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Abstract—Efforts on Big Data technologies have been highly
directed towards the amount of data a task can access or crunch.
Yet, for content-driven decision making, it is not (only) about the
size, but about the “right” data: The number of available datasets
(a different type of volume) can reach astronomical sizes, making
a thorough evaluation of each input prohibitively expensive. The
problem is exacerbated as data sources regularly exhibit varying
levels of uncertainty and velocity/churn. To date, there exists no
efficient method to quantify the impact of numerous available
datasets over different analytics tasks and workflows.

This visionary work puts the spotlight on data content rather
than size. It proposes a novel modeling, planning and processing
research bundle that assesses data quality in terms of analytics
performance. The main expected outcome is to provide efficient,
continuous and intelligent management and execution of content-
driven data analytics. Intelligent dataset selection can achieve
massive gains on both accuracy and time required to reach a
desired level of performance. This work introduces the notion of
utilizing dataset similarity to infer operator behavior and, conse-
quently, be able to build scalable, operator-agnostic performance
models for Big Data tasks over different domains. We present
an overview of the promising results from our initial work with
numerical and graph data and respective operators. We then
describe a reference architecture with specific areas of research
that need to be tackled in order to provide a data-centric analytics
ecosystem.

I. INTRODUCTION

Undeniably, data volume has been the decisive driving force

behind big-data technologies. In many cases, the effectiveness

of an algorithm relies entirely on the amount of data it

can access [1]. As such technologies mature and evolve,

emphasis is steadily placed on areas not solely related to scale.

A different type of challenge shifts attention to the actual

content: Content-based analytics [2] process data from social

media platforms for sense-making and knowledge generation.

Similarly, data content plays a key role in the quality of

the insights derived in applications such as recommendation

systems [3], web advertising and marketing [4], fraud detection

[5], credit analysis [6], etc.

Data quality is broadly defined as a measure of how “fit

for purpose” utilized sources are in the context of existing

business operations and analytics. Though data has become

an increasingly strategic element for companies, data quality

remains a significant challenge. Maintaining data quality has
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been indicated as the most significant challenge around big

data initiatives. Recent research indicated an average financial

cost of $15 million per year per organization due to poor data

quality [7].

Data scientists have recently made a case about medium data

analytics [8], [9], where the size of the data is not considered

to be the critical factor. It is becoming increasingly apparent

that, for data-driven decision making, it is not (only) about

the size, but about the “right data” [10], [11]. In these cases,

analysts increasingly need to focus on high-impact data, i.e.,

intelligence that has the best potential of driving strategic

decisions.

Given an ever-increasing availability of data to be processed

[12], evaluating the utility and performance tradeoffs of im-

mense numbers of inputs (or even worse so, their combi-

nations) is prohibitively expensive, especially given the fact

that analytics workflows have evolved into increasingly long

and complex series of diverse operators. Yet, the availability

of immense numbers of inputs and their impact on analytics

performance is not the only obstacle. The challenges a data

scientist faces in her quest for the “right data” are many-fold

in today’s analytics landscape:

• Information sources are incomplete in nature, i.e., without

information regarding one or more of relevant variables.

In such cases, more or different semantic information is

required for the task to achieve its objectives.

• Information sources contain fuzzy data. Regardless

whether the input mechanisms, processing, or collection

infrastructure is to blame, uncertainty in data values

causes highly uncertain insights.

• Data items are getting outdated fast via frequent updates,

so they become irrelevant for current or future analysis.

• Information sources are both plentiful and accurate, but

too large to handle within certain limits. Scalability issues

now relate to the inability of processing all available

inputs in order to choose the best ones to maximize a

user-define impact measure within a time-frame.

A. Two Sample Use-cases

In derivative pricing theory [13], analysts need to consider a

multitude of Credit Default Swaps (CDS) spreads for different

economic entities. These are provided as input to Value

Adjustments (xVAs), entities that quantify the trade, credit,

funding and financial costs during derivative transactions. The

33

2020 IEEE Sixth International Conference on Big Data Computing Service and Applications (BigDataService)

978-1-7281-7022-0/20/$31.00 ©2020 IEEE
DOI 10.1109/BigDataService49289.2020.00013



calculation of xVAs, in addition to being mathematically and

computationally complex, is subject to huge liquidity risk, due

to lack of available information to obtain key inputs to the

models used. Current methodologies do not take into account

the volatility of the CDS spreads, which is an important

criterion set by the European Banking Authority. Analysts

currently need to consider all CDS datasets and execute

the aforementioned operators exhaustively in order to select

the ones that make them more suitable for specific entities

and maximize accuracy. Identifying the relationships between

datasets is crucial to obtain better clustering of financial insti-

tutions having similar CDS spreads for more accurate proxy

calculation. Moreover, the volatility and uncertainty of the

CDS spreads must be taken into consideration: By modeling

CDS data and its interrelations based on the granularity and

amount of observed change, proxying estimations will closely

and timely adjust in accuracy.

