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Abstract. We present IReS, the Intelligent Resource Scheduler that is
able to abstractly describe, optimize and execute any batch analytics
workflow with respect to a multi-objective policy. Relying on cost and
performance models of the required tasks over the available platforms,
IReS allocates distinct workflow parts to the most advantageous exe-
cution and/or storage engine among the available ones and decides on
the exact amount of resources provisioned. Moreover, IReS efficiently
adapts to the current cluster/engine conditions and recovers from fail-
ures by effectively monitoring the workflow execution in real-time. Our
current prototype has been tested in a plethora of business driven and
synthetic workflows, proving its potential of yielding significant gains in
cost and performance compared to statically scheduled, single-engine ex-
ecutions. IReS incurs only marginal overhead to the workflow execution
performance, managing to discover an approximate pareto-optimal set
of execution plans within a few seconds.

1 Introduction

Over the last two decades, a plethora of diverse execution engines and datastores,
both centralized and distributed, have emerged to cope with the challenges posed
by the volume, velocity and variety of Big Data and the analysis thereof (e.g., [2,
3, 1, 8], etc.). In the course of time, Big Data analytics platforms become faster,
more efficient and sophisticated, but also more specialized, excelling at certain
types of data and processing tasks. Moreover, although many approaches in
the relevant literature manage to optimize the performance of single engines by
automatically tuning a number of configuration parameters (e.g., [26, 31]), they
bind their efficacy to specific data formats and workloads.

However, there is no one platform to rule them all: No single execution model
is suitable for all types of tasks and no single data model is suitable for all
types of data. Thus, the task of architecting an analytics environment that best
suits specific scientific or business needs can be frustrating to prospective users.
Especially when having to orchestrate long and complex processing pipelines that
contain diverse operators and crunch multiple data formats from various sources,
analysts can easily go down the wrong technology path. Modern business logic
and scientific simulations are encoded into workflows that include a multitude
of diverse tasks. Such tasks range from simple Select-Project-Join (SPJ) and
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data movement to complex NLP-, graph- or custom business-related tasks over a
variety of data formats and origins, such as relational data from a legacy DBMS,
key-value pairs from a NoSQL cluster, graph data, etc. To add insult to injury,
such workflow execution may involve multiple and often conflicting constraints,
including time, cost, resource utilization and other execution aspects.

To help address such challenges, many organizations are deploying multiple
platforms to handle different parts of their data and workflows (e.g., Facebook
[12], Twitter [11], Uber [27], etc.). Even cloud vendors currently offer software
solutions that incorporate a multitude of processing frameworks, data stores and
libraries to alleviate the burden of managing multiple installations and configu-
rations (e.g., [5, 6, 10]). The new paradigm of multi-engine analytics [36] has re-
cently been proposed as a promising solution that can abstract away the specifics
of the underlying platforms and hide the details of how and where each task is
executed. This approach aims to unify runtimes and storage backends and pro-
mote a declarative way of specifying and executing processing tasks on arbitrary
datasets. One of the most compelling, yet daunting challenges in a multi-engine
environment is the design and creation of a meta-scheduler that automatically
allocates workflow subtasks to the right engine(s) according to multiple criteria,
deploys and runs them without manual intervention.

Related work mostly revolves around storage engines. Traditional data fed-
eration approaches (e.g., [32, 35]) solely focus on SQL analytics, while modern
ones [28] consider data lake scenarios where historical data stored in HDFS are
combined with operational data residing in OLTP systems or NoSQL stores.
Polystores, on the other hand, migrate data across various data stores, creating
additional load (e.g., [16, 21, 38]). Very few recent approaches exist for both data
and execution engines, which are either proprietary tools with limited applica-
bility and extension possibilities for the community (e.g., [34]) or focus more on
the translation of scripts from one engine to another, being thus tied to specific
programming languages and engines (e.g., [23, 13]). Contrarily, we would ideally
opt for a solution that i) adopts a declarative approach for expressing workflows,
ii) is able to accommodate new platforms, implementation languages and tools
as they emerge or as business needs change, iii) supports multiple optimization
goals, iv) executes workflows in a fail-safe manner and v) is open-source.

To this end, we design and implement IReS [19, 20], the open-source Intelli-
gent Multi-Engine Resource Scheduler3 that acts as an “umbrella” for multiple
execution engines and datastores, allowing for their seamless integration in the
context of a single analytics workflow. IReS handles the whole life cycle of a
workflow, from its declarative description to its optimization, planning, execu-
tion and monitoring in a transparent to the user way, masking the specifics of
the underlying platforms.

