID and assigned to a network
node. Adjacent dwarf nodes are stored in adjacent network nodes

Copyright is held by the author/owner(s).
CIKM’10, October 25–29, 2010, Toronto, Ontario, Canada.
ACM 978-1-4503-0099-5/10/10.

Table 1: A sample fact table
DIM1 DIM2 DIM3 Measure

S1 C2 P2 $70
S1 C3 P1 $40
S2 C1 P1 $90
S2 C1 P2 $50

Figure 1: Centralized dwarf structure over the data of Table 1

in the P2P layer by adding overlay links, which represent the edges
of the centralized structure. Each peer maintains ahint table, nec-
essary to guide a query from one network node to another until the
answer is reached. Thehint table is of the form (currAttr, child),
wherecurrAttr is the attribute of the query to be resolved andchild
is the ID of the dwarf node it leads to. In case of a leaf node,child
is the aggregate value.

Pictorially, Fig. 2 shows that nodes (1)–(9) are selected in this
order to store the corresponding dwarf nodes of Fig. 1, forming
an unstructured P2P overlay. Queries and updates are then handled
using the same path that would be utilized inDwarf, with overlay
links now being followed: An incoming query about S1 will be
forwarded to node (2). From there, depending on the requested
group-by (ALL, C2 or C3), nodes (3), (4) or (5) can be visited.

Insertion The creation of the data cube is undertaken by a spe-
cific node (creator), that has access to the fact table. The creator
follows the algorithm of the original dwarf construction, distribut-
ing the dwarf nodes on-the-fly during the tuple-by-tuple process-
ing, instead of keeping them in secondary storage. The creation of
a cell corresponds to the insertion of a value undercurrAttr and the
creation of a dwarf node corresponds to the registration of achild.

Incremental Updates The procedure of incremental updates is
similar to the insertion process, only now the longest common pre-
fix between the new tuple and the existing ones must be discovered
following overlay links. Once the last common attribute is discov-
ered, underlying dwarf nodes are recursively updated. This means
that dwarf nodes are expanded to accommodate new cells for new
attribute values and that new ones are allocated when necessary.

Query Resolution Queries are resolved by following their path
along the overlay attribute by attribute. Each query attribute be-
longs to a dwarf node which, through its hint table, leads to the net-
work node responsible for the next one. Since adjacent dwarf nodes
belong to overlay neighbors, the answer to any point or group-by



currAttr child

C2

C3

ALL

3

4

5

currAttr child

S1

S2

ALL

2

6

8

currAttr child

C1

C2

C3

ALL

7

3

4

9

currAttr child

P1

ALL

$40

$40

currAttr child

P2

ALL

$70

$70

currAttr child

C1

ALL

7

7

currAttr child

P1

P2

ALL

$90

$50

$140

currAttr child

P1

P2

ALL

$40

$70

$110

currAttr child

P1

P2

ALL

$130

$120

$250

Figure 2: The dwarf distribution over the overlay nodes
User Interface

BD 

operations

BD node

P2P layer

File System

N
e
tw

o
rk

 

la
y
e
r

Overlay 

operations

Create

Update

Query

Disk I/O

T
C

P
 

S
o
c
k
e
ts

BD node

BD node

N
e
tw

o
rk

 

la
y
e
r

N
e
tw

o
rk

 

la
y
e
r

N
e
tw

o
rk

 

la
y
e
r

Figure 3: Architecture of a BD network node
query is discovered within at mostd hops, whered is the number
of dimensions. The existence of a single entry-point, which consti-
tutes a single point of failure, is tackled by our replication strategy.

Adaptive Mirroring BD adopts a replication scheme adaptive
to both node churn and data skew. Initially, a global replication
parameter k defines the degree of data redundancy: During the in-
sertion phase, k+1 instances (mirrors) of each dwarf node are being
stored. Monitoring its load on a per dwarf node basis, a network
node hosting an overloaded dwarf node can create additional mir-
rors through theexpansion process. The newly created mirror will
be used by the parent node(s) in order to receive some of the re-
quests. In the opposite case, an underloaded dwarf node can be
deleted from the system through theshrink process, as long as the
total number of its mirrors remains over k+1. The combination of
expansion andshrink enablesBD to obtain increased resources to
handle spikes in load and release them once the spike has subsided.