Security Information and Event Management (SIEM) sys-

tems [14] are commonly deployed to identify and mitigate

cyberattacks. Yet, they increasingly fail to identify advanced

persistent attacks because of their inability to cope with the

increasing amount of available datasets utilized to train them

[15]. Without such timely processing ability to reference mul-

tiple data sets for segmentation and pattern detection, SIEM

systems often lack the context in which they could detect

advanced threats. As a result, they cannot rely on collected logs

but must be trained using low-level traffic analysis. Moreover,

the highly volatile nature of collected information further

exacerbates this issue: The operation of a single 24-port gigabit

router may generate, under full utilization, approximately

50TB of data on a daily basis. Hence, administrators need

to make a key decision: Which training datasets out of the

available ones should be used to stop cyberattacks of a certain

type within tight time constraints? How often should this

process be repeated due to different attacks or network data

collected?

In both cases, data operators have access to multiple datasets

(CDS time series and SIEM training datasets for the two

cases respectively). However, their outputs entirely rely on

the selection of a mere subset of them, based on a set of

properties that are neither known nor easily identified. For

example, one cannot decide a priori which CDS datasets are

more suitable for the xVA estimation for a given economic

entity, even if experience or prior knowledge is available [16].

Similarly, it is hard to select the most appropriate SIEM

training datasets to be used for training for intrusion detection:

Stringent time constraints and the streaming nature of the data

require continuous and cost-effective efforts.

B. Problem Statement

To date, there has been no effort to connect analytics

performance (and in multiple dimensions – not exclusively

based on execution time) with the input data and specific

structural, semantic and operational dimensions of it. For a

specific operator or workflow, how can one rank or tangibly

characterize input datasets relative to their effect on job exe-

cution? We wish to predict the performance of an algorithm,

a class of algorithms or a workflow given massive numbers of

possible data inputs with diverse structure, content, uncertainty

and churn. What are the key semantic, structural or operational

elements of input that make it desirable to a specific analytics

job? What is the best feature mix that maximizes performance

and which of the available inputs have it? Ultimately, what

are the best inputs, given the tasks and analyst-defined criteria

(time & quality constraints)? We need a performance model

that enables us to achieve both low overhead and adaptivity

by identifying configurations that guarantee application per-

formance and limit the search overhead for recurring big data

analytic jobs.

The challenging goal is to develop a sound methodology

and tools in order to quantify the effect of dataset(s) to an

analytics operator as well as a sequence of such tasks (a

workflow). The proposed work operates orthogonally to the

speedups and big-data crunching abilities of modern tools and

frameworks, such as Hadoop, Spark, Flink, etc. It provides a

novel modeling, planning and processing layer that assesses

data quality and maps it to big data analytics performance.

This allows powerful and continuous evaluation, planning and

execution of business intelligence that drastically accelerates

current platforms’ performance by adding a content-aware

dimension. Utilizing the most advantageous data inputs can

result in massive speedups on both accuracy (given a limit

to processing time) and time to completion (given a desired

accuracy level for the task). The concrete parts of our vision

proposal are summarized as follows:

• A novel data modeling methodology that provides the

missing link between key dataset properties and analytics

quality. We make the argument that dataset interrelations

can be a powerful and scalable means of estimating

multiple qualitative performance metrics for real-world,

popular analytics operators.

• An analytics profiling methodology that builds on the

previously created data models and produces a model

of a specific operator’s performance over different input

properties. The incurred models allow for intelligent

meta-analytics such as accurate prediction of task perfor-

mance, similarity, top-k and range querying over available

datasets, multi-objective optimization, etc.

• Extend the methodology in order to: (i) include operators

with multiple inputs and (ii) provide results for a series

of big data operators (workflows).

• A volatility and veracity framework that handles stream-

ing data and updates as well as data uncertainty. Data

and analytics models should incorporate varying levels

of churn and uncertainty; efficient mechanisms to update

them under specific cost and quality guarantees should

be provided.

II. RELATED WORK

To facilitate dataset analysis, two complementary directions

have been suggested: Data Integration and Data Exploration.

Data Integration approaches (e.g., [17]–[19]) aim at presenting
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a unified view of distinct datasets and focus on the sys-

temic problem of fusing data from heterogeneous sources.

The outcome of these approaches is a set of metadata that

reflects information regarding their origins, versions, schema,

indexing, etc., as well as a mapping that enables consolidated

use by a single application. However, this outcome does not

target predicting the effects that different datasets have over

application or analytics task execution.

Data Exploration approaches (e.g., [20]–[23]) aim at pro-

ducing dataset summaries in order to inform the users about

properties of the data, such as tuples that encapsulate the

most representative data patterns, dependencies between tuple

fields, statistical properties and tuple summaries. The main

motivation behind these techniques is to assist exploratory

analysis: Quickly obtain a view of the data schema and its

properties so that one can incrementally issue more complex

queries or choose a representative subset of the original data

according to specific criteria. Data Exploration is commonly

utilized in the first analysis steps of unknown datasets and is

still largely manual. It cannot be directly used for identifying

a dataset under specific criteria, as these approaches do not

target detailed dataset evaluation and comparison, but retain

a more informative role. Furthermore, Data Exploration is

mainly focused on providing information regarding a specific

dataset to a user.

Data Cleaning approaches (e.g., [24], [25]) are much more

intrusive and aim at cleaning datasets from erroneous tuples

that distort the represented knowledge either through value

rewriting or through removing tuples that seem incorrect.

