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Abstract. A k-nearest neighbor (kNN) query determines the k nearest
points, using distance metrics, from a given location. An all k-nearest
neighbor (AkNN) query constitutes a variation of a kNN query and
retrieves the k nearest points for each point inside a database. Their
main usage resonates in spatial databases and they consist the back-
bone of many location-based applications and not only. In this work, we
propose a novel method for classifying multidimensional data using an
AkNN algorithm in the MapReduce framework. Our approach exploits
space decomposition techniques for processing the classification proce-
dure in a parallel and distributed manner. To our knowledge, we are the
first to study the kNN classification of multidimensional objects under
this perspective. Through an extensive experimental evaluation we prove
that our solution is efficient, robust and scalable in processing the given
queries.

Keywords: classification· nearest neighbor· MapReduce· Hadoop· mul-
tidimensional data· query processing

1 Introduction

Classification is the problem of identifying to which of a set of categories a new
observation belongs, on the basis of a training set of data containing observa-
tions (or instances) whose category membership is known. One of the algorithms
for data classification uses the kNN approach [6] as it computes the k nearest
neighbors (belonging to the training dataset) of a new object and classifies it to
the category that belongs the majority of its neighbors.
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A k-nearest neighbor query [11] computes the k nearest points, using distance
metrics, from a specific location and is an operation that is widely used in spatial
databases. An all k-nearest neighbor query constitutes a variation of a kNN query
and retrieves the k nearest points for each point inside a dataset in a single query
process. Although AkNN is a fundamental query type, it is computationally
very expensive. As a result, quite a few centralized algorithms and structures
(M-trees, R-trees, space-filling curves, etc.) have been developed towards this
direction [4], [7], [22]. However, as the volume of datasets grows rapidly even
these algorithms cannot cope with the computational burden produced by an
AkNN query process. Consequently, high scalable implementations are required.
Cloud computing technologies provide tools and infrastructure to create such
solutions and manage the input data in a distributed way among multiple servers.
The most popular and notably efficient tool is the MapReduce [5] programming
model, developed by Google, for processing large-scale data.

In this paper, we propose a method for efficient multidimensional data clas-
sification using AkNN queries in a single batch-based process in Hadoop [14],
[16], the open source MapReduce implementation. More specifically, we sum up
the technical contributions of our paper as follows:

– We present an implementation of a classification algorithm based on AkNN
queries using MapReduce. We apply space decomposition techniques (based
on data distribution) in order to bound the amount of distance calculations
needed to reckon the k-NN objects before the classification step. The imple-
mentation defines the MapReduce jobs with no modifications to the original
Hadoop framework.

– We provide an extension for d > 3 in Section 5 (d stands for dimensionality).

– We evaluate our solution through an experimental evaluation against large
scale data up to 3 dimensions, that studies various parameters that can affect
the total computational cost of our method using real and synthetic datasets.
The results prove that our solution is efficient, robust and scalable.

The rest of the paper is organized as follows: Section 2 discusses related work.
Section 3 presents the initial idea of the algorithm, our technical contributions
and some examples of how the algorithm works. Section 4 presents a detailed
analysis of the classification process developed in Hadoop, Section 5 provides an
extension for d > 3 and Section 6 presents the experiments that where conducted
in the context of this work. Finally, Section 7 concludes the paper and presents
future steps.

2 Related Work

AkNN queries have been extensively studied in literature. A structure that is
popular for answering efficiently to AkNN queries is R-tree [11]. Pruning tech-
niques can be combined with such structures to deliver better results [4], [7].
Moreover, efforts have been made to design low computational cost methods



that execute such queries in spatial databases [18]. The works in [17], [20] pro-
pose algorithms to answer kNN join.

The methods proposed above can handle data of small size in one or more
dimensions, thus their use is limited in centralized environments only. During
the recent years, the researchers have focused on developing approaches that are
applicable in distributed environments, like our method, and can manipulate
big data in an efficient manner. The MapReduce framework seems to be suitable
for processing such queries. For example, in [19] the discussed approach splits
the target space in smaller cells and looks into appropriate cells where k-NN
objects are located, but applies only in 2-dimensional data. Our method speeds
up the naive solution of [19] by eliminating the merging step, as it is a major
drawback. We have to denote here that in [19] it is claimed that the computation
of the merging step can be performed in one node since we just consider statistic
values. But this is not entirely true as we are going to see in the experimental
evaluation. In addition, the merging step can produce sizeable groups of points,
especially as k increments, that can overload the AkNN process. Moreover, our
method applies for more dimensions. Especially, for d >= 3 the multidimensional
extension is not straightforward at all.

