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Abstract. The massive increase in the data volume and dataset avail-
ability for analysts compels researchers to focus on data content and 
select high-quality datasets to enhance the performance of analytics 
operators. While selecting high-quality data significantly boosts analyt-
ical accuracy and efficiency, the exact process is very challenging given 
large-scale dataset availability. To address this issue, we propose a novel 
methodology that infers the outcome of analytics operators by creating a 
model from the available datasets. Each dataset is transformed to a vec-
tor embedding representation generated by our proposed deep learning 
model NumTabData2Vec, where similarity search are employed. Through 
experimental evaluation, we compare the prediction performance and the
execution time of our framework to another state-of-the-art modelling
operator framework, illustrating that our approach predicts analytics
outcomes accurately, and increases speedup. Furthermore, our vectoriza-
tion model can project different real-world scenarios to a lower vector
embedding representation accurately and distinguish them.

Keywords: Data Quality · Analytics Modelling · Vector embe ddings ·
Vector Similarity

1 Introduction 

Big data technologies daily face the rapid evolution in volume as well as variety 
and velocity of processed data [12]. Such big data characteristics routinely force 
analytics pipelines to underperform, requiring continuous maintenance and opti-
mization. One major reason for this is bad data quality1. Poor data quality leads 
to low data utilisation efficiency and e ven brings forth serious decision-making
errors [6]. 

Data quality can be improved when focusing on the actual content of the
data. Data-centric Artificial Intelligence (AI) [30] emphasises on the quality, 
context, and structure of the data to improve its quality, as well as the analyti-
cal or machine learning (ML) algorithmic performance. Understanding the data
context properties, such as data features, origins, relevance, and potential biases,
1 https://tinyurl.com/de62sf48. 
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plays a critical role in modelling more accurate and reliable models. Data-centric 
AI prioritises the process of refining and enriching datasets to make them more 
suitable for real-world applications. Similarly, many researchers argue that pri-
oritizing content-focused data quality is essential for achieving superior results
[30]. 

Yet, the plethora of available data sources and datasets in an organisation 
data repository poses a significant challenge: Deciding the most suitable datasets 
for analytics workflows to ensure accurate results/predictions. While modern 
analytics workflo ws incorporate diverse operators, optimising dataset selection
using data-centric AI methods remains an active research area [15]. When dataset 
selection is left to human experts, prediction performance drops, and it consumes 
more time. Equally costly and inefficient is the evaluation of all available datasets
to identify high-quality inputs.

In previous work [9], predicting the output of an analytics operator assuming 
a plethora of available input datasets was tackled via the creation of an all-pair 
similarity matrix, which, relative to the similarity function used, reflected the 
distance between datasets over a single data quality metric (e.g., data distri-
bution). Data or vector embeddings have been proposed to enhance big data
analysis and modern AI systems. Data embedding vectorization [22, 24]  aims  at  
projecting data from a high-dimensional representation space into a more com-
pact, lower-dimensional space. Extracting meaningful information through d ata
features using deep learning, data is projected to a lower representation space.

To improve the accuracy of a modelled analytic operator (i.e., predict the out-
come of a ML algorithm without actually executing it due to its cost), we propose 
a framework that uses vector embeddings for dataset selection from a large data 
lake repository. Our method predicts an operator’s output for an “unseen” query 
dataset, by selecting qualitatively similar datasets through similarity search over 
the vector embeddings. The selection of similar datasets reduces the prediction 
error, as well as the cost to model the operator, under the assumption that realis-
tic analytical operators perform similarly under similar inputs. The embeddings
are generated using our deep learning method, NumTabData2Vec, which pro-
cesses entire tabular datasets rather than chunks or metadata, enabling efficient
distinction between datasets and flexible modelling of multiple operators. Com-
pared to similar previous work [4, 9], our work uses state-of-the-art data repre-
sentation (vector embeddings) which are able to capture multiple data properties 
that can be used in order to assess similarity, namely record order, dataset size,
data distribution, etc.

The main contributions of our work can be summarised as follows:

– We introduce a framework for operator modelling (open-source prototype2) 
in order to predict its outcome on an unseen tabular input dataset from a 
plethora of available ones. Our method uses dataset vector embedding rep-
resentations to improve the prediction performance via selecting the most
relevant datasets to base its prediction upon.

