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ABSTRACT
The rapidly increasing amount of available data has created
invaluable business opportunities but also new challenges.
The focus on content-driven analytics is shifting attention
from optimizing operators and systems to handle massive
data sizes, to intelligent selection of those datasets that max-
imize the business competitive advantage. To date, there ex-
ists no efficient method to quantify the impact of numerous
available datasets over different analytics tasks – a thorough
execution over every input would be prohibitively expensive.
In this demonstration, we present Apollo, a data profiling
and operator modeling system that tackles this challenge.
Our system quantifies dataset similarities and projects them
into a low-dimensional space. Operator outputs are then
estimated over the entire dataset, utilizing similarity infor-
mation with Machine Learning and a small sample of actual
executions. During the demo, attendees will be able to model
and visualize multiple analytics operators over datasets from
the domains of machine learning and graph analytics.
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1 INTRODUCTION
As Big Data technologies mature and evolve, efforts are
placed on areas not solely related to data size. An increas-
ing number of research works make the case for the “Right
Data” [1], where content rather than size is the critical fac-
tor for data analysis workflows. The plethora of available
data sources for content-sensitive analytics leads to the need
to identify high impact data, i.e., intelligence that has the
best potential of driving strategic decisions. Thus, data sci-
entists have to decide on which datasets should be applied
to each given analytics workflow independently. Given the
increasing complexity of modern workflows and the plethora
and diversity of available data operators, evaluating the util-
ity of immense numbers of inputs for a given workflow is
prohibitively expensive.
As a motivating example, consider the case of derivative

pricing theory [6]. Analysts need to consider a multitude
of Credit Default Swaps (CDS) time series for different eco-
nomic entities. These are provided as input tomathematically
complex operators so that financial indicators, i.e., Value
Adjustments (xVA), are extracted that quantify the credit,
funding and financial costs an institution faces during deriv-
ative transactions. Selecting the appropriate CDS datasets
for extracting the respective xVAs for an entity is of key im-
portance for the indicator’s accuracy. Thus, an analyst needs
to exhaustively compute the aforementioned operators for
all CDS datasets in order to select those that present certain
characteristics that make them more suitable for specific
entities and maximize accuracy.
In the domain of graph analytics, consider a dataset con-

sisting of many citation graphs. We wish to identify the
graphs with the most well-connected citations that contain
highly-cited papers. The clustering coefficient, a good mea-
sure of neighborhood connectivity, would have to be com-
puted for all the graphs in order to allow the identification
of the top-k such graphs. To quantify the importance of each
paper, we consider a centrality measure such as between-
ness centrality. Consequently, we would have to compute
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the maximum betweenness centrality score for each citation
graph and combine the results with those obtained from
the analysis based on the clustering coefficient. Yet, this is
a daunting task due to the operators’ complexity and the
number of executions required.
To facilitate dataset analysis, two complementary direc-

tions have been suggested: Data Integration and Data Explo-
ration. Drawing inspiration from both, this work proposes
Apollo1, an operator-agnostic dataset profiling tool. In order
to avoid the exhaustive execution of the available operators
over each dataset, our work assesses the similarity between
datasets employing similarity measures that correlate with
the behavior of each operator. Based on the dataset relation-
ships, we infer knowledge about them. Each dataset is then
projected to a point in a low-dimensional metric space that
preserves the dataset similarities in the form of distances be-
tween the respective points. Using this metric space, datasets
are sampled and the operator to be modeled is applied to
each of the samples. Finally, Apollo models the given opera-
tor’s output for all datasets, using Neural Networks, based
on the output samples and the all-pairs dataset similarities
already computed.

Interestingly, the construction of the dataset metric space
is operator-agnostic. As a result, Apollo can re-use it for mod-
eling different operators. Hence, our work shifts the effort
towards measuring the dataset inter-relationships which we
leverage to model different operators instead of computing
their outputs for each dataset. The contribution of this work
is threefold:

• We present Apollo, an operator-agnostic dataset profiling
framework [5] that aims at modeling operator output for a
collection of datasets. To do so, it computes the similarity
among datasets, constructs a dataset space that reflects
their properties and models the output of the applied op-
erators utilizing machine learning.