To date, none of the aforementioned approaches handles the

problem of predicting analytics performance over multiple

available data inputs and their characteristics, specifically

structural and semantic dimensions – type, size, skew, accu-

racy, freshness, etc. The affluence in available sources and

input combinations as well as the volatile and often uncertain

nature of data highly intensify the problem.

III. METHODOLOGY

Data-driven analytics optimization, formulated through data

selection to maximize performance, establishes an orthogonal,

yet equally imposing accuracy, modeling, and scalability chal-

lenge. Considerable progress has been achieved in speeding

up analytics workflows that utilize huge data inputs; how to

intelligently and efficiently evaluate the utility of numerous

(both changing and possibly fuzzy) datasets over multiple tasks

and workflows has not been thoroughly studied to date. Faced

with this challenge, we propose a novel ecosystem that puts the

spotlight on data content rather than on individual dataset size.

Such a system would realize its goals by: (a) quantitatively

modeling the interrelations among large numbers of input

data; (b) utilizing these models for intelligent prediction of

the quality of variable analytics tasks/workflows; (c) native

management of data volatility and uncertainty; (d) powerful

meta-tools that evaluate data utility and enable analysis over

data inputs and their relation to analytics workflows. The

natural question it aims to answer is: What is the relationship

between vast input datasets and analytics performance? Based

on this, how can we consistently and continuously evaluate

the utility of different data in hand, at different levels of

granularity?
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Fig. 1. Ecosystem Architecture

To realize this vision, we describe a reference system

architecture of three layers which correspond to required

research/engineering challenges that need to be tackled (see

Figure 1):

• The Data Modeling Layer, which is the layer hosting

modules that analyze input datasets of various types (do-

mains), churn, velocity and degree of uncertainty. The

analysis should strive to be operator-agnostic and focus

on different dataset attributes and their interrelations. Data

models should be scalably created, becoming a key asset to

be consumed by higher-level modules.

• The Analytics Modeling Layer, which is the layer hosting

the core execution and profiling functionality. Given an

analytics task and the created data models, this layer handles

the necessary planning, orchestration, execution and model-

ing tasks required in order to produce statistical models of

the task’s output over any available valid input. The layer

also extends the methodology to tasks that accept multiple

input datasets, workflows of tasks and model updates due

to incoming datasets or churn.

• The Content-Driven Analysis Layer, which encapsulates

the application (analyst-driven) logic. Specifically, it allows

analysts to interact with the ecosystem, query and intuitively

retrieve valuable information relative to analytics perfor-

mance prediction, ranking and intelligent analysis.

A. Current Research Output

Assume a set of datasets D = {D1, D2, · · · , DN} and an

analytics operator F . Let us also assume that F accepts a

single dataset as input and produces a scalar output value:

F : D → R (1)

Each operator can be viewed as a function that projects any

dataset Di to a scalar value F (Di). The problem the work in

[26], [27] addresses, is the following: We seek for an accurate
approximation of F (Di) without exhaustively executing F
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for all datasets. Typical function approximation cannot be

applied in this problem because D represents an unordered

set of datasets that do not belong to a metric space and the

relationships between them are unknown. Albeit constructing

a metric space for any given D is possible for a given distance

function for each dataset pair in D, the quality of the approx-

imation is heavily affected by the choice of this function. The

chosen distance function must reflect the distance between two

datasets Di, Dj , both in the aforementioned metric space and

the operator’s output domain.

In [26], we argue that there exist some fundamental prop-

erties that can produce invaluable insights regarding an oper-

ator’s outcome. Examining data interrelationships in light of

a handful of fundamental statistical properties can generate

a strong knowledge basis: If one quantifies the similarity

between all pairs of datasets and executes an operator for only

a handful of them, a first idea of F ’s domain would become

available, as datasets with high similarity would present similar

behavior. Let us generalize this idea: Given the relationship

between dataset similarity and an operator’s output, we seek

for a projection of the datasets in D into a metric space

D′ (also referred to as dataset space) that best reflects the

resemblance among them. D′ can be then utilized by F as the

domain space – according to Equation (1) – in order to project

the original datasets into the anticipated values. Interestingly

so, the relationships between datasets are independent of F ,

allowing different operators to be applied over a unique D′.
For each operator, one could sample D, estimate F ’s values

for the selected datasets Di ∈ Ds ⊆ D and approximate F
for the rest of the datasets utilizing Machine Learning (ML)

techniques. Although F is applied to some of the original

datasets, i.e., F (Di), Di ∈ Ds is calculated, the ML model

is trained using D′ as the input space and the approximated

operator F ′ is defined as: F ′ : D′ → R. Essentially, D′

comprises a set of features that best characterize the datasets’

interrelationships. Figure 2 depicts an overview of the applied

methodology.

