
AURA: Recovering from Transient Failures in Cloud Deployments

Ioannis Giannakopoulos∗, Ioannis Konstantinou∗, Dimitrios Tsoumakos§ and Nectarios Koziris∗
∗ Computing Systems Laboratory, School of ECE, NTUA, Athens, Greece

{ggian, ikons, nkoziris}@cslab.ece.ntua.gr
§ Department of Informatics, Ionian University, Corfu, Greece

dtsouma@ionio.gr

Abstract—In this work, we propose AURA, a cloud de-
ployment tool used to deploy applications over providers that
tend to present transient failures. The complexity of modern
cloud environments imparts an error-prone behavior during
the deployment phase of an application, something that hinders
automation and magnifies costs both in terms of time and
money. To overcome this challenge, we propose AURA, a frame-
work that formulates an application deployment as a Directed
Acyclic Graph traversal and re-executes the parts of the graph
that failed. AURA achieves to execute any deployment script
that updates filesystem related resources in an idempotent
manner through the adoption of a layered filesystem technique.
In our demonstration, we allow users to describe, deploy
and monitor applications through a comprehensive UI and
showcase AURA’s ability to overcome transient failures, even
in the most unstable environments.

I. INTRODUCTION

The advent of the cloud computing era generated new
perspectives regarding the deployment of applications. The
virtualized nature of the compute and storage resources,
allocated in an entirely dynamic, pay-as-you-go manner,
enables the cloud users to call services, exported as a set
of APIs, to allocate Virtual Machines and storage devices
and deploy their applications on top of them. The concept
of programmatic management of resources allows for the
automation of complex deployment tasks that entail resource
initialization (e.g., formatting virtualized block devices), ex-
ecution of the necessary installation and configuration scripts
(e.g., software dependencies installation and configuration
files editing), etc. Simultaneously, the ever increasing com-
plexity of applications architectures imposes the utilization
of a synchronization mechanism among different resources
so as to guarantee that the deployment tasks happen in a
particular order (without hindering parallelism) and, upon
their execution, leave the newly deployed application in a
functional and consistent state.

For the execution of the aforementioned deployment tasks,
several systems have been proposed. Be it a component of
the cloud ecosystem itself, such as Openstack Heat [1] for
Openstack, AWS CloudFormation [2] for Amazon, etc., or
an external software module that communicates with the
provider as a client, such as Vagrant [3], Juju [4], etc., these
systems share a similar view of the deployment process

as they express it as a Directed Acyclic Graph (DAG),
the nodes of which represent the deployment states of the
application modules and the edges represent the deployment
scripts. The DAG itself expresses the order of execution
and the dependencies among different states. Based on
this model, the aforementioned systems first communicate
with the cloud provider in order to allocate the necessary
resources, traverse the deployment DAG and execute the
deployment scripts.

Albeit the correctness of the deployment is guaranteed
if the scripts terminate successfully, the aforementioned
systems do not take into consideration the unstable and error-
prone nature of the cloud [5]. The complexity introduced by
the virtualization and cloud software, often leads to transient
failures that appear for a short period of time and then
vanish: Network glitches, temporal unavailability of network
services such as DNS, read-only file systems attributed to
random errors in the storage backends, etc. are some of
those. Although most of these failures are harmless since
they instantly disappear, they are capable of leading a script
execution into failure and, hence, fail an entire application
deployment. For example, assume that a deployment script
installs specific packages through a package management
system (such as apt) when a network glitch occurs; The
script will fail since the packages will not be retrieved
and, as a consequence, the entire deployment will also
fail. Such failures can prove expensive, both in terms of
budget and time. Taking into consideration that a deployment
failure may also leave stale resources (e.g., VMs that were
successfully provisioned) that require manual handling, it is
apparent that the management of transient failure can prove
extremely beneficial for the deployment process.

In order to tackle the aforementioned limitation of the
existing deployment solutions, we provide AURA1 a system
used to perform cloud deployments, attempting to overcome
transient failures through re-executing the failed scripts with
the incentive that when the script is re-executed, the failure
will have vanished. AURA is the implementation of the
methodology described in our previous work [6] and it is

1According to Greek mythology, Aura was the goddess of breeze,
commonly found in cloudy environments.



responsible to: (a) traverse the deployment DAG and execute
the deployment scripts, (b) monitor the deployment and
isolate the scripts that need to be re-executed if an error
occurs and (c) guarantee that the deployment scripts will
always have the same effects when executed multiple times.
The property of having the exact same effect through re-
executions makes a script idempotent and this is an essential
precondition that needs to be fulfilled before attempting
to re-execute it; If the script is not idempotent, a second
execution may not lead to the same results as the first,
possibly failed, execution. For example, if a network glitch
appears during the installation of software packages (through
apt), the package management system may end up in an
inconsistent state if the configuration of a package is inter-
rupted and, hence, manual handling may be required (e.g.,
forcefully reconfigure the appropriate packages). AURA
guarantees that any script that affects file system related
resources (e.g., files, databases, etc.) are idempotent through
an elegant file system layered mechanism, also adopted and
extensively used by the Docker [7] community.