2 GitHub Repository .

https://github.com/aloizo03/VEnOM-A-Vector-Embedding-Operator-Modelling-Framework-
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– We develop a deep learning model architecture that transforms an entire 
tabular dataset of nu merical values to a vector embedding representation.

– We provide an experimental evaluation of our proposed methodology using 
multiple real-world scenarios and compare it directly to the Apollo system
[4, 9]. 

Our evaluation illustrates that our methodology produces low prediction error 
by adaptively selecting similar quality datasets, achieving significant amor-
tized speed-ups. NumTabData2Vec evaluation shows that it effectively projects 
datasets into vector embeddings while accurately capturing diverse dataset prop-
erties within the representation space.

2 Related Work 

Prior efforts have focused on boosting algorithm performance by increasing data 
input (record number) rather than assessing quality. Consequently, we review 
works that identify optimal data features for analytic operator optimization. 
Vectorising data to lower embedding representation is a modern method that 
helps in identifying significant features across data type s and datasets. As vector
embeddings extract important features from data, we discuss studies that used
the feature representation of data tuples to improve ML model prediction.

2.1 Data Quality 

Big data applications aim to improve data quality by addressing various chal-
lenges. Dagger [26] enhances data quality by detecting pipeline errors using a n
SQL-like language, while ReClean [3] automates tabular data cleaning via rein-
forcement learning. IterClean [25] employs a large language model (LLM) to 
iteratively clean data by labelling initial tuples and using error detection, veri-
fication, and repair. In [8], data tuple quality is measured using Shapley values 
from game theory, with Truncated Monte Carlo Shapley and Gradient Shap-
ley methods estimating a tuple’s value to a learning algorithm. Apollo [4, 9]  is  a  
content-based method predicts analytic operator outcomes by leveraging dataset 
similarity through three steps: creating a similarity matrix, projecting datasets 
to a lower-dimensional space, and modelling the operator using a small ran-
dom subset of datasets. Unlike Apollo, our approach selects the most relevant, 
high-qualit y datasets to model analytic operators, aiming to improve prediction
performance. Additionally, our vector embeddings incorporate all dataset prop-
erties, whereas Apollo’s [9] similarity functions target only a single property.

2.2 Dataset Selection Inference 

SOALA [ 11] selects optimal data features through online pairwise comparisons to 
maintain ML models over time. Its extension, Group-SOALA, introduces group
maintenance to identify high-quality feature sets. In [23], the tf.data API frame-
work enables the creation of ML pipelines focused on selecting relevant datasets
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and features to improve data quality. Similarly, our framework uses dataset vec-
tor embeddings to select the most suitable datasets for modelling a nalytic oper-
ators or ML models, enhancing prediction accuracy.

2.3 Data Vectorization and Embeddings 

The goal of data vectorization is to project high-dimensional data into a l ower-
dimensional vector space. Word2Vec [22] (using Continuous Bag of Wo rds and
Skip-Gram) [22] leverages word context to generate emb eddings. Graph2Vec
[24] creates graph embeddings by dividing graphs into sub-graphs with a skip-
gram model and aggregating their embeddings. ImageDataset2Vec [7]  extracts  
meta-features from image datasets to generate embeddings, helping t o select the
most suitable classification algorithm. Dataset2Vec [16] uses meta-features and 
the DeepSet model to project datasets into embeddings and measure dataset
similarity. Table 2Vec [31] generates table embeddings by incorporating data 
features, metadata, and structural elements like captions and column headings.
Mix2Vec [32], is an unsupervised deep neural network that projects mixed data 
into vector embeddings. In a clustering experiment like in their work on the 
common Adult dataset, our model outperformed Mix2Vec (recent method with-
out publicly available code) by nearly .10%, demonstrating superior performance. 
Inspired by these methods, we designed a model that generates vector represen-
tations of tabular datasets over their record data values, not their metadata.