In [13], locality sensitive hashing (LSH) is used together with a MapReduce
implementation for processing kNN queries over large multidimensional datasets.
This solution suggests an approximate algorithm like the work in [21] (H-zkNNJ)
but we focus on exact processing AkNN queries. Furthermore, AkNN queries are
utilized along with MapReduce to speed up and optimize the join process over
different datasets [1], [10] or support non-equi joins [15]. Moreover, [2] makes use
of a R-tree based method to process kNN joins efficiently.

In [3] a minimum spanning tree based classification model is introduced and it
can be viewed as an intermediate model between the traditional k-nearest neigh-
bor method and cluster based classification method. Another approach presented
in [9] recommends parallel implementation methods of several classification al-
gorithms but does not contemplate the perspective of dimensionality.

In brief, our proposed method implemented in the Hadoop MapReduce frame-
work, extends the traditional kNN classification algorithm and processes exact
AkNN queries over massive multidimensional data to classify a huge amount of
objects in a single batch-based process. The experimental evaluation considers a
wide diversity of factors that can affect the execution time such as the value of
k, the granularity of space decomposition, dimensionality and data distribution.

3 Overview of Classification Algorithm

In this section, we first define some notation and provide some definitions used
throughout this paper. Table 1 lists the symbols and their meanings. Next, we
give a brief review of the method our solution relies on and then we extend it
for more dimensions and tackle some performance issues.



Table 1. Symbols and their meanings

n granularity of space decomposition

k number of nearest neighbors

d dimensionality

D a d-dimensional metric space

dist(r, s) the distance from r to s

kNN(r, S) the k nearest neighbors of r from S

AkNNC(R,S) ∀r ∈ R classify r based on kNN(r, S)

I input dataset

T training dataset

cr the class of point r

CT the set of classes of dataset T

SI size of input dataset

ST size of training dataset

M total number of Map tasks

R total number of Reduce tasks

3.1 Definitions

We consider points in a d-dimensional metric space D. Given two points r and s
we define as dist(r, s) the distance between r and s in D. In this paper, we used
the distance measure of Euclidean distance

(r, s) =

√∑d

i=1
(r[i]− s[i])

2

where r[i] (respectively s[i]) denote the value of r (respectively s) along the i-th
dimension in D. Without loss of generality, alternative distance measures (i.e.
Manhattan distance) can be applied to our solution.

Definition 1. kNN: Given a point r, a dataset S and an integer k, the k nearest
neighbors of r from S, denoted as kNN(r, S), is a set of k points from S such
that ∀p ∈ kNN(r, S), ∀q ∈ {S − kNN(r, S)}, dist(p, r) < dist(q, r).

Definition 2. AkNN: Given two datasets R,S and an integer k, the all k
nearest neighbors of R from S, named AkNN(R,S), is a set of pairs (r, s) such
that AkNN(R,S) = {(r, s) : r ∈ R, s ∈ kNN(r, S)}.

Definition 3. AkNN Classification: Given two datasets R,S and a set of
classes CS where points of S belong, the classification process produces a set of
pairs (r, cr), denoted as AkNNC(R,S), such that AkNNC(R,S) = {(r, cr) :
r ∈ R, cr ∈ CS} where cr is the class where the majority of kNN(r, S) belong
∀r ∈ R.

3.2 Classification Using Space Decomposition

Consider a training dataset T , an input dataset I and a set of classes CT where
points of T belong. First of all, we define as target space the space enclosing



the points of I and T . The parts that occur when we decompose the target
space for 1-dimensional objects are called intervals. Respectively, we call cells
and cubes the parts in case of 2 and 3-dimensional objects and hypercubes for
d > 3. For a new 1D point p, we define as boundary interval an interval centred
at p that covers k-NN elements. Respectively, we define the boundary circle and
boundary sphere for 2D and 3D points and the boundary hypersphere for d > 3.
The notion of hypercube and hypersphere are analyzed further in Section 5.
When the boundary ICSH (interval, circle, sphere or hypersphere) centred in an
ICCH (interval, cell, cube or hypercube) icch1, intersects the bounds of an other
icch2 we say an overlap occurs on icch2. Finally, for a point i ∈ I, we define
as updates of kNN(i, T ) the existence of many different instances of kNN(i, T )
that need to be unified to a final set.