Fig. 2. Methodology workflow

The Similarity Estimation module quantifies the similarities

between datasets D1, · · · , DN . In [26], datasets consist of

multi-dimensional tuples with numerical values, while sim-

ilarity is measured over statistical distribution, dataset size

and tuple order. In [27], datasets are graphs and several

similarity measures (degree-distribution, graph-kernel-based,

etc) are utilized. The outcome is a symmetrical N × N
similarity matrix accessed by the Dataset Space Projection
module which transforms the original similarities into a metric

space. In this step, Multidimensional Scaling [28] transforms

the similarity matrix into a set of points in a lower-dimensional

(k-dimensional) space, with the property that the distances

between the points of the space approximate the similarity

represented by the original matrix. The final outcome of the

process is a N × k matrix that represents the coordinates

of each dataset in the dataset space. Finally, an operator F
can be executed for a small subset of datasets Ds. Using

the dataset coordinates and the respective operator values,

a Neural Network is trained in order to approximate F
for all datasets. Based on the approximated dataset scores,

interesting questions can be answered: Which are the dataset(s)

with the highest/lowest F values (e.g., with the highest first

eigenvalue), how many dataset outputs are close to a given F
value, retrieve the top-k datasets under certain criteria, etc.

Essentially, the proposed approach shifts the computational

burden in the first phase of data analysis: The workflow

presented in Figure 2 is executed once in an offline manner for

all datasets and is operator-agnostic: The similarity estimation

does not force the execution of any operator — only the rela-

tionships between the input datasets are evaluated. Whenever

a new operator emerges, it is executed for a mere subset of

the available datasets and its behavior is rapidly approximated

with minimal computation. The overhead of the similarity esti-

mation and Dataset Space Projection modules is amortized and

the avoided computation linearly increases with the number of

operators that need to be executed for the analyzed datasets. A

very wide range of operators have been approximated under

this approach (distance, connectivity, spectrum-based graph

metrics and aggregate functions, ML operators, spectrum and

time-series forecast) with good accuracy.

The Apollo system that implements this methodology and

allows data scientists to import datasets, define and utilize

custom similarity functions and execute the process over any

analytics task has been described [29] and open-sourced1.

Apollo is written in Go and utilizes R to model the input

datasets and train different Machine Learning classifiers for

predicting the operators’ output. The system offers a promising

proof that simple, intuitive similarity metrics (over two data

formats, csv files and graph data represented as raw files

containing graph edges) can be used for accurate, content-

driven prediction. Moreover, massive speedups (more than

20× in many cases) are experienced compared to exhaustively

executing the operators.

As an overview of the results Apollo can achieve, we

consider a set of 973 ego graphs from Twitter (TW) [30] and a

set of 1442 datasets with daily household power consumption

measurements (HPO) from a household in Denmark [31]. For

TW, we consider Betweenness Centrality (bc) and PageRank

(pr), two widely used node centrality measures generalized

to the graph level through Freeman’s method [32]. For HPO,

we model the Average (avg) of each dataset and the number

of clusters created after performing a DBSCAN (dbs). We

present the Median Absolute Percentage Error MdAPE, as a

measure of accuracy, and speedup results for two different

1https://github.com/giagiannis/data-profiler
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sampling ratios (p=5%,10%) in Table I. The sampling ratio

indicates the number of datasets for which the operators were

executed in order to obtain the real outputs. These values were,

subsequently, used by ML classifiers in order to approximate

the operator’s output for the rest of the datasets.

TABLE I
MODELING ERRORS AND SPEEDUPS OF THE APOLLO SYSTEM

Dataset Operator MdAPE (%) Speedup ×
p=5% p=10% p=5% p=10%

TW bc 17.8 17.5 13.0 7.8
pr 9.2 7.7 13.2 7.9

HPO avg 1.3 1.2 3.93 3.4
dbs 14.6 14.1 8.3 6.23

Finally, the process is customizable in order to accelerate

data analysis and conduct less detailed dataset examination

or increase modeling accuracy when higher execution time is

affordable.

B. Extensions

Apollo was designed and implemented with the notion that

all datasets are available from the very beginning of the data

analysis process. However, this hypothesis does not hold in

multiple real-world scenarios, where existing data sources may

be updated (e.g., temperature sensors provide more data points

with time) or totally new data sources emerge (e.g., data from

more days are available in the HPO case above). In such cases,

Apollo needs to re-execute the workflow of Figure 2 from

scratch. Given that the number of datasets is anticipated to be

constantly increasing, one can observe that the quadratic com-

plexity of the workflow will decelerate the speedup observed

due to avoiding the exhaustive operator execution. To this

end, we briefly introduce two extensions added in the Apollo
engine. The first one describes an online process that allows

the introduction of new data sources without repeating the

entire workflow. The second one describes an approximation

to avoid the quadratic complexity calculation of all pairwise

similarities between the datasets.