Vector embeddings, which capture valuable information from data tuples, are 
widely used in classification tasks. TransTab [28] encodes features with trans-
former layers to predict classes, leveraging supervised and self-supervised pre-
training. FT-Transformer [10] and Res-Net architectures similarly use embed-
dings of categorical and numerical features, processed through transformer l ayers
for class prediction, while Tab-Transformer [14] combines embedded categorical 
and normalized continuous features in an MLP for class prediction. Unlike these 
tuple-level approaches, our framework uses dataset-level embe ddings to identify
relevant datasets, enhancing analytic operator performance.

3 Methodology 

In this section, we describe our proposed framework for modelling analytic oper-
ators over a large number of available input datasets. W e also describe our app-
roach for vectorizing tabular datasets, NumTabData2Vec.

3.1 Framework Architecture 

Consider a data lake repository that contains a (possibly large) number . n of 
structured tabular datasets .D = (d1, d2, d3, . . . , dn). Also, let us consider an 
analytics operator (e.g., a ML algorithm) . Φ and an “unseen” dataset .Do (from 
the same domain). We assume that each .Di, 1 ≤ i ≤ n as well as .Do consist 
of records with numerical values only. Each dataset can, naturally, consist of
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Fig. 1. Pipeline framework architecture

different number of records. Operator . Φ consumes a single such dataset as input 
to produce a single numerical output: .Φ : Di → R. Our goal is to predict . Φ(Do)
with minimal cost and error by modelling the operator’s output for .Do using a 
small subset of similar datasets .Dr ⊆ D. 

Datasets i n .Dr closely matc h .Do in their properties (e.g., order, distribu-
tion, and size to name a few). Previous work [4, 9] had to use separate similarity 
functions for each such property. In contrast, w e leverage the embedding vec-
torization (.Dz) to efficiently identify the most similar datasets using all dataset
properties.

Figure 1 depicts the pipeline of our proposed framework. Datasets in .D are 
transformed in to .k-dimensional vectors using our NumTabData2Vec scheme, and 
these embeddings are stored for reuse. Each time a .Do needs to be inferred 
relative to an analytics operator . Φ, its vector embedding is created. The datasets 
used for the creation of the model are selected via similarity search to produce a 
small subset of relevant datasets. These chosen datasets are then used to model
and predict .Φ(Do), ensuring that only high-quality, pertinent data is processed. 
With this approach, our framework is utilizing “right quality” data in its inference 
mechanism, with irrelevant and extraneous datasets being excluded from the
modelling process.

The datasets are embedded by our NumTabData2Vec method, which trans-
forms each entire dataset in .D into a k-dimensional vector . z that captures all 
its characteristics. Our framework operates seamlessly across diverse real-world 
scenarios without modification, requiring only the specification of a repository
containing distinct numerical tabular datasets. The Vector embedding . z is a 
lower-dimension representation of the dataset with the entire characteristics of 
the dataset being encoded. Dataset .Do is similarly embedded as . zo.  Using  the  
embedding representation .zo and applying different similarity functions over t he
vector representations .Dz, we may choose the most similar subset of . D. The final 
step of the pipeline involves the operator modelling with any relevant method 
(e.g., Linear Regression, SVM, Multi-Layer Perceptron, e tc.). This model is then
used in order to infer the value of .Φ(Do). 

3.2 NumTabData2Vec 

This method transforms a dataset .Di into a lower-dimensional vector . z using 
only its numerical values while excluding metadata like column names and file-
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Fig. 2. NumTabData2Vec deep learning model architecture

names. We present a deep learning model architecture based on the variational
autoencoder (VAE) [17] concept, that projects high-dimensional data into a . 1×k
vector embedding dimension. The proposed method is t hus defined as:

.NumTabData2V ec (Di) → z, (1) 

where the model takes an .m × n dimensional numerical dataset and projects it 
to a lower .k-dimension space . z (.k > 1). We desire our method to be generally 
applicable to any dataset by learning to project a vector embedding during 
training. We also expect this method to learn vector embeddings from diverse 
data and operate without additional training or fine-tuning. Finally, we ough t
our scheme to be able to quickly and precisely extract vectors from every input
while handling varying dataset dimensions without modifications.