Given a high-level description of the analytics tasks and data at hand using
an extensible meta-data framework, IReS is able to optimize, schedule, execute
and monitor any workflow that contains them. First, IReS models the cost and
performance characteristics of the required tasks over the available platforms in

3 https://github.com/project-asap/IReS-Platform
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an offline manner. Based on the produced, incrementally updatable models, the
planner of IReS is able to map distinct parts of a workflow to the most advan-
tageous store and execution engine and decide on the exact amount of resources
provisioned in order to optimize any multi-objective, user-defined policy. The re-
sulting optimization is orthogonal to (and in fact enhanced by) any optimization
effort within an engine. Finally, IReS executes the optimized workflow, efficiently
adapting to the current cluster and engine conditions and recover from failures
by effectively monitoring the workflow execution in real-time.

In this paper we thoroughly present IReS and its internals, delving into the
design and implementation details of its modules. Our key contributions are:

– A multi-engine planner that selects the most prominent workflow execution
plan among existing runtimes, datastores and operators and elastically provi-
sions the correct amount of resources, based on cost and performance estima-
tions of the various operators over the available platforms.

– A modelling methodology that provides performance and cost estimations of
the available analytics operators for different engine configurations. The result-
ing models are utilized by the planner for multi-engine workflow optimization.

– An execution layer that enforces and monitors the selected multi-engine exe-
cution plan, allowing for fine grained resource control and fault tolerance.

– An extensible meta-data description framework for operators and data, which
allows for declarative workflow description and automatic discovery of all al-
ternative execution paths.

– An extensive evaluation of our open-source prototype operating over both
real-life and synthetic workflows. The results prove that IReS is able to i)
efficiently decide on the best execution plan based on the optimization policy
and the available engines within a few seconds, even for large-scale workflow
graphs and multiple optimization objectives, ii) tolerate engine and hardware
failures and, most importantly, i) speed-up the fastest single-engine workflow
executions by up to 30% by exploiting multiple engines.

2 IReS Architecture

IReS follows a modular architecture, as depicted in Figure 1. IReS comprises
three layers, the Interface, which serves as the point of interaction with the
outside world, the Optimizer, which constructs the execution plan that best
serves the current business objectives and the Executor, which enforces it. In the
following, we describe in more detail the role, functionality and internals of these
layers, delving into the specifics of the most important modules of the platform.

2.1 Interface Layer

The Interface layer is responsible for handling the interaction between IReS and
its users. It allows users to declaratively describe execution artefacts such as
operators, data and workflows, along with their inter-dependencies, properties
and restrictions using a unified description framework. It thus enables the user
to focus on what she wants to achieve rather than how to achieve it, abstracting
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Fig. 1: Architecture of the IReS platform.

away the details and specifics of underlying platforms. The user-provided work-
flow is parsed as a dependency graph by the Parser and is handed over to the
IReS Optimizer along with the user-defined optimization policy.

The IReS description framework sets the guidelines for recording all the in-
formation necessary to define and plan a workflow. The two core entities of the
framework are data and operators, which are connected in directed graphs to
form workflows. Both data and operators need to be accompanied by a set of
metadata, i.e., properties that describe them. Data and operators can be ei-
ther abstract or materialized. Abstract operators and datasets are defined and
used when composing a workflow, whereas materialized ones refer to specific
implementations and existing datasets and are usually provided by the operator
developer or the dataset owner respectively. For instance, an abstract operator
could simply signify that tf-if is applied on one input dataset and provides one
output dataset, while a materialized operator is tied to a specific implementation
of tf-idf in Spark/MLlib. Materialized operators, along with their descriptions,
are stored in the Operator library (Figure 1). The role of IReS is to eventu-
ally map the abstract operators and datasets to materialized ones based on the
compliance of their metadata, in order to provide a tangible execution plan.