We place the objects of T on the target space according to their coordinates.
The main idea of equal-sized space decomposition is to partition the target
space into nd equal sized ICCHs where n and the size of each ICCH are user
defined. Each ICCH contains a number of points of T . Moreover, we define a
new layer over the target space according to CT and ∀t ∈ T, ct ∈ CT . In order
to estimate AkNNC(I, T ), we investigate ∀i ∈ I for k-nearest neighbors only in
a few ICCHs, thus bounding the number of computations required.

3.3 Previous Work

A very preliminary study of naive AkNN solutions is presented in [19] and uses
a simple cell decomposition technique to process AkNN queries on two different
datasets, i.e. I and T . The elements of both datasets are placed on the target
space, which comprises of 2n × 2n equal-sized cells, according to their coordi-
nate vector and a cell decomposition is applied. ∀i ∈ I it is expected that its
kNN(i, T ) will be located in a close range area defined by nearby cells. At first,
we look for candidate k-NN points inside the cell (cl) that i belongs in the first
place. If we find at least k elements we draw the boundary circle. In case any
neighboring cells are overlapped we need to investigate for possible k-NN objects
inside them. If no overlap occurs, the k-NN list of i is complete. The algorithm
outputs an instance of the k-NN list for every overlapped cell. These instances
need to be unified into a final k-NN list.

This approach, as described above, fails to draw the boundary circle if cl
contains less than k points. To overcome this issue, before starting calculating
kNN(i, T ), we need to estimate the number of points that fall into every cell and
merge neighboring cells (according to the principles of hierarchical space decom-
position used in quad-trees [12]) to assure that all will contain at least k objects.
This preprocessing phase induces additional cost to the total computation and
the merging step can lead to a bad algorithmic behavior.

3.4 Technical Contributions

In this subsection, we extend the previous method for more dimensions and
adapt it to the needs of the classification problem. Moreover, we analyze some



drawbacks of the method studied in [19] and propose a mechanism to make the
algorithm more efficient. Firstly, we have a training dataset T , an input dataset
I and a set of classes CT where points of T belong. The points in the training
dataset have two attributes, the coordinate vector and the class they belong.
In order to compute AkNNC(I, T ), a classification step is executed after the
construction of the k-NN lists. Furthermore, we extend the solution presented
in [19] for more dimensions, and now the space is decomposed in 2dn ICCHs.

Figure 1(a) depicts a situation where the merging step of the original method
in [19] can significantly increase the total cost of the algorithm. Consider two
points x and y entering cells 3 and 2 respectively and k = 3. We can draw point’s
x boundary circle since cell 3 includes at least k elements. On the contrary, we
cannot draw the boundary circle of point y, so we need to unify cells 1 through
4 into one bigger cell. Now point y can draw its boundary circle but we overload
point’s x k-NN list construction with redundant computations and this would
happen for all points that would join cells 1,3 and 4 in the first place.

1 2

3 4

Dataset T point

Dataset I point

x

y

x

y
Merging

(a) Merging issue (b) Increase range

Fig. 1. Issue of the merging step before the kNN process and way to avoid it (k = 3)

In order to avoid a scenario like above, we introduce a mechanism where
only points that cannot find at least k-nearest neighbors in the ICCH in the first
place proceed to further actions. Let a point p joining an ICCH icch that encloses
l < k neighbors. We draw the boundary ICSH based on these l neighbors and
then check if the boundary ICSH overlaps any neighboring ICCHs. In case it
does, if the boundary ICSH covers at least k elements in total, then we are able
to build the final k-NN list of the point. In case the boundary ICSH does not
cover at least k objects in total or does not overlap any ICCHs then we gradually
increase its search range (by a fraction of the size of the ICCH each time) until
the prerequisites are fulfilled.

Figure 1(b) explains this issue. Consider two points x and y entering cells 3
and 1 respectively and k = 3. We observe that cell 3 contains 4 neighbors and
point x can draw its boundary circle that covers k-NN elements. However, the
boundary circle centred at y does not cover k-NN elements. Consequently, we
gradually increase its search range until the boundary circle encloses at least
k-NN points. By eliminating the merging step, we also relax the condition of
decomposing the target space into 2dn equal-sized splits and generalize it to nd.