The concrete contribution of this work is twofold. Firstly,
we present AURA, an open source cloud deployment system
which is capable of deploying applications in cloud environ-
ments, identifying transient failures and re-executing part of
the deployment scenario in order to overcome the errors.
Secondly, we present an indicative demonstration of our
system, using two widely popular real-world applications:
(a) RUBiS [8], which is a three-tier Web Application that
emulates the functionality of auction sites like eBay and
(b) Hadoop, which is the base platform for processing and
executing analytic tasks over Big Data. These two appli-
cations, formed using fundamentally different architectures,
are chosen to depict AURA’s applicability to deploy both
layered applications and cluster-based, distributed applica-
tions. Apart from these applications, the users will be able to
utilize AURA’s user-friendly UI to describe and deploy new
applications according to their custom deployment scripts.

II. RELATED WORK

The problem of application deployment in a cloud envi-
ronment resembles the well researched configuration man-
agement problem [9]. The added property in the cloud field
is that any software configuration must take place upon the
successful resource allocation from the cloud provider and
the configuration process is not limited to a single execution
environment (e.g., a single VM) but the necessity for coor-
dination spans to multiple hosts. From this viewpoint, we
can categorize the deployment tools in two broad categories:
(a) software based configuration management tools and (b)
cloud based deployment tools. The former category com-
prises of tools that express the deployment DAG as a set of
recipes, written either in a procedural or declarative format.
Puppet [10] is one of the most popular tools of this category.
It is based on a set of recipes which are published to a Puppet

Server. New instances fetch the appropriate recipes from the
server and execute them accordingly. Chef [11] is a similar
tool, that adopts a declarative language; The user does not
describe what needs to be done, but describes a desirable
state that the application must reach. Finally, Ansible [12]
is a configuration tool that follows the exact opposite route:
A user dictate commands which are spawned in parallel to
the Ansible cluster. All these tools do not handle resource
allocation, as they operate on top of previously allocated
resources or on bare metal environments.

The later category consists of systems that operate in
parallel with a cloud system, allocate and manage virtualized
resources and then traverse the deployment graphs. Open-
stack Heat [1] is responsible for the deployment of applica-
tions in the Openstack cloud. The users submit application
description in a YAML format, describing an application
blueprint that receives a number of parameters (e.g., VM
flavors, keypair names, etc.). Upon the definition of those
parameters, the user can deploy their application in the
cloud. Vagrant [3] and Juju [4] are two popular deployment
tools with different user bases: The former is mainly used by
developers who want to generate reproducible environments
in different providers, while the later is mainly used by
Ubuntu users that want to deploy software packages, the
so called charms. Wrangler [13] is a similar system, that
utilizes plugins in order to deploy the necessary components,
whereas [14] is an interesting parallel approach that bases
its functionality on Chef: Multiple configuration commands
are spawned in parallel in order to speedup the configuration
process. In this work, the necessity of coordination between
the parallel workers is also identified and tackled. From the
error recovery viewpoint, in [15], a data-centric approach is
presented. The authors formulate the application deployment
as a set of database transactions and issue undo scripts for
failed script executions, something that may not always be
possible, since not all actions are undoable. Finally, [16]
focuses on analyzing Puppet scripts in order to identify any
idempotence and convergence related issues.

III. METHODOLOGY AND SYSTEM OVERVIEW

A. Deployment Model

AURA utilizes the deployment model presented at [6].
Assume an application that consists of different software
modules; The term software module refers to any software
component (package, daemon, etc.) that can be deployed
with a set of deployment scripts. In Figure 1, we depict
the deployment timeline of an application that consists of
three modules. We assume that during the deployment, each
module executes its deployment scripts (denoted with the
dotted vertical line) and can send or receive messages to
other software modules (denoted with the black horizontal
arrows). These messages may contain useful information for
the other modules (e.g., IP addresses, network ports, etc.)
or they can be ACK messages that a deployment script



has been executed successfully. When a module waits for
a message (e.g., points A’, B’), it blocks until the message
is received. On the contrary, when a message is sent by a
module, the sender posts it into a queue and proceeds with
the next installation script, e.g., upon sending a message
in point A, module (1) proceeds with the script execution
between points A-C’.