The metadata that describe operators, such as input types, execution param-
eters, etc., and data, such as schemata, location of objects, etc., are organized in
a generic tree format. To allow for flexibility, only the first levels of the metadata
tree are pre-defined. Users can add their ad-hoc subtrees to define custom data
or operator properties. Some fields, mostly the ones related to operator and data
requirements, such as the number of inputs/outputs of an operator or the for-
mat of a dataset, are compulsory, since the workflow planning and execution is
impossible without them. The rest, e.g., cost models, statistics, etc. are optional :
They either serve as extra matching fields for more fine-grained execution plan-
ning or they provide additional hints to facilitate the adherence to the workflow
optimization policy. Most metadata fields of abstract data and operators are
optional, to allow for any desired level of abstraction. Moreover, they support
regular expressions. In general, we pre-define the following metadata fields:
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#Reviews
Constraints.Engine.FS=HDFS
Constraints.type=text
Execution.path=hdfs:///user/ires/data
Optimization.documents=2000

#tf-idf
Constraints.Input.number=1
Constraints.Output.number=1
Constraints.OpSpecification.Algo=tf-idf

Fig. 2: Metadata description of (a) the dataset and (b) an abstract tf-idf operator.

Constraints , which contain the information required to discover all possible
execution plans that correspond to the abstractly defined workflow. This dis-
covery entails the matching of (a) abstract operators to materialized ones and
(b) data to operators in the corresponding metadata fields. Mandatory fields
include specifications of operator inputs/outputs, algorithms implemented and
underlying engines.
Execution , which provides (a) the execution parameters of a materialized
operator, such as the path of its executable or the required execution arguments,
and (b) access info of a materialized dataset, such as its path.
Optimization ,which is optional and holds additional information that assists
in the optimization of the workflow. This information may include a perfor-
mance/cost function provided by the developer of a materialized operator or
dataset statistics (e.g., number of documents in a dataset) provided by its owner.
In case a performance/cost function is not a priori known, optimization meta-
data fields provide IReS with instructions on how to create one by profiling over
specific metrics, such as execution time, required RAM, etc. More details on the
profiling process can be found in Section 2.2.

As a motivating example, imagine an e-commerce website that decides to
summarize reviews for a specific product, i.e., perform tf-idf over the corpus of
the product reviews, followed by a k-means clustering. First, the input dataset,
Reviews, needs to be described as depicted in Figure 2(a): It is a text file stored
in HDFS, as recorded in the Constraints.type and Constraints.Engine.FS

fields respectively, following the path specified by the Execution.path field.
The information under Optimization tracks down the number of documents
contained in the dataset. This information will be used during the planning
phase (see Section 2.2) to help obtain more accurate performance and cost esti-
mations for the operators using Reviews as input. Then, we need to specify the
operations to be performed. In its most abstract form, the tf-idf operator (see
Figure 2(b)) just needs to define the number of input/output parameters as well
as the implemented algorithm (under OpSpecification.Algo). The same holds
for the k-means operator.

We assume that the IReS operator library already contains two materialized
tf-idf operators, one in Python/scikit and one in Spark/MLlib, provided by the
company developers. The metadata of the materialized operators include all in-
formation required in order to execute the operations on an engine. For instance,
the description of the tf-idf_spark materialized operator in Figure 3(a) states
that this is a Spark implementation (l. 8) of the tf-idf algorithm (l. 7) that reads
its input from HDFS (l. 3) in the form of a text file (l. 4) and outputs its re-
sults in HDFS (l. 6). The operator is executed via a shell script (l. 12), having
the path of the input file as an execution argument (l. 10). The Optimization

metadata designate time and cost as possible optimization objectives of the spe-



6 Katerina Doka et al.
1 #tf-idf_spark
2 Constraints.Input.number=1
3 Constraints.Input0.Engine.FS=HDFS
4 Constraints.Input0.type=text
5 Constraints.Output.number=1
6 Constraints.Output0.Engine.FS=HDFS
7 Constraints.OpSpecification.Algo=tfidf
8 Constraints.Engine=Spark
9 Execution.Arguments.number=1

10 Execution.Argument0=In0.path
11 Execution.Output0.path=$HDFS_OP_DIR/tfidf
12 Execution.script=tf-idf_spark.sh
13 Optimization.model.execTime=AbstractWekaModel
14 Optimization.inSpace.In0.documents=Int,1000,10000,50000
15 Optimization.inSpace.cores=Double,2.0, 4.0, 16.0
16 Optimization.model.cost=UserFunction
17 Optimization.cost=In0.documents*4096.0

1 #tf-idf_scikit
2 Constraints.Input.number=1
3 Constraints.Input0.Engine.FS=localFS
4 Constraints.Input0.type=text
5 Constraints.Output.number=1
6 Constraints.Output0.Engine.FS=localFS
7 Constraints.OpSpecification.Algo=tfidf
8 Constraints.Engine=Python
9 Execution.Arguments.number=...

