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Abstract
The massive increase in available data sources among organisations
has generated new challenges for scalable and efficient data ana-
lytics. Selecting the highest-quality datasets for a specific analytics
task can be cumbersome, especially when the number of available
inputs is very large. In this demonstration, we present VEnOM, a
modular modelling system that addresses this challenge: Through
VEnOM, users have high-precision predictions of the result of an
analytics operator for a random input dataset at hand, without
actually executing it. VEnOM leverages dataset similarity and adap-
tive modelling in order to accurately infer operator outputs for
heterogeneous such operators and dataset types through its mod-
ular design. In this demonstration, we showcase the modelling of
multiple operators from the domain of machine learning and graph
analytics that receive tabular and graph datasets as input.
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1 INTRODUCTION
Big data applications face a rapid evolution in the volume, vari-
ety, and velocity of processed data [6]. The selection of “right”
data, that is, by examining the content instead of the size of your
data, improves the quality and performance of big data analytics.
Data-centric Artificial Intelligence (AI) [16] has drawn increasing
interest from researchers. This approach focuses on the quality,
context, and structure of data. By doing so, it enhances data quality
and improves the performance of analytical or machine learning
(ML) algorithms. As the data sources and datasets available in the
data centers of the organizations expand, a challenge emerges: We
must determine which datasets should be selected and passed into
analytic workflows to produce the most accurate results and pre-
dictions. Manually selecting high-quality datasets according to the
organisation’s requirements, which involves having human experts
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process all available datasets, results in low prediction performance
and is time-consuming. Data-centric AI techniques [8], have been
proposed to assist organisations to automate the selection of high-
quality datasets, and improve overall performance.

In previous work [2], a methodology and respective system that
assisted in analytics operator modelling was presented. This work
shifted the complexity of near-exhaustive executions towards the
creation of a similarity matrix among all the datasets. Through
multidimensional scaling (MDS), datasets were mapped into a low-
dimensional space; a small subset is then used as a training set for
the system to model different possible operators.

While this work showed relatively low prediction errors and sig-
nificant speed-ups, the method suffered from two serious shortcom-
ings: Firstly, the similarity matrix construction requires a similarity
function that is effective for a single data metric (i.e., data distri-
bution, order, size, etc.). Secondly, for the consequent MDS to be
efficient, datasets are projected into a low-dimensional dimensional
space (usually less than 7-d), which further decreases the expressive-
ness and flexibility of the models. In contrast, VEnOM introduces
dataset vector representations produced from embeddings accord-
ing to the data types involved [10]. Embeddings convert dataset
objects into complex representations that capture inherent proper-
ties and relationships between the data. As a result, the proposed
system is able to unify and optimize the analytics modelling process-
ing by incorporating variable and accurate lower-dimensional data
representations produced by state-of-the-art embeddings specific
to the type of datasets at hand. Indeed, via utilizing existing embed-
ding methods for documents, tables, images, graphs, etc., VEnOM
can execute its modelling pipeline in a unified and performant
manner.

To demonstrate VEnOM’s aforementioned ability, we incorpo-
rate two diverse data types: Numerical tabular datasets and graphs.
The significance of graph analytics has been well-established in
numerous application domains, such as social network analysis,
bioinformatics, cybersecurity, and recommendation systems. With
VEnOM’s modular design and framework, users are able to approx-
imate a possibly heavy computational analysis by speeding up the
exact evaluation over all graphs.

Modern ML and AI techniques largely aim at improving data
analysis using two major tools: Data Vectorisation andModelling. In-
spired by both, this work proposes VEnOM, an operator modelling
system that is able to effectively predict analytics operator outputs
via their vector embedding representations. VEnOM features a mod-
ular design, allowing different technologies and algorithms to be
incorporated into its pipeline. Given a (possibly large) number of
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datasets, VEnOM first vectorizes them with the appropriate em-
bedding method. Resulting vectors can be stored locally or inside
a specialized Vector Database (Qdrant [1]) that enhances system
efficiency and scalability. For any given dataset for which we wish
to know an operator’s outcome, a similarity search in the available
vectors is performed. The output of this search is used as a training
set in order to model the operator’s output with high-quality, rele-
vant to the most similar input data available. Dataset embeddings
can be used for modelling different operators, as the process is
purely data- and not algorithm-dependent: As such, this step of our
system is entirely operator-agnostic. Moreover, the embedding size,
similarity algorithm, the size of the resulting similarity search and,
of course, the analytics operator to be modelled are all user-defined
and can be modularly realized. We can thus briefly summarize the
contributions of this system as follows:

• We describe our modelling framework which aims at provid-
ing accurate predictions of analytical task outcomes, given
a plethora of available datasets to be analyzed. Our method
utilizes vector embedding representations in order to satisfy
meaningful, efficient and largely operator- and data-type-
agnostic modelling.