Summing up, our solution can be implemented as a series of MapReduce jobs
as shown below. Note, that the first MapReduce job acts as a preprocessing step
and its results are provided as additional input in MapReduce Job 3 and that
the preprocessing step is executed only once for T .

1. Distribution Information. Count the number of points of T that fall into
each ICCH. The output of this job is utilized by the third MapReduce job
to help determine how much we need to increase the boundary ICSH.

2. Primitive Computation Phase. Calculate possible k-NN points ∀i ∈ I
from T in the same ICCH.

3. Update Lists. Draw the boundary ICSH ∀i ∈ I and increase it, if needed,
until it covers at least k-NN points of T . Check for overlaps of neighboring
ICCHs and derive updates of k-NN lists.

4. Unify Lists. Unify the updates of every k-NN list into one final k-NN list
∀i ∈ I.

5. Classification. Classify all points of I.

4 Detailed Analysis of Classification Procedure

In this section, we present a detailed description of the classification process
as implemented in the Hadoop framework. The records in T have the format
<point id, coordinate vector, class> and in I have the format <point id, coor-
dinate vector>. Furthermore, parameters n and k are defined by the user. In the
following subsections, we describe each MapReduce job separately and analyze
the Map and Reduce functions that take place in each one of them1. Also, we
proceed in time and space complexity analysis.

4.1 Getting Distribution Information of Training Dataset

This MapReduce job is a preprocessing step required by subsequent MapReduce
jobs that receive its output as additional data. In this step, we decompose the
entire target space and count the number of points of T that fall in each ICCH.

The Map function takes as input records with the training dataset format,
estimates the ICCH id for each point based on its coordinates and outputs a
key-value pair where the key is ICCH id and the value is number 1. The Reduce
function receives the key-value pairs from the Map function and for each ICCH
id it outputs the number of points of T that belong to it.

Each Map task needs O (ST /M) time to run. Each Reduce task needs O
(
nd/R

)
time to run as the total number of ICCHs is nd. So, the size of the output will
be O

(
nd · csi

)
, where csi is the size of sum and icch id for an output record.

1 Due to space limitations we do not quote pseudo-code for Map and Reduce functions.
Pseudo-code and more details of the current work are available in a technical report
in http://arxiv.org/abs/1402.7063



4.2 Estimating Primitive Phase Neighbors of AkNN Query

In this stage, we concentrate all training (LT ) and input (LI) records for each
ICCH and compute possible k-NN points for each item in LI from LT inside
the ICCH. Below, we condense the Map and Reduce functions. We use two Map
functions in this job, one for each dataset.

For each point t ∈ T , Map1 outputs a new key-value pair in which the ICCH
id, where t belongs, is the key and the value consists of the id, coordinate vector
and class of t. Similarly, for each point i ∈ I, Map2 outputs a new key-value pair
in which the ICCH id where i belongs is the key and the value consists of the
id and coordinate vector of i. The Reduce function receives a set of records from
both Map functions with the same ICCH ids and separates points of T from
points of I into two lists, LT and LI respectively. Then, the Reduce function
calculates the distance for each point in LI from LT , estimates the k-NN points
and forms a list L with the format < p1, d1, c1: . . . :pk, dk, ck >, where pi is the
i-th NN point, di is its distance and ci is its class. Finally, for each p ∈ LI ,
Reduce outputs a new key-value pair in which the key is the id of p and the
values comprises of the coordinate vector, ICCH id and list L of p.

Each Map1 task needs O (ST /M) time and each Map2 task needs O (SI/M)
time to run. Suppose ui and ti the number of input and training points that are
enclosed in an ICCH in the i-th execution of a Reduce function and 1 ≤ i ≤
nd/R. Each Reduce task needs O (

∑
i ui · ti). Let Ls to be the size of k-NN list

and ICCH id ∀i ∈ I. The output size is O (SI · Ls), which is O (SI).

4.3 Checking for Overlaps and Updating k-NN Lists

In this step, at first we gradually increase the boundary ICSH (how much de-
pends on information from the first MapReduce job), where necessary, until it
includes at least k points. Then, we check for overlaps between neighboring IC-
CHs and derive updates of the k-NN lists. The Map and Reduce functions of
this job are outlined next (again, we have two Map functions).