The deep learning model architecture is depicted in Fig. 2, where a dataset
.Di with dimensions .m × n passes through the encoder and is projected into a 
vector embedding representation . z, then reconstructed by a decoder that mirrors 
the encode. The vector representation . z is learned using a probabilistic encoder
.qφ (z|x), and decoder .pθ (x|z) that learns the distribution utilising the Kullback-
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Leibler (KL) divergence [18]. To achieve that, the following condition:

.minDKL (qφ (z|x) ‖pθ (x|z)) (2) 

of Kullback-Leibler (KL) divergence must be minimised. To l earn the new vector
representation . z, the dataset must be reconstructed back from . z to its input 
format using the decoder, to verify that the vector representation is compact. 
This reconstruction loss is part of the overall loss function, defined as:

. Lθ,φ (x) = Eqφ(z|x) (log (pθ (x|z))) − DKL (qφ (z|x) ‖pθ (x|z)) (3) 

This loss function is called evidences lower bound (ELBO). While the KL diver-
gence is minimised to learn the vector embedding representation . z,  the  ELBO  
is maximized so the condition,

.argmaxLθ,φ (x) (4) 

must be satisfied. The Decoder .pθ (x|z) is only used during the training phase 
to teach the encoder how to project the vector embedding representation . z. 

The decoder extracts feature embeddings from the input dataset .Di and pro-
cesses them through Transformer layers. For the transformer layer we are u sing
the pre-LN Transformer layer [29] instead of the traditional post-LN Transformer 
layer where the normalisation layer is employed inside the residual connection 
and before the prediction of the feed-forward layer. Following that, the trans-
formed embedding space is projected into a probabilistic vector space z using
the mean (. μ) and standard deviation (. σ). This lower-dimensional space retains 
all essential information about .Di,  and  a  higher  dimension . k in . z leads to a more 
accurate representation by capturing additional features [16]. 

3.3 Dataset Selection 

The selection of the most similar datasets has been implemented using three 
different approaches. Different similarity functions are easily plugged into our 
pipeline. The first method uses cosine similarit y, which measures the angle
between two vectors in the embedding space . z independent of their magnitudes, 
with a higher value indicating greater similarity. The alternative method cal-
culates the Euclidean distance between two vectors to capture their geometric 
closeness and determine dataset similarity. This approach aids in selecting the 
most relevant datasets according to o rganizational requirements. The smaller
the distance value then more similar are the datasets. Dataset selection using
cosine similarity or euclidean distance selects a fraction of .λ, λ > 0 of the clos-
est datasets to dataset .Do. The third approach involves u tilising the K-Means
[19, 21] clustering technique to choose the most releva nt datasets. The datasets
from .D are divided in to . s (.s > 1) separate clusters, where datasets with similar 
features are grouped together in the same cluster based on similarity equations. 
We determine the optimal number of clusters using silhouette scores [27]. This 
is done by the following equation:

.SilhouetteScore(zi) =
b(zi) − a(zi)

max(a(zi), b(zi))
, (5)
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Algorithm 1. K-Means Clustering Algorithm for dataset selection 
Require: Vectors .Z = {z1, z2, . . . , zn}, .Do vector . zo, range of clusters .S = (2, . . . , p), 

Maximum size of cluster .maxs, Minimum size of cluster . mins

1: Initialize the number of cluster .s using Silhouette score: . s =
SilhouetteScore(Z, S)

2: Initialize the . s cluster centroids .C = {c1, c2, . . . , cs} randomly from the v ectors
. Z. 

3: repeat 
4: Assignment Step: 
5: for each vector .zi ∈ Z do 
6: Assign .zi to the nearest centroid based on Euclidean distance:

. Assign zi to cluster j = argmin
j

‖zi − zj‖2

7: end for 
8: Update Step: 
9: for each centroid .cj do 

10: Update .cj as the mean of all vectors assigned to cluster . j: 
. cj =

1

|{zi ∈ Cj}|
∑

zi∈Cj

vi

11: end for 
12: until Centroids .C do not change significantly 
13: Save the cluster model K-Means 
14: Find in which cluster the vector . z belongs, . c = K-Means(z)
15: Find which datasets .Dr are belongs to cluster . c
16: Check the number of datasets in .Dr and update it if it does not meet the . mins

and .maxs. 
17: Return Datasets . Dr

where for each vector . zi computes the mean intra-cluster distance (.a(zi))  which  
is the distance with the other vectors in the same cluster, and the mean nearest-
cluster distance (.b(zi)) is the minimum average distance with the other vectors 
in a different cluster. Silhouette Score ranges from .−1 to . 1, and the higher value 
defines the best . s number for c lusters.