Fig. 3: Metadata description of tf-idf operator in (a) Spark/MLlib and (b) python.

cific operator (l. 13, l. 16). Execution time estimations are provided by a model
(l. 13), which is constructed by the IReS profiler/modeler as instructed in l. 14-15,
through a process which will be described subsequently, while cost estimations
are given by a developer-provided function (l. 16-17). The tf-idf_scikit ma-
terialized operator is described similarly (see Figure 3), indicating Python as the
implementation engine (l. 8) and the local filesystem as the input source (l. 3).

To discover the actual tf-idf implementations that match the abstract tf-idf
operator and comply with the Reviews dataset, we employ a tree matching
algorithm to ensure that all compulsory fields match. This is performed dur-
ing planning and optimization, described subsequently. In our example, both
tf-idf_scikit and tf-idf_spark match tf-idf in the fields designated in
blue. Moreover, the Reviews dataset can be directly used as input to tf-idf_spark,
as the matched metadata fields in red suggest. Thus, tf-idf_spark is consid-
ered when constructing the optimized execution plan. tf-idf_scikit cannot
operate on Reviews as is, since the fields in red do not match: tf-idf_scikit
reads from the local filesystem while Reviews is stored in HDFS. However, we
will see in the next Section how we can circumvent this incompatibility.

2.2 Optimizer Layer

The Optimizer layer is responsible for optimizing the execution of an analytics
workflow with respect to the policy provided by the user. The core component of
this layer is the Planner, which determines the execution plan that best satisfies
the - possibly multiple - user objectives in real-time. This entails deciding on
where each subtask is to be run, under what amount of resources provisioned
and whether data need to be moved to/from their current locations and between
runtimes (if more than one is chosen).

Such a decision must rely on the characteristics of the analytics tasks that
reside within the IReS Operator library. To that end, each operator is mod-
eled and the corresponding models are stored in the IReS ML models library.
The initial model of an operator results from the offline profiling of it using
the Profiler/Modeler module, which directly interacts with the pool of physical
resources and the monitoring layer in-between. Moreover, while the workflow is
being executed, the initial models are refined in an online manner by the Model
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Refinement module, using monitoring information of the actual run. This mech-
anism allows for dynamic adjustments of the models and enables the Planner to
base its decisions on the most up-to-date knowledge.

IProfiler/Modeler: While accurate models do exist for relational operators
over RDBMSs, which usually include their own cost-based optimizer, this is not
the case for other analytics operators (e.g., natural language processing, machine
learning, graph processing, etc.) and modern runtimes (be they distributed or
centralized): Only a very limited number of operators and engines has been
studied, while most of the proposed models entail knowledge of the code to be
executed (e.g., [39, 33]). Moreover, there is no trivial way to compare or correlate
cost estimations derived from different engines at a meta-level.

To that end, we adopt an engine-agnostic approach that treats material-
ized operators as “black boxes” and models them using profiling and machine
learning. The profiling mechanism adopted builds on prior work [22]. Its input
parameters fall into three categories: (a) data specific, which describe the data
to be used for the operator profiling (e.g., type and size, dimensionality, distri-
bution, etc.), (b) operator specific, which relate to the algorithm of the operator
(e.g., number of output clusters in k-means, number of iterations in pagerank,
etc.), and (c) resource specific, which define the resources to be tweaked during
profiling (e.g., cluster size, main memory, etc.). The sampling of the configuration
space follows an adaptive approach, picking the most representative instances of
the deployment space to achieve high accuracy given a certain budget of runs.

The output is the profiled operator’s performance and cost (e.g., completion
time, average memory, CPU consumption, etc.) under each combination of the
input parameter values. Both the input parameters as well as the output metrics
are specified by the user/developer in the materialized operator’s metadata (Fig-
ure 3, l. 14-15). The collected metrics are then used to create estimation models,
making use of neural networks, SVM, interpolation and curve fitting techniques
for each operator running on a specific engine. The cross validation technique
[29] is used to maintain the model that best fits the available data.