1) Accommodating new data sources: The problem of

projecting new datasets in the dataset space, also referred

to as the Online Indexing problem, is the following: Given

a set of datasets D1, · · · , DN along with their coordinates

p1, · · · , pN respectively in a k-dimensional space, find the

coordinates pN+1 of a new dataset DN+1. Note that the

similarities between DN+1 and D1, · · · , DN are unknown,

but easily computable. Assuming that d1, · · · , dN are the

distances between DN+1 and D1, · · · , DN respectively, we

seek for a vector pN+1 = (x1, x2, · · · , xk) that minimizes

the distortion of the dataset space, i.e., the difference between

the pairwise distances as measured by the similarity matrix

and the dataset space. Note that this time, the coordinates of

D1, · · · , DN are fixed and only the coordinates of DN+1 need

to be updated. Given that, the problem reduces to a typical

optimization problem with the objective of finding the vector

pN+1 that minimizes a distorion function. Since the problem

space is not convex (as more than one local minima may exist),

Simulated Annealing (SA) is employed. If the execution time

of the Online Indexing process needs to be minimized, one

can estimate the distances between DN+1 and a subset of

D1, · · · , DN . This option reduces both the time needed to

measure the similarity between the datasets and the number of

steps needed by SA in order to converge, because it essentially

reduces the constraints of the objective function.

In order to evaluate the performance of this extension, we

consider the following experiment: Based on HPO data from

2008 (366 datasets), we construct the dataset space using the

Distribution Similarity metric. We then “insert” datasets for

the next 3 months of 2009, i.e., introduce 90 new datasets.

For each new dataset, the similarity with m of the existing

datasets is measured and SA is executed to identify the best

coordinates for the new entries. Parameter m is expressed as a

portion of the already calculated datasets. Using the Sammon

Stress (Es) [33] in order to quantify the space distortion and

the Normalized Mean Squared Error, in order to quantify the

modeling accuracy (trained with a sampling rate of 16%),

we compare the cases where the new datasets are Online

Indexed for varying m against the case where Dataset Space

Projection is executed from scratch for the old and the new

datasets. Figure 3 provides our findings expressed in relative

terms, i.e., both Es and NRMSE are normalized with the

respective values for the case where the workflow is executed

from scratch.
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Fig. 3. Performance of “online” accommodation new data sources

When a small number of datasets is introduced (i.e., 10), our

optimization achieves both minimal Es values and minimal

modeling error. This renders our approach most suitable for

cases where the insertion of only a few datasets is required.

When the number of new datasets increases, Es rapidly

increases for two reasons: First, the new datasets have a

stronger impact and the introduced errors propagate to the new

entries. Second, while new datasets arrive, the dynamics of

the space change. This means the dimensionality of the space

would differ if all datasets were available from the beginning.

Comparing against extremely few datasets generates higher

errors, hence, the rapid Es increase for m = 2%.

The above behavior is also observed for the modeling error,

especially when m receives low values. In this case, the

coordinates of the new datasets become increasingly inaccu-

rate and this severely impairs accuracy. Interestingly, when

m = 100%, the modeling accuracy follows the accuracy

achieved when the workflow is executed from scratch, even

when 90 new datasets are inserted. However, even with a
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considerable m = 32%, NRMSE increases after 30 new

datasets are introduced. In conclusion, this optimization is

capable of dynamically introducing new datasets by executing

a marginal number of similarity comparisons (2%) with a

tolerable modeling error increase of 6%, provided that the

number of new datasets does not exceed 10% of the existing

ones. When this percentage increases, one should first use

an increasing number of datasets for the comparisons; after

a certain point, execution of the workflow from scratch is

suggested.

2) Approximate Similarity Matrices: The methodology dis-

cussed so far entails the calculation of a squared matrix of

size N2, N being the number of datasets, and the complexity

equals O(N2x), in which x represents the complexity of

the employed similarity metric. For an increasing number

of datasets, a quadratic complexity becomes prohibitive, as

the computational effort required grows rapidly. A way of

tackling this challenge is to avoid the calculation of similarities

for all the distinct dataset pairs. However, this could lead to

information loss, since the non-computed similarities should

be replaced by values that approximate them, else this “ap-

proximate” similarity matrix may distort the dynamics of the

space.

Fig. 4. Dataset distances

In order to provide a solution, assume the datasets depicted

in Figure 4 projected to a 2-d dataset space, in which the

thin lines represent the distances among them. The distances

between the datasets from the left and the right sides are

much larger when compared to the distances of the datasets of

the same side, e.g., d2,3 < d1,2. Furthermore, assuming that

only d1,2 is known, one can say that |d1,2 − d2,3| ≤ d1,3 ≤
|d1,2 + d2,3| and if d2,3 � d1,2 then d1,3 ≈ d1,2. In other

words, in this example one only needs to calculate one of

the “large” distances in order to avoid high approximation

error. This interesting observation highlights the necessity

of prioritizing for large distances when considering which

of them should be evaluated. When such a “backbone” of

distances is calculated, e.g., the set of thick lines of Figure

4, one can easily estimate the distances between the unknown

pairs, providing the distances between the closest – to them

– known datasets. Such a “backbone” of nodes can easily be

built: We pick a random dataset and calculate its similarity

against the rest of the datasets. We, then, pick the most

dissimilar one. We continue this process, always selecting the

most dissimilar datasets to the ones that have been seen so far,

until we reach the desired number of examined datasets.

In order to evaluate this optimization, we design the fol-

lowing experiment: based on the HPO datasets, we construct

similarity matrices based solely on the dataset distribution

property, estimate an approximate similarity matrix, in which

only t datasets are fully calculated (expressed as a percentage

of the total number of datasets). In the left plot of Figure

5, we provide the relative construction time of the similarity

matrix for varying t values, i.e., the ratio of the time needed

to construct the matrix for the t = 100% case, divided by the

time for each t value.
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Fig. 5. Approximate Similarity Matrix Evaluation

Our optimization linearly reduces the computation time.