Algorithm 1, outlines the K-means process for selecting relevant datasets . Dr

based on the target dataset .Do. Using the optimal s (with the highest Silhou-
ette score), the vector representations . z of each dataset are clustered. Next, the 
algorithm uses the vector .zo of dataset .Do to find the closest cluster centroid. 
All datasets in that cluster are defined as the relevant datasets .Dr,  which  are  
then used to model the analytics operator. However, we defined a maximum and
minimum size for .Dr, and if these conditions are not met, datasets are either 
removed from the cluster or added based on their distance from the cluster 
centroid. These small adjustments are only made in cases where the clustering
technique does not yield results that satisfy our requirements.
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4 Evaluation 

We compared our framework with Apollo [4, 9], which models analytic oper-
ators using data content. Two loss functions to measure prediction accu-
racy are employed: root-mean-square error (RMSE) and mean absolute error 
(MAE). RMSE is sensitive to outliers, while MAE is not; conversely, RMSE 
accounts for error direction, which MAE cannot. We further assess efficiency
using Speedup and Amortized Speedup metrics, where Speedup is defined as

.
T (i)

op

T
(i)
SimOp+Tvec+Tsim+Tpred

,  where .T
(i)
op is the time to execute operator . i on all 

datasets, .T
(i)
SimOp is the time to model the operator with datasets f rom simi-

larity search, .Tvec is the vector embedding computation time, .Tsim is the simi-
larity search time, and .Tpred is the prediction time for .Do. Amortized speedup 
including one-time vectorization per data lake across multiple operators. Three 
variants with vector sizes 100, 200, and 300 (each with eight transformer layers)
were trained for .100 epochs on four NVIDIA A.10 GPUs. More experimental 
evaluation results can be found in the extended version of this work [20]. 

4.1 Evaluation Setup 

Our framework is deployed over an AWS EC2 virtual machine server running 
with 48 vCPUs of AMD EPYC 7R32 processors at 2.40 GHz, and four A10s
GPUs with 24GB of memory each, 192GB of RAM memory, and .2TB of storage, 
running over Ubuntu 24.4 LTS. Our code is written in Python (v.3.9.1) and 
PyTorch modules (v.2.4.0). Apollo was deployed on the same AWS EC2 virtual 
mac hine server, utilizing only the vCPUs and RAM, as it does not require a
GPU for execution.

4.2 Datasets 

We evaluated our framework using four real-world datasets (see Table 1). The 
NumTabData2Vec module was trained on separate data (.60% training, . 40%
testing). The Household Power Consumption (HPC) dataset [13] contains . 401
datasets with .2051 tuples and seven features recorded at one-minute inter-
vals of electric power usage measurements. The Adult dataset [5], used for 
binary classification, predicts income levels and includes .100 datasets with . 228

Table 1. Dataset properties for experimental evaluation

Dataset Name # Files # Tuples # C olumns

Household Pow er
Consumption [ 13].401 .2051 7 
Adult [ 5] .100 .228 14 
Stocks [ 1] .508 .1959 − 13 7 
Weather [ 2] .49 .516 7
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individuals and socio-economic features. The Stock Market dataset [1] consists 
of .508 datasets with .13 to .1959 tuples describing daily NASDAQ stock prices. 
Weather dataset [2] provides hourly measurements from .36 U.S. cities (2012– 
2017), split into .49 datasets with .516 tuples and seven features. Any categorical 
feature column in all datasets is transformed to numerical data by one-hot encod-
ing. These datasets were selected to demonstrate our framework’s ability to per-
form consistently across diverse real-world scenarios.