IModel Refinement The offline produced models assure the system a warm
start, as they can provide accurate cost and performance estimations from the
very first workflow planning. However, as the system is put to use, online mea-
surements of executing tasks can contribute to the increase of the models’ pre-
diction accuracy and to the better adjustment to the current conditions. Upon
execution of a workflow, the currently monitored execution metrics provide feed-
back to the existing models in order to refine them and capture possible changes
in the underlying infrastructure (e.g., hardware upgrades) or temporal degra-
dations (e.g., due to unbalanced use of engines, collocation of competing tasks,
surges in load etc.). This mechanism contributes to the adaptability of IReS,
ameliorating the accuracy of the models while the platform is in operation.

IPlanner This module, in analogy to traditional query planners, intelligently
explores all the available execution plans to discover the (near-)optimal one with
respect to the user-defined, possibly multiple optimization objectives.
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The Planner’s input is the abstract workflow graph, expressed as a DAG of
operator and data nodes. As a first step, for each abstract operator of the input
workflow the Planner needs to explore the IReS Operator library to discover all
matching materialized operators, i.e., operators that share the same metadata.
To speedup this procedure, we use string labelled and lexicographically ordered
metadata trees, which allow for efficient, one pass tree matching. The matching
is performed by simultaneously iterating over both trees using a recursive merge
procedure to match children nodes. The complexity of matching two metadata
trees with up to t nodes is O(t). We further improve the matching procedure
by indexing the IReS library operators using a set of highly selective metadata
attributes (e.g., algorithm name). Only operators that contain the correct at-
tributes are considered as candidate matches and are further examined.

The discovery of the best materialized operator combinations out of all fea-
sible ones that simultaneously optimize more than one execution criterion, e.g.,
both execution time and memory utilization, translates to a multi-objective op-
timization problem that, in the case of conflicting objectives, has a possibly large
number of pareto-optimal solutions.

A simplistic algorithm would exhaustively try all possible combinations and
check their validity by consulting the input/output specifications of the mate-
rialized operators and datasets. In case an input dataset can not be used as
is by a materialized operator, or if subsequent operators are incompatible in
their input/output formats, the Planner searches the IReS library for auxiliary
operators, which can be interposed to ”glue” different engines. Such auxiliary
operators include move and transformation operations (e.g., the copyToLocal
and copyFromLocal mechanisms of HDFS, which move datasets from HDFS to
the local filesystem and vice versa), are provided by the developers and treated
as common materialized operators. Thus, invalid combinations are those that
contain incompatible elements for which no auxiliary operator exists that can
render them compatible.

After the elimination of invalid combinations, the objective functions for each
valid one should be evaluated based on the prediction models of the involved
operators, including the auxiliary ones. Finally, the algorithm should return
the combinations that provide the pareto-optimal solutions that minimize or
maximize the objective functions.

While such a naive algorithm would provide optimal solutions, it would only
be practical for small workflow instances. Assuming a workflow graph of n ab-
stract nodes and m materialized matches for each of them, the complexity of the
algorithm is O(mn) , meaning that the size of combinations to be checked grows
exponentially with the number or workflow nodes. Thus, to be able to accom-
modate large and complex workflow instances within a reasonable time-frame,
we opt for a heuristic planning algorithm, H-Planner, which relies on genetic
algorithms to find near-optimal solutions.

More specifically, H-Planner uses NSGA-II [18], the most prevalent evolu-
tionary algorithm that has become the standard approach to generating pareto-
optimal solutions to a multi-objective optimization problem. All candidate ma-



Multi-Engine Analytics with IReS 9

Fig. 4: Materialized workflow and optimal plan.

terialized operators of each abstract one are provided as input to the algorithm.
NSGA-II initially creates random permutations of the input, i.e., different combi-
nations of materialized operators, validates them, adding - if necessary - auxiliary
operators, and evaluates for each of them a set of scores. This set contains the
aggregate of the estimations of all involved operators for each objective function
(consulting the models). Combinations that best fit the optimization criteria are
selected and their crossover, along with some mutations (i.e., small changes at
random), are provided as input to the next iteration of NSGA-II. After a fixed
number of iterations or if no significant progress is achieved, the process results
in a set of approximate pareto-optimal execution plans.