• We offer an open source implementation in Go [4], dis-
tributable as a Docker image. The implementation includes
the dataset profiling pipeline, visualizations of the dataset
similarities, the dataset metric space, etc, as well as the ex-
traction of the generated ML models for integration with
other systems.

• We evaluate the accuracy and efficiency of the proposed
system using operators and datasets from different do-
mains. Specifically, popular ML operators (e.g., clustering,
linear regression, time-series prediction, etc) and graph
measures (e.g., various centralities, PageRank, diameter,
etc) are evaluated over both real and synthetic datasets.

1According to Greek mythology, Apollo was one of the Olympian deities
who was worshiped at the famous oracle at the city of Delphi.

Figure 1: Apollo’s Processing Pipeline

2 SYSTEM OVERVIEW
In this Section we give a brief overview of Apollo’s architec-
ture and processing pipeline.
2.1 Processing Pipeline
Apollo is based on the observation that datasets with similar
statistical properties affect a wealth of real world operators
in similar ways and, hence, lead them to produce similar out-
puts. To this end, Apollo is designed to assess the similarity
between different datasets in the light of different statistical
properties (including the distribution, the size and the order
in tabular data), project this knowledge to a low-dimensional,
easy-to-inspect space and, finally, model operator output for
all datasets using Neural Networks. Figure 1 provides the
overview of the processing pipeline. Let us now discuss each
step in more detail:
2.1.1 Similarity Estimation: Apollo can accept and operate
on multiple collections of datasets available on storage. For
each collection, the user first computes the similarity matrix
of the datasets in the collection. By choosing an available
similarity measure, uploading a custom one or even combin-
ing two different measures, the analyst can create a matrix
of all-pairs similarities between the datasets of the collection
and store it for further use.
The ability to specify the similarity measure enables the

analyst to re-interpret a dataset based on his needs. For ex-
ample, calculating the similarity between graphs is a difficult
task, comparing distributions, on the other hand, can be
done much more efficiently. To this end, Apollo allows us to
introduce a similarity measure that assesses the similarity
between graphs by calculating their degree distributions and
comparing the distributions instead.
2.1.2 Dataset Space Construction: Given the possible high
dimensionality of the dataset space, Apollo can perform Mul-
tidimensional Scaling (MDS) having as input the already
generated similarity matrix interpreted as a distance matrix.
The purpose of this step is twofold: It enables the analyst to
gain insight and intuition on the dataset space by reducing
the dimensions to 2 or 3 and then visualizing the result. In
addition, it significantly contributes to the efficiency of the
modeling step since most Machine Learning algorithms re-
quire the coordinates of the input data points rather than
their inter-similarities.



2.1.3 Operators and Modeling: For Apollo, an operator is
any executable that can be run against a dataset and produce
a numerical value as a result. This definition can encompass a
broad collection of operators including ML (DBSCAN, linear
regression, etc), statistical (avg, sum, etc) or specific to the
dataset type, e.g, for graph data, centralities (betweenness,
closeness, etc), spectrum related (PageRank, spectral radius,
etc) or general graph properties (e.g., diameter). To model
such an operator, the user has to import the executable to the
system and run it for a random sample of datasets. He then
chooses one of the available Neural Network configurations
and trains a model based on the sampled operator outputs
and the dataset space created.

2.2 Experimental Evaluation
For a thorough evaluation of our system in terms of accu-
racy and efficiency, i.e., speedup compared to a brute force
alternative, we refer the reader to the works in [2, 5], where
an extensive evaluation for a variety of dataset types is per-
formed. For the purpose of this demonstration, we focus on
two sets of datasets, a set of 973 ego graphs from Twitter
(TW ) [8] and a set of 1442 datasets with daily household
power consumption measurements (HPO) from a household
in Denmark [9]. For TW, we consider Betweenness Central-
ity (bc) and PageRank (pr), two widely used node centrality
measures generalized to the graph level through Freeman’s
method [3]. For HPO, we model the Average (avg) of each
dataset and the number of clusters created after performing
a DBSCAN (dbs). We present MdAPE, as a measure of accu-
racy, and speedup results for two different sampling ratios
(p=5%,10%) in Table 1.