Our framework was evaluated by predicting the outputs of various ML opera-
tors without directly executing them. Datasets were projected into .k-dimensional 
spaces with vector dimensions of .100, .200,  and .300. For regression datasets 
(Household Power Consumption and Stock Market), we modelled Linear Regres-
sion (LR) and Multi-Layer Perceptron (MLP), while for classification datasets 
(Weather and Adult), we modelled Support Vector Machine (SVM) and MLP 
classifiers. Each experiment has executed 10 times, and we report the average
error loss and speedup.

4.3 Evaluation Results 

Figures 3, 4, 5,  and 6 present the evaluation results of different similarity search 
methods across vector embedding spaces of sizes .100, .200,  and .300 (green, blue, 
and grey bars, respectively). In each sub-figure, the y-axis represents the error 
loss value, while the x-axis displays the similarit y search method applied over
the vector embeddings. Figures 3 and 4 display results for the Stock Market and 
Household Power Consumption datasets, with MLP r egression in the bottom
sub-figure and LR in the top. Figures 5 and 6 show results for the Weather and 
Adult datasets, with SVM (SGD) in the top sub-figure and MLP classifier in the 
bottom. Left sub-figures use RMSE loss, while right sub-figures use MAE loss.

Fig. 3. Household power consumption
dataset prediction error loss 

Fig. 4. Stock market dataset prediction
error loss
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Table 2. Evaluation results of our framework exported analytic operator with lowest
prediction error in comparison with Apollo

Dataset 
Name 

Method Operator RMSE MAE Speedup Amortized Sp eedup

Household 
Power 
Consumption

.300V Cosine LR .6.61 .5.42 .0.0017 . 1.99

.300V  S  R-.0.2 LR .7.77 .6.66 .0.0018 . 1.42

Apollo-SR .0.1 LR .2968.01 .2352.55 .0.015 . 0.024

Apollo-SR .0.2 LR .2811.49 .2229.50 .0.015 . 0.024

.300V K-Means MLP Regr..6.70 .3.38 .0.9249 . 1.99

Apollo-SR .0.1 MLP Regr..3322.05 .2606.99 .2.38 . 1.74

Apollo-SR .0.2 MLP Regr..3850.01 .2609.36 .2.38 . 1.74

Stock .300V Cosine LR .306382.28 .125335.65 .0.00085 . 1.91

.300V  S  R-.0.4 LR .21861625.91.5674215.265.0.00087 . 0.33

Apollo-SR .0.1 LR .153665.92 .118236.48 .0.00093. 0.00096

Apollo-SR .0.2 LR .166844.95 .133306.68 .0.00093 . 0.00096

.300V Cosine MLP Regr..140236.47 .123571.12 .0.63 . 1.91

Apollo-SR .0.1 MLP Regr..175150.82 .145123.09 .0.93 . 0.96

Apollo-SR .0.2 MLP Regr..174390.81 .146338.73 .0.93 . 0.96

Weather .300V Cosine SVM SGD .14.13 .7.63 .1.06 . 22.8

Apollo-SR .0.1 SVM .69.51 .25.52 .2.10 . 1.16

Apollo-SR .0.2 SVM .68.70 .22.81 .2.10 . 1.16

.300V Cosine MLP .14.29 .4.03 .1.03 . 22.8

.300V  S  R-.0.4 MLP .15.95 .13.31 .1.02 . 1.77

Apollo-SR .0.1 MLP .69.62 .23.10 .1.34 . 1.14

Apollo-SR .0.2 MLP .673.56 .84.70 .1.32 . 1.14

Adult .300V Cosine SVM SGD .0.36 .0.2 .0.37 . 2.78

Apollo-SR .0.1 SVM .68.32 .22.95 .0.75 . 0.85

Apollo-SR .0.2 SVM .68.88 .22.88 .0.74 . 0.85

.300V K-Means MLP .0.36 .0.19 .0.30 . 2.78

.300V  S  R-.0.2 MLP .6.01 .6.00 .0.54 . 3.54

Apollo-SR .0.1 MLP .71.11 .26.51 .1.07 . 1.31

Apollo-SR .0.2 MLP .70.16 .25.74 .1.05 . 1.31

Figure 3, for the HPC dataset, shows as increase the vector dimension size 
there is slightly lower prediction error for all the operator modelling. Different 
similarity methods do not result in any significant differences in the predic-
tion error loss for all the operator modelling. This suggests that, regardless the
similarity selection method, our framework effectively selects the most optimal
subset of data to improve model predictions on the unseen input dataset .Do. 
Additionally, we observe higher error loss with a vector size of 100, which can be 
attributed to the reduced representation capacity of lower-dimensional vectors.
This limitation results in fewer “right” datasets being selected.