• We showcase a prototype implementation of our system 1

which is highly modular, being able to integrate with differ-
ent storage, embedding, similarity and modelling back-ends.
In this demonstration, we show how VEnOM is able to seam-
lessly operate over tabular numerical and graph data and
tasks, integrating with a Vector Database and offering a
plethora of customization knobs for its users.

2 RELATEDWORK
Our work relates to the areas of operator modeling and dataset
vectorization. Prior works [2, 4] aimed to model analytics operators
by creating a similarity matrix among datasets (both tabular and
graph-based) and projecting it into a lower-dimensional space. Sub-
sequently, an operator was modeled using a small random subset of
these datasets. In contrast, our proposed approach, VEnOM, specifi-
cally focuses on dataset vectorization and employs similarity search
techniques to select datasets of the highest quality for modeling
an operator. The goal of dataset vectorization is to transform a
dataset into a vector of fixed size suitable for input into a machine
learning model. Similar to our approach, Table2vec [17] projects
tabular datasets into vector embeddings by considering not only
intrinsic data characteristics but also other table elements such as
metadata, captions, column headers, and entity embeddings. How-
ever, VEnOM utilizes a custom deep learning architecture explicitly
tailored to vectorize predominantly numerical tabular datasets.

In the case of graph data, significant progress has been made
in developing effective embedding techniques. Many state-of-the-
art methods have drawn inspiration from the Skip-Gram model
(word2vec) [11], which learns word representations based on their
co-occurrence within sentence windows. This idea has been ex-
tended to graphs, leading to methods such as DeepWalk [14], LINE
[15], and node2vec [5], which generate node-level embeddings by
leveraging random walks and network structures. Building on the

1https://github.com/aloizo03/VEnOM-A-Vector-Embedding-Operator-Modelling-
Framework-

success of word2vec, the graph2vec model [13] was introduced to
learn data-driven, distributed representations of entire graphs. Un-
like node-level methods, graph2vec generates a single embedding
vector per graph, enabling its use in a variety of downstream tasks
such as graph classification, clustering, and as input for supervised
representation learning. In this work, we integrate the graph2vec
methodology into the VEnOM framework to enable scalable and
expressive graph-level learning.

3 SYSTEM OVERVIEW
In the following section we provide a brief overview of VEnOM’s
architecture and our framework’s overall pipeline.

3.1 Processing Framework
VEnOM selects the most relevant datasets from a data repository
(referred to as a "data lake") to model real-world operators and
enhance performance. Initially, each dataset 𝐷𝑧 in the data lake
𝐷 undergoes embedding-based vectorization. Using a similarity
search, VEnOM takes a target dataset 𝐷𝑜 (also vectorized) as input,
for which we wish to predict an operator’s outcome, and identifies
the optimal subset of datasets 𝐷𝑟 for modeling the operator Φ. This
subset 𝐷𝑟 is then employed to build a predictive model for Φ (e.g.,
using SVM, ANN, Decision Trees, etc.). The resulting model can
be subsequently queried to predict the outcome Φ(𝐷𝑜 ). Figure 1
illustrates the processing stages of our framework, which comprises
three distinct phases as described in further detail below:

3.1.1 Dataset Vectorisation. VEnOM is designed to handle a vari-
ety of datasets, including structured (tabular) and semi-structured
(graph) types. Utilizing a vector embedding approach, the frame-
work extracts key features from each dataset and represents them as
vectors 𝐷𝑧 in a lower-dimensional space of dimension k. Users can
select from various vectorization models and specify the dimension
of the embedding vectors. Different models can be applied based
on dataset types, allowing analysts to balance between execution
time and operator accuracy according to vector dimensionality. For
tabular numerical datasets, VEnOM employs a custom model that
transforms datasets into vector embeddings of dimension k [10].
VEnOM also provides functionality to store these vectors locally or
in an open-source Vector Database (the Qdrant Vector DB [1]). Ad-
ditionally, our system can handle graph datasets by leveraging the
state-of-the-art graph2vec embeddings [13]. Graph2vec constructs
a vocabulary from rooted subgraphs or neighborhoods around each
node and learns the representations of entire graphs through the
doc2vec skip-gram training process.

3.1.2 Similarity estimation. Once vector representations are stored,
VEnOM can perform various similarity search algorithms to identify
datasets within the data lake 𝐷 that are most similar to the target
dataset 𝐷𝑜 . This phase involves selecting one of several similarity
methods to determine the most suitable datasets for accurate oper-
ator modeling. VEnOM is seamlessly integrated with the Qdrant
Vector DB [1]. As such, the similarity search methods supported by
Qdrant can also be utilized within the VEnOM framework. Integrat-
ing a dedicated Vector DB enhances both the accuracy of similarity
searches and the efficiency of the process, as such systems are
optimized for scalability and performance.
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Figure 1: VEnOM framework architecture

3.1.3 Operator Modelling. Operator modelling is conducted by
selecting one of the available algorithms to create and export an
operator model to a specified filesystem directory. VEnOM offers a
broad range of operator modelling algorithms, including machine
learning methods (e.g., linear/logistic regression, MLP, etc.), clus-
tering algorithms (e.g., DBSCAN, K-Means), and time series models
(e.g., ARIMA, Holt-Winters). For graph datasets, VEnOM currently
supports modelling the following graph-based operators: Between-
ness Centrality (BC), Edge Betweenness Centrality (EBC), Closeness
Centrality (CC), Eigenvector Centrality (EC), and PageRank (PR). To
model an operator, the user must select the appropriate algorithm
and specify the target directory where the model will be stored for
future reuse.