Table 1: Modeling Errors and Speedups

Dataset Operator MdAPE (%) Speedup ×

p=5% p=10% p=5% p=10%

TW bc 17.8 17.5 13.0 7.8
pr 9.2 7.7 13.2 7.9

HPO avg 1.3 1.2 3.93 3.4
dbs 14.6 14.1 8.3 6.23

2.3 Visualizations, Evaluation and Model
Export

Acknowledging data visualization as a very effective way to
develop intuition about datasets, Apollo provides the analyst
with a number of visualizations. The similarity matrix can
be visualized as a heat map, the dataset space can be reduced
to 2 or 3 dimensions and be displayed in an interactive chart.
In the same chart, the user can visualize the results of the
modeling procedure, i.e., the samples and approximations
for each operator. Additionally, in order for the analyst to
be able to evaluate the accuracy of an operator’s model, a

Figure 2: Dialog for similarity estimation
number of measures are provided and calculated each time a
new model is trained. Finally, following the model training
and evaluation, the user can export an operator’s model to
incorporate it into an analytics pipeline.

3 DEMONSTRATION SCENARIO
We demonstrate Apollo using the HPO dataset presented
in Section 2.2. The user can upload a collection of datasets
to the system through the web UI and choose from a list
of similarity measures, as in Figure 2, in order to create
similarity matrices for the collection of datasets.
The steps an analyst takes when using the system, de-

scribed in Section 2.1, can be broadly represented by the
system’s tabs (Figure 2): Files for dataset uploads, Similarity
Matrices for similarity matrix and MDS operations, Oper-
ators for loading new operators and Modeling where the
models are trained for specific operators and the results are

Figure 3: Similarity Matrix



(a) 3-d Dataset Space Projection (b) 3-d Projection of Modeling Operator Outputs
Figure 4: 3-d Projections

visualized. When launching a new task, the backend asyn-
chronously processes the request while the user can browse
the application. All running tasks and their status can be
monitored from one of the system’s tabs.
Selecting one of the generated similarity matrices, the

analyst may choose to visualize its data in the form of an
interactive heatmap (Figure 3) that can be sorted based on
the distances from a given dataset. Alternatively, it is possi-
ble to perform MDS after specifying the number of target
dimensions of the dataset space. If the resulting space is 2- or
3-dimensional, it is possible to visualize it in an interactive
chart. A 3-d representation of the HPO dataset is displayed
in Figure 4a. In this dataset space projection, each point rep-
resents a dataset. Having calculated a set of operators for
these datasets, the points can be colorized based on the se-
lected operator outputs. In Figure 4a, the datasets are colored
based on their power consumption calculated as kilowatts
per hour: The higher the power consumption, the warmer
the point’s color.

Having calculated an operator for a ratio of the available
datasets, the analyst can now choose a neural network design
from theModeling tab and train a model which approximates
the given operator. To visually evaluate the accuracy of the
model, it is possible to project the approximated values in
the same dataset space generated after the dimensionality
reduction. For example, in Figure 4b the samples are the
diamond shaped blue points, the actual values being the
square green points and the approximations are the round
red points. Apollo also provides screens with a collection
of statistical error/accuracy measures like MAPE, MdAPE,
RMSE, etc, for a more in-depth evaluation of a trained model.

4 RELATEDWORK
Our work relates to the areas of Data Integration and Data
Exploration. Works in Data Integration, as outlined in [7],

mostly aim at unifying distinct datasets or providing context
to a dataset and answering questions over that unified collec-
tion. Our work, on the other hand, focuses on the differences
between datasets and aims at modeling them. In Data Explo-
ration the goal is to identify the key properties of a dataset.
Similarly to Apollo, in works such as [10] statistical analysis
is used on the available datasets. However, our work aims at
modeling more complex statistical properties and does not
only focus on the generation of data aggregates.
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