The Map1 function is exactly the same as Map1 function in the previous job.
For each point i ∈ I, function Map2 computes the overlaps with neighboring
ICCHs. If no overlap occurs, it does not need to perform any additional steps
and outputs a key-value pair in which ICCH id is the key and the value consists
of id, coordinate vector and list L of i and a flag true which implies that no
further process is required. Otherwise, for every overlapped ICCH it outputs a
new record where ICCH id′ (id of an overlapped ICCH) is the key and the value
consists of id, coordinate vector and list L of i and a flag false that indicates
we need to search for possible k-NN objects inside the overlapped ICCHs. The
Reduce function receives a set of points with the same ICCH ids and separates
the points of T from points of I into two lists, LT and LI respectively. After
that, the Reduce function performs extra distance calculations using the points
in LT and updates k-NN lists for the records in LI . Finally, for each p ∈ LI it
generates a record in which the key is the id of p and the values comprises of
the coordinate vector, ICCH id and list L of p.



Each Map1 task needs O (ST /M) time to run. Consider an unclassified point
p initially belonging to an ICCH icch. Let r be the number of times we in-
crease the search range for p and icchov the number of ICCHs that may be
overlapped for p. For each Map2 task the i-th execution of the Map function
performs icchovi + ri steps, where 1 ≤ i ≤ SI/M . So, each Map2 task runs
in O (

∑
i (icchovi + ri)) time. Suppose ui and ti the number of points of I and

T respectively that are enclosed in an ICCH in the i-th execution of a Reduce
function and 1 ≤ i ≤ nd/R. Each Reduce task needs O (

∑
i ui · ti). The size of

updated records is a fraction of SI . So, the size of the output is also O (SI).

4.4 Unifying Multiple k-NN Lists

During the previous step it is possible that multiple updates of a point’s k-NN
list might occur. This MapReduce job tackles this problem and unifies possible
multiple lists into one final k-NN list for each point i ∈ I.

The Map function receives the records of the previous step and extracts the
k-NN list for each point. For each point i ∈ I, it outputs a key-value pair in which
the key is the id of i and the value is the list L. The Reduce function receives as
input key-value pairs with the same key and computes kNN(i, T ),∀i ∈ I. The
key of an output record is again the id of i and the value consists of kNN(i, T ).

Each Map task runs in O (SI/M). For each Reduce task, assume updatesi
the number of updates for the k-NN list of an unclassified point in the i-th
execution of a Reduce function, where 1 ≤ i ≤ |NI |/R and |NI | the number of
points in input dataset. Then, each Reduce task needs O (

∑
i updatesi) to run.

Let, Iid the size of ids of all points in I and Lfinal is the size of the final k-NN
list ∀i ∈ I. The size of Lfinal is constant and Iid is O (SI). Consequently, the size
of the output is O (SI).

4.5 Classifying Points

This is the final job of the whole classification process. It is a Map-only job that
classifies the input points based on the class membership of their k-NN points.
The Map function receives as input records from the previous job and outputs
AkNNC(I, T ). Each Map task runs in O (SI/M) time and output size is O (SI).

5 Extension for d > 3

Here we provide the extension of our method for d > 3. In geometry, a hyper-
cube is a n-dimensional analogue of a square (n = 2) and a cube (n = 3) and is
also called a n-cube (i.e. 0-cube is a hypercube of dimension zero and represents
a point). It is a closed, compact and convex figure that consists of groups of
opposite parallel line segments aligned in each of the space’s dimensions, per-
pendicular to each other and of the same length. Figure 2 displays how to create
a hypercube for d = 4 (4-cube) from a cube for d = 3. Respectively, an n-sphere
is a generalization of the surface of an ordinary sphere to a n-dimensional space.



Spheres of dimension n > 2 are called hyperspheres. For any natural number
n, an n-sphere of radius r is defined as a set of points in (n + 1)-dimensional
Euclidean space which are at distance r from a central point and r may be any
positive real number. So, the n-sphere centred at the origin is defined by:

Sn = {x ∈ <n+1 :‖ x ‖= r}

Fig. 2. Creating a 4-cube from a 3-cube

6 Experimental Evaluation

In this section, we conduct a series of experiments to evaluate the performance
of our method under many different perspectives such as the value of k, the
granularity of space decomposition, dimensionality and data distribution.