(1) (2)

A A’

tim
e

(3)

B B’

CC’

Figure 1. Application Deployment Timeline

As the deployment evolves, the blocking mechanism when
waiting for a message achieves the essential coordination
between different software modules. With this simple and
elegant mechanism, a module can wait until another module
has reached a specific point, something that ensures that the
deployment script will be serialized when necessary, and
scripts will be executed in a particular order. For example,
a Web Server will start only when the Database Server
is successfully configured. As described in the following
section, this blocking scheme is also crucial for the error
recovery mechanism.

B. Error Recovery and Idempotence

Error recovery entails three discrete but tightly coupled
operations: (a) error identification, (b) isolation of the part
of the deployment scenario that needs to be repeated and
(c) execution of the scenario. When a transient error occurs,
AURA must first identify that an error occurred. When a
module remains blocked (waiting for a message) for more
than a pre-defined waiting threshold, it spawns a new “error-
alert” to AURA, translating this absence of message as
a possible failure of a deployment script of the sender
module. At this point the error recovery mechanism is
launched, that determines whether an error did occur, or if
the sender module needs more time to finish its execution.
To facilitate the error recovery process, it is convenient to
express the deployment timeline presented at Figure 1 as
a DAG, as depicted in Figure 2 (a). Again, the vertical
edges represent script executions and the horizontal edges
represent messages between different modules. The nodes of
the DAG represent the states that the modules reach after the
successful execution of the deployment scripts. Furthermore,
one may notice that when all the deployment scripts are
successfully executed, each module broadcasts a message to
the rest of the modules, informing them about its ready state.

The direction of the edges of the deployment graph
demonstrated in Figure 2 (a) indicates the order of the
operations (scripts executions and message flows). If we
reverse the directions of the edges, we obtain the graph
of Figure 2 (b), that represents the dependencies between
the states of the deployment graph, called the Dependency
Graph of the deployment. If this graph is traversed with

any topological ordering algorithm, starting from any of its
nodes (say u), the outcome would inform us about the states
that must be reached before u is reached. When an “error-
alert” is received by AURA, it traverses the Dependency
Graph in a breadth-first manner, starting from the node in
which a module was blocked and scans for the health of the
neighbor nodes. For example, if an “error-alert” message was
issued by (1) in C’, AURA will first evaluate whether C state
has been reached. If C was not reached, then AURA will
continue with B’, B, etc. until a set of healthy nodes frontier
is found. When such a frontier is identified, the essential
scripts are re-executed and the respective messages are re-
sent.

(a) (b)
Figure 2. Deployment and Dependency Graphs

One hypothesis implied by our analysis so far, is that
script re-executions will always have the same impact.
However, this may not always be the case; For example,
take the example of a deployment script that reads from a
file and deletes it from the filesystem. This script can only be
executed once; During a second execution, the script will fail
since it will try to read from a non-existent file. To handle
these circumstances, AURA utilizes a layered filesystem
architecture in order to nullify any modifications made by a
failed script. Specifically, prior to a script execution, AURA
mounts an AUFS [17] layer, on top of the directories that
the script will modify (/var/lib, /etc, /opt, etc). If
the script successfully terminates, AURA will append a new
AUFS layer on top of that layer and it will continue with the
next deployment script. If the first script fails, AURA will
remove the AUFS layer and it will replace it with a new
empty layer, starting from the beginning. This mechanism,
already used with success by the Docker [7] community for
image distribution, guarantees that any script that modifies
filesystem related resources remains idempotent.

C. System architecture

AURA Master

Cloud Provider

Module (1)

AURA Executor

Module (2)

AURA Executor

Module (3)

AURA Executor

Application

Queue

REST API Cloud 
Connector

Web UI

Scheduler

Figure 3. AURA Architecture

In Figure 3 we provide AURA’s architecture. The left
part of the Figure represents the AURA Master, which is
deployed in a dedicated VM into the cloud. The right part of
the Figure consists of two components: the Application and
the Cloud Provider components. The Application consists
of multiple modules; For convenience, we assume that



each module is deployed in a dedicated VM. The Cloud
Provider represents the provider endpoint, that manages the
virtualized resources. AURA consists of two components:
the AURA Master and the AURA Executors. The AURA
Executors are responsible to execute the appropriate deploy-
ment scripts for the module they are deployed to, setting up
the AUFS filesystem layers prior to the script execution.
Each software module is deployed by a dedicated AURA
Executor. On the other hand, the Master operates as an end-
point; It exposes a REST API and a user-friendly UI through
which the user can describe new applications, issue new de-
ployment requests, obtain real-time monitoring statistics, etc.
The Master contacts the cloud provider through the Cloud
Connector, which is responsible to translate the high level
resource allocation commands (e.g., create new VMs, etc.) to
IaaS specific commands. The Queue submodule represents
the communication channel between the Executors, as any
message from the modules is posted into it. The Executors
subscribe to specific queues and consume messages, as these
arrive from the other modules. Finally, the Scheduler is
responsible for monitoring the entire deployment process
and, in case of error, intervene, traverse the Dependency
Graph and require the re-execution of specific scripts from
the respective Executors.