In order to evaluate the impact to the modeling accuracy,

dataset spaces are constructed based on the similarity matrices

and SVM models are trained using the respective spaces for

the avg operator. In the right plot of Figure 5 we provide

the NRMSE increase, i.e.,
NRMSEt−NRMSE100%

NRMSEt
, of each

model for varying t values for three sampling rates. The

drop in accuracy becomes increasingly important when higher

sampling rates are employed. However, the error degrades

quickly with increasing t values, and even when t = 10%,

the introduced error does not exceed 14% compared to the

full similarity matrix but, simultaneously, the construction is

accelerated by a factor of 10×. Therefore, our optimization

is able to significantly speedup the construction, introducing

a relatively small increase in error.

IV. RESEARCH AREAS

A significant amount of research questions and development

activities lie ahead in order for a content-driven ecosystem

to be functional and extensible. Relative to the architecture

depicted in Figure 1, we now discuss important areas/topics

where significant research is required for the realization of this

environment.

A. Data Modeling

The goal of data modeling is to capture structural, semantic
and operational information pertaining to datasets that or-

ganizations and analysts alike utilize as possible inputs to

their analytics tasks. In the former group, properties such

as structure type (tabular, free-text, graph, hierarchical, etc),

size, location (local disk, file system, remote access, etc),

distribution, skew, order are investigated. In the semantic

category, various properties not covered by purely formatting

aspects are considered. Examples include (but are not limited

to) data freshness, density/distribution of specific feature(s) or

values, etc. Lastly, operational features relate to the degree

of fuzziness and change that is observed on the underlying

sources. As such, the level of data uncertainty, the speed

of incoming data streams, the amount of changes (be they

additions of new data points or updates of existing ones) are

all properties to be considered.

The solution should span the whole range of dataset type

and task domains. As such, the Similarity Estimation module
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plans on identifying, for each captured dataset feature, suitable

and low-cost similarity functions. These functions take two

distinct datasets as input and produce a scalar value (or vector)

that represents the (dis)similarity between them based on a

specific set of attributes. The goal of the Similarity Estimation

Module is to define a process to compute, store and evaluate a

measure of similarity between two datasets based on specific,

relevant features as defined in the Attributes and Statistical

Models Database. Special focus will be given to defining a)

efficient similarity metrics, as their complexity plays a huge

role in the scalability of the methodology, and b) accurate

similarity assessment as this relates to the analytics workflow

it pertains to.

Moreover, dataset veracity and churn must be taken into

consideration when creating models that estimate their inter-

relations. Data veracity accounts for the degree of uncertainty

in the content of the generated data. Uncertainty characteristics

of each dataset must be evaluated and taken into consideration

during the similarity estimation. Uncertainty on data values

(missing values, imprecise measurements, etc.) may be repre-

sented by intervals where data lies, or by probability distri-

butions over such intervals if such information is available or

can be inferred. Uncertainty on entire facts, e.g., results of an

analytics task, may, in turn, be represented by discrete choices

between alternatives, or by probability distributions over these

alternatives. It could also be of interest to additionally record

provenance information about data items, to provide traceabil-

ity.

Data churn relates to data velocity and volatility. The system

should be able to manage both new (unseen) datasets and

incremental updates to existing ones, efficiently supporting

real-time, streaming data and analytics modeling optimization.

While incremental changes are usually small (compared to the

original dataset), their relative frequency and nature can cause

significant digression in the previously computed similarity

models. The same is true for the streaming data case, where

new datasets are continuously created and should be thus

considered for optimized, content-based analytics. As such,

the Volatility Management module should decide on cost-

performance tradeoffs between full re-computation cycles and

approximation algorithms that that provide low-cost estimates

of the new dataset inter-relations.

The produced models will be stored in the Dataset Models

library. A unique feature that characterizes this approach is

the fact that these models are completely task-agnostic: The

models represent the relative positions of the datasets to

each other, based on standard, intuitive statistical and well-

established features. As such, they can be readily used by

a variety of analytics tasks and workflows in the Analytics

Modeling layer.

B. Analytics Modeling

The Analytics Task Modeler module performs data to

single-task performance modeling: Utilizing the dataset mod-

els from the previous layer, a ML model (such as a neural

network) can be trained to approximate a specific operator for

all desirable datasets. The process and is respective cost must

be thoroughly examined to ensure the method’s generality

as well as its performance over different analytics tasks and

domains. Learned models for individual operators are stored

and updated whenever new profiling loops are executed in the

Statistical Models Library.

The Analytics Modeling layer bases all its functionality

on this single-task modeling framework. The Scheduler is

the central component that orchestrates user-defined analytics

optimization: Given an analytics task or arbitrary combinations

of them (i.e., workflows), user-defined optimization goals

(comprising rules that bind desirable workflow performance

and cost over multiple metrics) and multiple permissible

data inputs, the scheduler is responsible for orchestrating

iterative/concurrent invocations of the Analytics Task Modeler

with the necessary parameters in order to achieve end-to-

end modeling under the user-defined policy. The later will

be defined both in terms of cost (time, resources) and perfor-

mance (qualitative metrics measurable through the analytics

tasks in hand). The scheduler requires a planning component

that selects the appropriate data-task model combinations for

execution by the Analytics Task Modeler such that single or

multiple criteria are met.