In the special case of (1) a single optimization objective and (2.a) work-
flows that exhibit compatibility of input/output operator specification or (2.b) a
linear structure, we can employ a more accurate and efficient algorithm, the DP-
Planner, which relies on dynamic programming (DP) to select the truly optimal
execution plan. The aforementioned conditions are deemed necessary to guar-
antee the principle of optimality: When all workflow operators are compatible,
i.e., use the same input/output format and engine, or when the workflow does
not contain operators that branch and merge again at any point, we can ensure
that optimizing each step of the workflow will result in the optimization of the
entire workflow. As Big Data workflows commonly use HDFS as their common
data substrate and often follow simple linear structures, we believe that this
algorithm can find application in many practical cases.

The abstract workflow of our motivating example performs tf-idf feature-
extraction over Reviews and clusters the output using k-means. Assuming each
operator has two implementations, using either Spark/MLlib or Python/scikit,
we have the possible alternative execution plans of Figure 4. Note that the
Planner automatically adds the necessary move operators in order to match
Reviews, which resides in HDFS, with tf-idf_scikit, which reads from the
local filesystem, and transfer intermediate results between the two engines (i.e.,
match the output of an operator to the input of the subsequent one).

Let us assume an optimization policy that targets execution time minimiza-
tion. Intuitively, small datasets run faster in a centralized manner while dis-
tributed implementations prevail for bigger datasets. Indeed, the Python imple-
mentation is estimated to be the fastest for both steps, even with the additional
cost of transferring data from HDFS to the local filesystem, due to the small
input size and is thus included in the selected execution path, marked in green.

IResource Provisioning Apart from deciding on the specific implementa-
tion/engine of each workflow operator, the Planner of IReS aims to provision the
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correct amount of resources so that the workflow execution conforms as much
as possible to the user-defined optimization policy. The possible resource-related
parameters that need to be defined include, for instance, the number of cores or
the amount of memory which will be allocated to the execution of a material-
ized operator. The resource provisioning process builds again on the NSGA-II
genetic algorithm: The range of possible values for each resource-related param-
eter is provided as input to the genetic algorithm and various combinations of
them are iteratively tested to discover the one that achieves local optima of the
trained models. The estimated parameter values are passed as arguments to the
workflow execution during run-time.

2.3 Executor Layer
The Executor layer is the layer that enforces the optimal plan over the physical
infrastructure. Its main responsibilities include the execution of the ensuing plan,
a task undertaken by the Enforcer, and the assurance of the platform’s fault
tolerance, carried out by the Execution Monitor.
IEnforcer The Enforcer orchestrates the execution of the materialized opera-
tors, over the appropriate platforms and resources, as chosen by the Planner. The
enforcer adopts methods and tools that translate high level “start runtime under
x amount of resources”, “move data from site Y to Z” type of commands to a
series of primitives as understood by the specific runtimes and storage engines.
Such actions might entail code and/or data shipment, if necessary.

Our working prototype relies on YARN [37], a cluster management tool that
enables fine-grained, container-level resource allocation and scheduling over var-
ious processing frameworks. Apart from requesting from YARN the necessary
container resources for each workflow operator, the enforcer needs to pay special
attention to the workflow execution orchestration. To that end, IReS extends
Cloudera Kitten [7], a set of tools for configuring and launching YARN contain-
ers as well as running applications inside them, in order to add support for the
execution of a DAG of operators instead of just one. Concisely, each workflow
is deployed over the physical resources as a YARN application: An application
master container is launched to coordinate all containers required to execute
each workflow operator. The number and size of those containers are designated
by the Planner’s resource provisioning mechanism.
IExecution Monitor This module captures failures that might occur, both at
node and engine levels, on-the-fly through real-time monitoring. Thus, it ensures
the availability and fault tolerance of the system by employing two mechanisms:

– A node health check mechanism provided by YARN, which monitors the health
status of the underlying infrastructure by periodically executing customizable
and parametrized scripts in all cluster nodes. The health check script may
include rules for the per node usage of memory, CPU, network, etc. Any node
failing to adhere to the script rules is characterized as unhealthy. For instance,
a health script may check a node’s current memory usage and report the node
as unhealthy if it exceeds 95%. The health status (HEALTHY/UNHEALTHY
state per cluster node) is reported back to the IReS server. No execution will
be scheduled to unhealthy cluster nodes.
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Table 1: Operators with their associated engines