3.2 Initial Results
Our initial evaluation of the framework assesses both prediction
accuracy and runtime efficiency. Prediction accuracy is measured
using the Mean Absolute Error (MAE) loss function. Runtime effi-
ciency is assessed through Amortized Speedup, which incorporates
the one-time cost of vectorizing the entire data lake and accounts for
reuse across multiple operator modeling tasks, as discussed in [10].
For the evaluation presented here, we focus on two datasets: the
Household Power Consumption (HPC) dataset [7], which comprises
401 datasets with measurements of electric power consumption in
a household in Sceaux, France; and the Weather dataset [3], which
contains hourly weather measurements from 36 U.S. cities spanning
the years 2012 to 2017. For the HPC dataset, we modelled the Linear
Regression (LR) operator using three vector dimension sizes (100,
200, and 300), employing Euclidean distance as the similarity metric.
For the Weather dataset, we modelled the Multilayer Perceptron
(MLP) operator across the same set of vector dimensions (100, 200,
and 300), and employed cosine similarity for similarity search.

Table 1: VEnOM evaluation results

Dataset
Name Operator Similarity

Metric
Vector
Size MAE Amortized

Speedup
Household
Power

Consumption
Linear Regression Euclidean

100 8.02 3.85
200 5.29 2.45
300 5.24 1.99

Weather Multilayer Perceptron Cosine
100 8.28 14.64
200 12.76 4.5
300 4.3 1.64

COLLAB PageRank K-Means 128 0.10 16.98

For graph data, we conducted experiments using the PageRank
operator over the COLLAB dataset provided by [12]. The COLLAB
network is a scientific collaboration dataset derived from three
public collaboration sources [9], specifically High Energy Physics,
Condensed Matter Physics, and Astro Physics. The dataset com-
prises 5,000 graphs, with an average of 74.49 nodes and 2,457.78
edges per graph. Table 1 presents our findings in the three cases
described.

4 DEMONSTRATION SCENARIO

Figure 2: Windows for similarity search

In this section we follow the steps taken in our system’s UI
in order to demonstrate VEnOM. The user may upload various
collections of datasets (tabular data or graphs) to the system using
the web UI, and each dataset in the collection is vectorized into a
dimension selected by the user. Subsequently, the vectors are saved
and reused in later pipeline phases. Our framework is deployed in
a AWS EC2 virtual machine with eight 2nd Generation Intel Xeon
Scalable Processors (Cascade Lake P-8259CL), 32GB RAM memory,
and one T4 Tensor Core GPU 16GB.

When using our system, an analyst can follow the steps as de-
scribed in Section 3.1. In Figure 2, the individual phases of the
system are shown with grey colour. The "Load Data" tab enables
the user to upload a dataset repository. In the "Vectorization" tab,
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the user is prompted to select a vectorization method as well as the
dimension of the embedding. Then, in the "Similarity Search" tab,
as shown in Figure 2 for demonstration purposes, the most relevant
to the input (query) datasets are identified. In the final step, the
"Operator Modelling" tab will model and output an operator that the
user has selected. Additionally, the "Task" tab allows users to view
all asynchronous process phases and monitor the progress of each
assigned task. When a new pipeline task is issued, the back-end
processes the request asynchronously as the user navigates the
application’s UI. All executing pipeline tasks and their status can
be tracked from the system tabs as mentioned above.

Figure 3: 3-D Similarity Search Dataset Vector Embedding
Representation

As the similarity estimation plays a crucial role in VEnOM’s
framework, we illustrate the output of that tab in Figure 3. After
the analyst chooses all the necessary options in the "Similarity
Search" tab, the vector embedding representation of each dataset is
projected from the k-dimensional plane to a 3-d plane. Looking at
Figure 3, with orange colour the user can overview all the available
datasets from the data lake. With purple colour, the analyst distin-
guishes her input dataset and with blue, the datasets output from
the similarity search operation. The closer a dataset is, the more
intense its colouring.

Having uploaded a dataset, calculated the similarity search, and
identified bymeans of a similarity search the highest quality datasets
for modelling, the analyst finally chooses an operator/algorithm
to infer its output. The prediction is promptly shown, including
the error of the modelled operator, graphs with various statisti-
cal error/accuracy measurements such as MaPE, RMSE, MAE, and
the speedup of our technique. As a result, the user can do a more

in-depth examination of the modelled operator and the chosen
parameters.
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