For the stock market dataset, Fig. 4 depicts that a vector embedding rep-
resentation of size .300 models more accurate operators, with cosine similarity 
performing best in the similarity search and modelling the most optimal opera-
tor. However, due to the inherent volatility in Stock market data from different
days, all models in the stock market dataset experiments exhibit high loss values.

In the weather dataset, the SVM operator results (Figs. 5a  and 5b) show 
that using .300 sized vectors in the representation space consistently led to more
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accurate operator models across all similarity methods. Specifically, cosine sim-
ilarity in combination with the .300-dimensional vector embedding reduced the 
error rate in operator predictions, demonstrating that projecting datasets into 
this representation space and applying cosine similarity improves the prediction
accuracy on the modelled operator. For the MLP classifier (Figs. 5c  and 5d), the 
results illustrate that using vector embeddings of size .300 and Cosine similarity-
produced the most accurate MLP classifier operators.

Fig. 5. Weather dataset prediction
error loss 
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Fig. 6. Adult dataset prediction error
loss

On the other hand, the Adult dataset shows the lowest error rates, with error
loss values consistently below .0.5 across all vector embedding dimensions and 
similarity search methods (see Fig. 6). The Adult dataset, besides exhibiting a 
high number of rows, also has a higher number of columns, which demonstrates 
that our framework performs consistently well even with larger datasets. Addi-
tionally, we observe that the lowest prediction error across all datasets occurs 
when using higher-dimensional v ector embeddings. With a trade-off between
accuracy and execution time as the difference to generate all data lake available
datasets vector embedding representation between .100 and .300 size dimension in 
the vector representation space to be less than .60 s. This confirms that a higher 
number of vector dimensions leads to more accurate predictions, consistent with
findings in previous research [22]. 

We conducted an experimental evaluation using the Sampling Ratio (SR) 
approach, similar to Apollo [9], but employed neural networks built from the 
vector embeddings of each dataset. The SR approac h involves a unified random
selection of .l% datasets from the vector representation space, using this subset 
to construct a neural network for predicting o perator outputs. We tested SR
values of .0.1, .0.2,  and .0.4, as well as vector embedding dimensions of .100, .200, 
and .300, across all datasets.
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For the HPC and Weather datasets, the SR approach was approximately . 15%
less accurate in operator prediction compared to all similarity search methods, 
even as vector embedding dimensions increased. In contrast, the Stock d ataset
exhibited a significantly larger discrepancy, with the SR approach performing
about .70% worse in prediction accuracy across all vector embedding dimen-
sions. Similarly, in the Adult dataset, the SR approac h recorded the poorest
performance, delivering nearly .90% worse prediction accuracy compared to the 
similarity search methods.

Table 2 compares model operators, loss functions, and speedup metrics for 
our framework and Apollo at SR values of .0.1 and .0.2. Metho ds .100V, .200V, and 
.300V denote vector embedding dimensions. The lowest prediction errors align 
with our pipeline’s similarity search method. Apollo outperforms our framework 
on the Stock dataset for the LR analytic operator with the smallest amoun t of
SR. However, our framework excels with the MLP regression operator, improving
RMSE and MAE by .20% and .17%, respectively. The LR operator’s performance 
gap on the Stock dataset is minor. For other datasets, our framework consistently 
surpasses Apollo across different SR values. This d emonstrates the effectiveness
of our similarity search approach, which enhances data quality and reduces . Φ
prediction errors by identifying relevant datasets .Dr from the data lak e directory
. D. The Adult dataset also highlights our framework’s advantage with increasing 
feature dimensions. Although Apollo achieves better raw speedup due to the 
higher complexity of our framework’s vectorization step, our framework outper-
forms it in amortized speedup. By excluding the reusable vectorization process, it
achieves speed gains of .10% to .60% for most operators. The SR approach, lever-
aging vector embedding representations, enhances operator prediction compared 
to Apollo and achieves greater amortized speedup. However, the similarity search 
method outperforms both Apollo and the SR approac h in prediction accuracy
and amortized speedup, establishing its clear superiority across most datasets
and operator scenarios.