IV. DEMONSTRATION

To demonstrate AURA’s functionality, we chose an in-
dicative cloud application for deployment: a Hadoop Cluster,
which is the state-of-the-art Big Data processing and ana-
lytics platform. Hadoop is a typical example of a distributed
application that consists of a master node and multiple
slave nodes. During the demonstration, AURA’s user will
be able to browse the application description and trigger
new deployment requests. AURA will then allocate new
VMs from the Openstack cluster and deploy the AURA
Executors accordingly. Each Executor will run the necessary
deployment scripts and the user will be able to monitor
the deployment status through a real-time monitoring UI.
Specifically, the user will be able to view each script’s logs,
a real-time view of the Deployment Graph, the status of
the respective script execution and the number of AUFS
layers that are deployed to each software component. A
screenshot of AURA’s UI is demonstrated in Figure 4,
in which the Deployment Graph is depicted: Blue edges
represent running scripts, green edges represent completed
scripts, red edges represent failed executions and gray edges
represent pending scripts. To test AURA in unstable and
error-prone environments, the user will be able to assign a
“script failure probability” that denotes the probability of a
script to fail. If the probability is high, the scripts will be
killed in a random point throughout their execution.

Figure 4. Deployment Graph as depicted by AURA

V. CONCLUSIONS

In this work we presented AURA, a cloud deployment
system used to deploy applications over providers that
present transient failures (e.g., network glitches, temporal
storage medium errors, etc.). Our demonstration is indicative
of AURA’s ability to handle any application description,
deployed over the most error-prone infrastructures with a
minimum number of script re-executions.

ACKNOWLEDGMENT

This work was supported by the TREDISEC project (G.A.
no 644412), funded by the European Union (EU) under
the Information and Communication Technologies (ICT)
theme of the Horizon 2020 (H2020) research and innovation
programme.

REFERENCES
[1] “Openstack Heat,” https://wiki.openstack.org/wiki/Heat.
[2] “AWS CloudFormation,” http://aws.amazon.com/cloudformation/.
[3] “Vagrant,” https://www.vagrantup.com/.
[4] “Juju,” https://juju.ubuntu.com/.
[5] “Google App Engine Incident,” https://goo.gl/ICI0Mo.
[6] I. Giannakopoulos, I. Konstantinou, D. Tsoumakos, and

N. Koziris, “Recovering from Cloud Application Deployment
Failures through Re-execution,” in Algorithmic Aspects of
Cloud Computing. Springer, 2016.

[7] “Docker Container,” https://www.docker.com/.
[8] “RUBiS,” http://rubis.ow2.org/.
[9] D. B. Leblang, “The CM challenge: Configuration manage-

ment that works,” in Configuration management. John Wiley
& Sons, Inc., 1995, pp. 1–37.

[10] “Puppet,” http://puppetlabs.com/.
[11] “Chef,” https://www.chef.io/chef/.
[12] “Ansible,” http://www.ansible.com/home.
[13] G. Juve and E. Deelman, “Automating Application Deploy-

ment in Infrastructure Clouds,” in Cloud Computing Technol-
ogy and Science (CloudCom), 2011 IEEE Third International
Conference on. IEEE, 2011, pp. 658–665.

[14] Y. Katsuno and H. Takahashi, “An Automated Parallel Ap-
proach for Rapid Deployment of Composite Application
Servers,” in Cloud Engineering (IC2E), 2015 IEEE Interna-
tional Conference on. IEEE, 2015, pp. 126–134.

[15] C. Liu, Y. Mao, J. Van der Merwe, and M. Fernandez,
“Cloud Resource Orchestration: A Data-Centric Approach,”
in Proceedings of the biennial Conference on Innovative Data
Systems Research (CIDR), 2011, pp. 1–8.

[16] O. Hanappi, W. Hummer, and S. Dustdar, “Asserting reliable
convergence for configuration management scripts,” in Pro-
ceedings of the 2016 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Languages,
and Applications. ACM, 2016, pp. 328–343.

[17] “AUFS,” http://aufs.sourceforge.net/.