This is ever so important in the following two cases:

i) tasks that receive multiple inputs and ii) workflow-based

modeling. In the case of operators that take more than one

input dataset, the characteristics of all inputs as well as

their inter-dependencies play a big role in the similarity and

performance estimation of the operator. In the case of operator

workflows, our goal is to combine individual task models in

such a way that the final workflow output can be accurately

predicted given the input set characteristics. In this case, the

effect that different workflow graphs and operator types from

different domains have over the model synthesis process must

be examined. The top-k plans should be considered utilizing

a modified Dynamic Programming or heuristic planner (as

shown in [34], [35]). This functionality is handled by the

Workflow Planner module.

The Volatility Management module extends inside this layer.

Indeed, incremental updates or new datasets not only affect

the operator-agnostic data models but have a cascading effect

as they are used for task modeling. The Adaptivity Engine

encapsulates the effort to support dynamic dataset insertions

and updates to previously constructed dataset models. In

mathematical terms, we need to map an arbitrary dataset

DNEW to the existing space. In this task we must explore

incremental, scalable solutions such as estimating DNEW ’s

coordinates based on a finite set of distances with the “old”

datasets and radical re-computation of the model from scratch.

The cost/accuracy tradeoffs these solutions induce will be

studied and evaluated. The same holds for cases of data

churn, where streaming updates inside a single dataset may

significantly alter its computed data model. Scalable and

accurate monitoring mechanisms that identify the amount of

change will be required (e.g., [36], [37]).
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V. CONCLUSIONS

In this work, we described a content-centric system in order

to boost data analytics performance. Unlike current and pre-

vious approaches, our proposal takes a domain-independent,

holistic and continuous approach to data modeling. Primarily,

it sheds light into the problem of immense numbers of different

datasets, rather than the volume of a single one. As such, it

recognizes the need to create data models that measurably

map dataset interrelations. Secondly, it analyzes these data

interrelations based on principled statistical and semantic axes

taking into consideration: Data type, data veracity and data

churn. The resulting models are task-agnostic, in the sense

that they represent multiple and updateable dimensions of

similarity between datasets irrespective of the use that analysts

intend them to have. As such, for a given set of available data,

a data scientist will be able to manage multiple models. Each

model will represent dataset interrelationships over a specific

data feature. Analysts can arbitrarily fuse data models, creating

richer semantic data dimensions. Lastly, our proposal offers

powerful meta-analysis tools over the managed models in real

time. In practice, this approach has already proved capable

of achieving very accurate performance models, while it can

gracefully degrade its efficiency over customizable gains in

execution cost.

REFERENCES

[1] S. Madden, “From databases to big data,” IEEE Internet Computing,
2012.

[2] C. C. Aggarwal, “An introduction to social network data analytics,” in
Social network data analytics. Springer, 2011, pp. 1–15.

[3] Y. Song, A. M. Elkahky, and X. He, “Multi-rate deep learning for
temporal recommendation,” in Proceedings of the 39th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR ’16, 2016.

[4] T. L. Tuten and M. R. Solomon, Social media marketing. Sage, 2017.

[5] J. O. Awoyemi, A. O. Adetunmbi, and S. A. Oluwadare, “Credit
card fraud detection using machine learning techniques: A comparative
analysis,” in 2017 International Conference on Computing Networking
and Informatics (ICCNI), 2017.

[6] X. Xu, C. Zhou, and Z. Wang, “Credit scoring algorithm based on
link analysis ranking with support vector machine,” Expert Systems with
Applications, vol. 36, no. 2, pp. 2625–2632, 2009.

[7] S. Moore, “How to Create a Business Case for Data Quality Im-
provement,” https://www.gartner.com/smarterwithgartner/how-to-create-
a-business- case-for-data-quality-improvement, Jun. 2018.

[8] “Medium Data is the New Sweet Spot.” https://goo.gl/mnxnEx, 2017.

[9] “The Big Problem Is Medium Data,” http://goo.gl/5nYrrz, 2014.

[10] R. A. Baeza-Yates, “Big data or right data?” in Proceedings of the
7th Alberto Mendelzon International Workshop on Foundations of Data
Management, 2013.

[11] M. Lindstrom, Small Data: The Tiny Clues That Uncover Huge Trends.
St. Martin’s Press, 2016.

[12] Kirk Bresniker, “A new era of computing is coming. how can we make
sure it is sustainable?” https://www.weforum.org/agenda/2018/09/end-
of-an-era-what-computing-will-look-like-after-moores-law/.

[13] J. Gregory, Counterparty credit risk: the new challenge for global
financial markets. John Wiley & Sons, 2010, vol. 470.

[14] D. R. Miller, S. Harris, A. Harper, S. VanDyke, and C. Blask, Security
Information and Event Management (SIEM) Implementation (Network
Pro Library). McGraw Hill, 2010.