4.4 NumTabData2Vec Evaluation Results 

Table 3. Similarity between vectors of different datasets scenarios

NumTabData2Vec Vector Size Similarity 
.100 . 0.54

.200 . 0.18

.300 .0.16
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Our proposed model, NumTabData2Vec, was evaluated for its ability to dis-
tinguish dataset scenarios based on qualitative differences. For each scenario, . n
random datasets were reduced to 3D vector embeddings u sing PCA, as shown
in Fig. 7, which demonstrates NumTabData2Vec’s ability to distinguish datasets 
with minimal overlap across contexts. Unlike prior methods [22, 24], which focus 
on text or graphs, NumTabData2Vec applies to entire datasets. Table 3 further 
highlights the average cosine similarity between dataset embeddings, showing 
greater dissimilarity as vector dimensions increase. However, results suggest that
dimensions between .100 and .300 are sufficient for accurate distinction, avoiding 
the n eed for larger vector sizes.

To evaluate NumTabData2Vec’s ability to distinguish datasets with varying 
row and column counts, we generated synthetic numerical tabular datasets of
different dimensions and vectorized them. Figure 8 shows datasets with columns 
ranging from three to thirty and rows from ten to one thousand, projected from a
.200-dimensional space to 2D using PCA. Each bullet caption c and r corresponds 
to the columns and rows of the dataset, respectively. Datasets with the same 
number of columns cluster closely in the representation space, and a similar
pattern is observed for datasets with the same number of rows. These results
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indicate that our method effectively distinguishes datasets b ased on size during
vectorization.

To evaluate NumTabData2Vec’s ability to distinguish datasets by distribu-
tion and order, Gaussian noise was added to .l% of tuples in an HPC dataset.
Figure 9 shows the original and noise-modified datasets projected to 2D using 
PCA, with greater noise causing larger shifts in the representation space. This 
demonstrates the model’s effectiveness in capturing distribution differences and
distinguishing datasets based on ordering.

To assess fine-grained distinctions, we repeated the experiment by adding 
Gaussian noise exclusively to the first column of the dataset. Figure 10 shows 
the 2D vector space, where g in the bullet caption indicates the noise level. 
As noise increases, the represen tation shifts further from the original dataset,
though it remains closer than in Fig. 9, with points more tightly grouped in 2D
space.

5 Limitations 

There exist a number of limitations in our work as we described it. In this 
section we briefly highlight them. Firstly, our input datasets comprise records of 
specific size and type (numerical). This currently excludes data with textual and 
categorical attributes, or tables with varying number of features inside a set of 
datasets. Secondly, we currently consider single-input and single-output operator
modelling. Finally, our proposed NumTabData2Vec model for data vectorization
has a performance limitation, as it cannot deal with datasets bigger than about
.3000 tuples. This is mostly a hardware limitation of off-the-shelf GPUs (with at 
most 24GB of memory available for a budget GPU).

6 Conclusion 

In this paper, we presented a novel framework for the modelling of an analytic 
operator (such as a ML algorithm) when a large number of input data is available 
and thus no brute-force execution can be performed. We propose a deep learning
model, NumTabData2Vec, which transforms a dataset to a lower .k-dimensional 
representation space . z. Our framework produces vector embeddings for the input 
datasets using NumTabData2Vec and performs a similarity search to identify 
the most relevant subset of datasets for any unseen input. By modelling the 
analytic operator based on this selected subset, we are able to accurately pre-
dict its output on any given input dataset. In practice, we demonstrated that
our framework can accurately model various common algorithms and compared
favourably against a similar recent framework [9], in both accuracy and speedup. 
Furthermore, we showed that NumTabData2Vec can create different vector rep-
resentations for datasets from different scenarios. We also demonstrated that 
NumTabData2Vec can effectively detect when noise is introduced into a dataset.
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