Our cluster includes 32 computing nodes (VMs), each one of which has four
2.1 GHz CPU processors, 4 GB of memory, 40 GB hard disk and the nodes are
connected by 1 gigabit Ethernet. On each node, we install Ubuntu 12.04 operat-
ing system, Java 1.7.0 40 with a 64-bit Server VM, and Hadoop 1.0.4. To adapt
the Hadoop environment to our application, we apply the following changes to
the default Hadoop configurations: the replication factor is set to 1; the maxi-
mum number of Map and Reduce tasks in each node is set to 3, the DFS chunk
size is 256 MB and the size of virtual memory for each Map and Reduce task is set
to 512 MB. We evaluate the following approaches in the experiments: a) kdANN,
which is the solution proposed in [19] along with the extension (which invented
and implemented by us) for more dimensions, in order to be able to compare
it with our solution and b) kdANN+, which is our solution for d-dimensional
points without the merging step as described in Section 3.

We evaluate our solution using both real2 and synthetic datasets. We create
1D and 2D datasets from the real dataset keeping the x and the (x, y) coordinates
respectively. We process the dataset to fit into our solution (i.e. normalization)
and we end up with 1D, 2D and 3D datasets that consist of approximately
19,000,000 points and follow a power law like distribution. Respectively, we cre-
ate 1, 2 and 3-dimensional datasets containing 19,000,000 uniformly distributed
points. From each dataset, we extract a fraction of points (10%) that are used as

2 The real dataset is part of the Canadian Planetary Emulation Terrain 3D Mapping
Dataset and is available in http://asrl.utias.utoronto.ca/datasets/3dmap/



a training dataset. For each point in a training dataset we assign a class based on
its coordinate vector. The file sizes (in MB) of real datasets are a) Input: {(1D,
309.5), (2D, 403.5), (3D, 523.7)} and b) Training: {(1D, 35), (2D, 44.2), (3D,
56.2)}. The file sizes (in MB) of synthetic datasets are a) Input: {(1D, 300.7),
(2D, 359.2), (3D, 478.5)} and b) Training: {(1D, 33.9), (2D, 39.8), (3D, 51.7)}.

One major aspect in the performance of the algorithm is the tuning of gran-
ularity parameter n. Each time the target space is decomposed into 2dn equal
parts in order for kdANN to be able to perform the merging step, as described
in Section 3. The values of n that were chosen for the rest of the experiments
are: a) Real dataset: (1D, 18), (2D, 9), (3D, 7) and b) Synthetic dataset: (1D,
16), (2D, 7), (3D, 5). The procedure that was carried out in order to end up
with these values is described in the aforementioned technical report.

6.1 Effect of k and Effect of Dimensionality

In this experiment, we evaluate both methods using real and synthetic datasets
and record the execution time as k increases for each dimension. Then, we study
the effect of dimensionality on the performance of kdANN and kdANN+.

Figure 3(a) presents the results for kdANN and kdANN+ by varying k from
5 to 20 on 1D real and synthetic datasets. In terms of running time, kdANN+
always perform best, followed by kdANN and each method behave in the same
way for both datasets, real and synthetic.

In Fig. 3(b), we demonstrate the outcome of the experimental procedure
for 2D points when we alter k value from 5 to 20. No results of kdANN are
included for the real dataset since the method only produced results for k = 5
and needed more than 4 hours. Beyond this, the merging step of kdANN derived
extremely sizeable cells leading to a bottleneck to some nodes that strangled
their resources, thus preventing them to derive any results. Overall, in the case
of power law distribution, kdANN+ behaves much better than kdANN since the
last one fails to process an AkNN query as k increases. Also, kdANN+ is faster
and in case of synthetic dataset, especially as k grows.

Figure 3(c) displays the results generated from kdANN and kdANN+ for 3D
points when we increase k value from 5 to 20. Once again, kdANN could not
produce any results for any value of k in the case of real dataset. Table 2 is
pretty illustrative in the way the merging step affects the AkNN process. The
computational cost is far from negligible if performed in a node (in contrary
with the claim of the authors in [19]). Apart from this, the largest merged cube
consists of 32,768 and 262,144 initial cubes for k = 5 and k > 5 respectively.
In the case of kdANN+ for the real dataset, it is obvious that the total compu-
tational cost is much larger compared to the one shown in Figs. 3(a) and 3(b).
Finally, kdANN+ outperforms kdANN, in the case of synthetic dataset, and the
gap between the curves of running time tends to be bigger as k increases.