[15] Peter Schlampp, “Spark takes on the big security threats,”
http://www.ibmbigdatahub.com/blog/spark-takes-big-security-threats,
2016.

[16] K. Chourdakis, E. Epperlin, M. Jeannin, and J. Mcewen, “A cross-
section across cva,” Nomura. Available at Nomura: http://www. nomura.
com/resources/europe/pdfs/cva-crosssection. pdf, 2013.

[17] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang, M. Stonebraker, A. K.
Elmagarmid, I. F. Ilyas, S. Madden, M. Ouzzani, and N. Tang, “The
data civilizer system.” in CIDR, 2017.

[18] J. M. Hellerstein, V. Sreekanti, J. E. Gonzalez, J. Dalton, A. Dey, Nag
et al., “Ground: A data context service.” in CIDR, 2017.

[19] V. Mansinghka, P. Shafto, E. Jonas, C. Petschulat, M. Gasner, and
J. B. Tenenbaum, “Crosscat: a fully bayesian nonparametric method
for analyzing heterogeneous, high dimensional data,” The Journal of
Machine Learning Research, vol. 17, no. 1, pp. 4760–4808, 2016.

[20] M. Singh, M. J. Cafarella, and H. V. Jagadish, “DBExplorer: Exploratory
Search in Databases,” in Proceedings of the 19th International Con-
ference on Extending Database Technology, EDBT 2016, Bordeaux,
France, March 15-16, 2016, Bordeaux, France, March 15-16, 2016.,
2016, pp. 89–100.

[21] M. Joglekar, H. Garcia-Molina, and A. Parameswaran, “Interactive data
exploration with smart drill-down,” in Data Engineering (ICDE), 2016
IEEE 32nd International Conference on. IEEE, 2016, pp. 906–917.

[22] K. Dimitriadou, O. Papaemmanouil, and Y. Diao, “AIDE: An Ac-
tive Learning-Based Approach for Interactive Data Exploration,” IEEE
Transactions on Knowledge and Data Engineering, vol. 28, no. 11, pp.
2842–2856, 2016.

[23] S. Idreos, O. Papaemmanouil, and S. Chaudhuri, “Overview of data
exploration techniques,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. ACM, 2015, pp.
277–281.

[24] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and K. Goldberg, “Active-
Clean: Interactive Data Cleaning for Statistical Modeling,” Proceedings
of the VLDB Endowment, vol. 9, no. 12, pp. 948–959, 2016.

[25] N. Prokoshyna, J. Szlichta, F. Chiang, R. J. Miller, and D. Srivastava,
“Combining quantitative and logical data cleaning,” Proceedings of the
VLDB Endowment, vol. 9, no. 4, pp. 300–311, 2015.

[26] I. Giannakopoulos, D. Tsoumakos, and N. Koziris, “A Content-Based
Approach for Modeling Analytics Operators,” in Proceedings of the
27th ACM International Conference on Information and Knowledge
Management, CIKM 2018, Torino, Italy, October 22-26, 2018, 2018.

[27] T. Bakogiannis, I. Giannakopoulos, D. Tsoumakos, and N. Koziris, “Pre-
dicting graph operator output over multiple graphs,” in Web Engineering
- 19th International Conference, ICWE 2019, Daejeon, South Korea,
June 11-14, 2019, Proceedings, 2019.

[28] J. C. Gower, “Some distance properties of latent root and vector methods
used in multivariate analysis,” Biometrika, pp. 325–338, 1966.

[29] T. Bakogiannis, I. Giannakopoulos, D. Tsoumakos, and N. Koziris,
“Apollo: A dataset profiling and operator modeling system,” in Pro-
ceedings of the 2019 International Conference on Management of Data,
SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July
5, 2019, 2019.

[30] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[31] Lichman, “Uci machine learning repository,” 2013. [Online]. Available:
http://archive.ics.uci.edu/ml

[32] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, no. 1, pp. 35–41, 1977.

[33] J. W. Sammon, “A nonlinear mapping for data structure analysis,” IEEE
Transactions on computers, vol. 100, no. 5, pp. 401–409, 1969.

[34] K. Doka, N. Papailiou, V. Giannakouris, D. Tsoumakos, and N. Koziris,
“Mix ’n’ match multi-engine analytics,” in 2016 IEEE International
Conference on Big Data, BigData 2016, Washington DC, USA, Decem-
ber 5-8, 2016, 2016.

[35] N. Papailiou, D. Tsoumakos, P. Karras, and N. Koziris, “Graph-aware,
workload-adaptive SPARQL query caching,” in Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data,
Melbourne, Victoria, Australia, May 31 - June 4, 2015, 2015.

[36] D. Trihinas, L. F. Chiroque, G. Pallis, A. Fernandez Anta, and M. D.
Dikaiakos, “Atmon: Adapting the ”temporality” in large-scale dynamic
networks,” in 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), 2018.

[37] D. Trihinas, G. Pallis, and M. D. Dikaiakos, “Admin: Adaptive monitor-
ing dissemination for the internet of things,” in IEEE INFOCOM 2017
- IEEE Conference on Computer Communications, 2017.

40