3. DEMONSTRATION SCENARIO
The BD system has been entirely developed in Java and deployed

on an actual testbed of 16 LAN commodity nodes (dual core, 2.0
GHz, 2GB of main memory). Fig. 3 depicts the architecture of
a system node.BD is accessible through a Java GUI that exposes
its functionality to the user and allows her to perform insertions,
updates and queries over the data cube. The P2P layer consists
of theWarehouse Operations and theOverlay Operations compo-
nents. The former is responsible for manipulating system-specific
messages, orchestrating the mirroring process and interacting with
the local filesystem in order to store and retrieve dwarf nodes. The
latter handles the translation of system operations to overlay mes-
sages and backwards. These messages pass through the network
layer, where they are transmitted or received through TCP sockets.

Creating a Cube The user will be able to choose from a series of
datasets to create the corresponding distributed cube. The datasets
will be of various sizes, dimensions and densities, both real and
synthetically generated. Upon dataset choice, its characteristics are
shown on screen. The user can also set the replication factor k and

Figure 4: Screen capture from the cube creation tab
the number of network nodes that will participate in the P2P over-
lay. After the cube creation, important statistics and performance
metrics will be presented: The creation cost in terms of time and
network messages and the total storage consumed by the created
cube. Finally, users will be able to have a graphical overview of the
storage distribution per network node, as the corresponding graph
can be displayed on demand. The initial GUI form for the creation
process can be seen in Fig. 4.

Querying the Cube After cube creation and navigating to the
QUERY tab, the user will be able to choose one of the predefined
workloads in order to query the system. The available workloads
will include various number of queries with various levels of skew.
Similarly to the creation tab, their individual characteristics are dis-
played on screen. The rate at which queries will be sent to the sys-
tem is user-defined. After pressing on the Send button, the work-
load is being processed and statistics are gathered. Besides con-
firming the 100% precision of our system, we will demonstrate all
performance parameters for the processed query-load, namely re-
sponse times and average load per node.

Updating the Cube This third part of the demonstration relates
to applying incremental updates to the system on-line (UPDATE
tab). Users will be given the chance to initiate updates one by one,
or in bulk, by selecting one of the predefined update sets. As before,
the application will present the appropriate performance metrics
to the user, showcasing performance (in time elapsed versus the
number of updates).

Performance Insight Our initial evaluation on an actual testbed
of 16 LAN nodes has proven that Brown Dwarf manages to dis-
tribute the structure across the overlay nodes incurring only a small
storage overhead compared to the centralized algorithm. Moreover,
it accelerates cube creation up to 5 times and querying up to several
tens of times by exploiting the capabilities of the available network
nodes working in parallel. More details can be found in [3] and [4]

4. REFERENCES
[1] S. Abiteboul, T. Allard, P. Chatalic, et al. WebContent: Efficient P2P

Warehousing of Web Data.VLDB’08.
[2] M. Akinde et al. Efficient OLAP Query Processing in Distributed Data

Warehouses.Information Systems, 28(1-2):111–135, 2003.
[3] K. Doka, D. Tsoumakos, and N. Koziris. Brown Dwarf: Distributing the

Power of OLAP. InHPDC’10.
[4] K. Doka, D. Tsoumakos, and N. Koziris. Brown dwarf: Distributing the Power

of Olap to Unstructured P2P overlays. Technical report, NTUA, Dec 2009.
[5] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis. Dwarf:

Shrinking the PetaCube. InSIGMOD’02.
[6] W. Wang, H. Lu, J. Feng, and J. X. Yu. Condensed Cube: An Effective

Approach to Reducing Data Cube Size. InICDE’02.