Overall, looking at Figs. 3(a), 3(b) and 3(c), we observe that as k increases the
execution time augments. This occurs because we need to perform more distance
calculations and the size of intermediate records becomes larger respectively as
the value of k rises.



(a) 1D (b) 2D

(c) 3D

Fig. 3. Effect of k for d ∈ {1, 2, 3}

Now, we evaluate the effect of dimensionality for both real and synthetic
datasets. Figure 4 presents the running time for k = 20 by varying the number
of dimensions from 1 to 3. From the outcome, we observe that kdANN is more
sensitive to the number of dimensions than kdANN+ when we provide a dataset
with uniform distribution as input. In particular, when the number of dimensions
varies from 2 to 3 the divergence between the two curves starts growing faster.
In the case of power law distribution, we notice that the execution time of
kdANN+ increases exponentially when the number of dimensions varies from 2
to 3. This results from the curse of dimensionality. As the number of dimensions
increases, the number of distance computations as well as the number of searches
in neighboring ICCHs increases exponentially. Nevertheless, kdANN+ can still
process the AkNN query in a reasonable amount of time in contrast to kdANN.

Table 2. Statistics of merging step for kdANN

k = 5 k = 10 k = 15 k = 20

Time (s) 271 675 962 1,528

# of merged cubes 798,032 859,944 866,808 870,784

% of total cubes 38% 41% 41.3% 41.5%

Max merged cubes 32,768 262,144 262,144 262,144



Fig. 4. Effect of dimensionality for k = 20

6.2 Scalability and Speedup

In this subsection, we investigate the scalability and speedup of the two ap-
proaches. In the scalability experiment we utilize the 3D datasets, since their
size is bigger than the others, and create new chunks smaller in size that are a
fraction F of the original datasets, where F ∈ {0.2, 0.4, 0.6, 0.8}. Moreover, we
set the value of k to 5. Figure 5(a) presents the scalability results for real and
synthetic datasets. In the case of power law distribution, the results display that
kdANN+ scales almost linearly as the data size increases. In contrast, kdANN
fails to generate any results even for very small datasets since the merging step
continues to be an inhibitor factor in its performance. In addition, we can see
that kdANN+ scales better than kdANN in the case of synthetic dataset and the
running time increases almost linearly as in the case of power law distribution.
Regarding kdANN, the curve of execution time is steeper until F = 0.6 and after
that it increases more smoothly.

In our last experiment, we measure the effect of the number of computing
nodes. We test four different cluster configurations and the cluster consist of
N ∈ {11, 18, 25, 32} nodes each time. As before, we use the 3D datasets when
k = 5. Figure 5(b), displays that total running time of kdANN+, in the case of
power law distribution, tends to decrease as we add more nodes to the cluster.
Due to the increment of number of computing nodes, the amount of distance
calculations and update steps on k-NN lists that undertakes each node decreases
respectively. Moreover, it is obvious that kdANN will fail to produce any results
when N < 32. This explains the absence of kdANN’s curve from Fig. 5(a).
In the case of synthetic dataset, we observe that both kdANN and kdANN+
achieve almost the same speedup; still kdANN+ performs betters than kdANN.
Observing Fig. 5(b) we deduce that the increment of computing nodes has a
greater effect on the running time of both approaches when the datasets follow
a uniform distribution due to better load balancing.

7 Conclusions and Future Work

In the context of this work, we presented a novel method for classifying multidi-
mensional data using AkNN queries in a single batch-based process in Hadoop.



(a) Scalability (b) Speedup

Fig. 5. Scalability and speedup results

To our knowledge, it is the first time a MapReduce approach for classifying mul-
tidimensional data is discussed. By exploiting equal-sized space decomposition
techniques we bound the number of distance calculations needed to compute
kNN(i, S),∀i ∈ I. We conduct a variety of experiments using real and synthetic
datasets and prove that our system is efficient, robust and scalable.

In the near future, we plan to extend and improve our system in order to
become more efficient and flexible. At first, we have in mind to implement a tech-
nique that will allow us to have unequal splits that will contain approximately
the same number of points. In this way we will achieve distribution indepen-
dence and better load balancing between the nodes. In addition, we intend to
apply a mechanism in order for the cluster to be used in a more elastic way, by
adding/removing nodes as the number of dimensions increase/decrease. Finally,
we plan to use indexes in order to prune any points that are redundant and
cumber additional cost to the method.
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