Operator Compute Engine(version)/Data Engine
PageRank Spark(2.1.1)/HDFS, Hama(0.7.1)/HDFS, Java(1.8)/localFS)
k-means Spark(2.1.1)/HDFS, Python scikit-learn(1.19.0)/localFS
tf-idf Spark(2.1.1)/HDFS, Python scikit-learn(1.19.0)/localFS
UserProfiling Spark(2.1.1)/HDFS
Classifier Spark(2.1.1)/HDFS
tokenization Spark(2.1.1)/HDFS, Java Stanford CoreNLP(3.9.0)/localFS
stop-word removal Spark(2.1.1)/HDFS, Java Stanford CoreNLP(3.9.0)/localFS
sentence detection Spark(2.1.1)/HDFS, Java Stanford CoreNLP(3.9.0)/localFS

– A service availability check mechanism that examines the availability of all
engines needed for the enforcement of an execution plan. Essentially, a dae-
mon running on the YARN application master container periodically pings
the available services and stores their status (ON/OFF) in memory. This in-
formation is served, whenever needed, to the IReS Planner. The period of the
availability check is customizable, currently set to 5 seconds.

This information is used during the phases of both planning and execution
of a workflow: During workflow planning, unavailable engines are excluded
when constructing the optimal execution plan and resources are provisioned
exclusively taking into account the currently healthy ones. During workflow
execution, engine failures are detected in real-time. When failures affect an
operator’s execution, the workflow enters a REPLANNING state, which triggers
the following steps: (a) The operator currently running is stopped and all subse-
quent operators pending for execution are cancelled; (b) The YARN application
master checks for the existence of any intermediate materialized datasets and
determines which part of the workflow needs to be re-scheduled for execution;
(c) The Planner is invoked to select the new execution plan of the remaining
workflow; (d) The new plan is enforced.

As a checkpointing mechanism, IReS persists in HDFS the output of suc-
cessfully executed operators. Taking advantage of any intermediate materialized
data, it effectively reduces the workflow part that needs to be re-scheduled.

3 Experimental Evaluation

Our prototype is implemented in Java 1.8 and uses the YARN scheduler and
the Cloudera Kitten 0.2.0 project for the management of the deployed compute
and data engines. IReS is open-source and available on GitHub. In the following
experiments, IReS orchestrates a number of runtimes and data stores presented
in Table 1. For all engines, we maintain the default configuration. Both our
multi-engine framework and the available engines are deployed over a 8-node
cluster, where each node features eight Intel(R) Xeon(R) CPU E5405 @ 2.00GHz
cores and 8 GB of main memory. In our experiments, we make the assumption
that there is only one workflow executing at any given time. The scheduling of
multiple concurrent workflows is a subject of future work.

IWorkflows and Data. For our experiments we use both real and synthetic
workflows. Real workflows are driven by actual business needs and have been
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specified in the context of the EU-funded ASAP project4. They cover complex
data manipulations in the areas of telecommunication analytics and web data an-
alytics, provided by a large telecommunications company and a well-known web
archiving organization respectively. The tasks involved include machine learning
(ML), graph processing and natural language processing (NLP) operators (see
Table 1) over datasets that consist of anonymized telecommunication traces and
web content data. By selecting workflows that cover different and representa-
tive areas (ML, graph, text) of Big Data applications, we showcase the general
applicability of our framework.

Synthetic workflows are used for stressing our system in terms of workflow
size and complexity and evaluating various aspects of it in a controlled manner.
They include workflows produced by the Pegasus workflow generator [15], as
well as sequential workflow topologies. The Pegasus-generated workflow graphs
fall into four scientific workflow categories (Montage, CyberShake, Epigenomics
and Inspiral) and contain patterns derived from different scientific application
domains, such as astronomy, biology, gravitational physics and earthquake sci-
ence. All these graphs present complex topologies, where nodes have high in-
and out-degrees. Montage is the most complex workflow to process, as it is the
most interconnected one, while Epigenomics and Inspiral contain more sequential
patterns that render processing easier.

3.1 Execution of Real-life Workflows

In this set of experiments, we use IReS to optimize the execution of real-life
applications in a multi-engine environment. We assume a single optimization
objective, minimizing execution time. The execution time of the plan produced
by IReS is compared against that of the whole workflow exclusively running on a
single engine. The goal for IReS is to discover execution plans at least as efficient
as the fastest single-engine choice (plus a small overhead). As the combination of
different engines within the same plan reveals chances for further optimization,
there exist cases where IReS outperforms the fastest single engine alternative.
IInfluencer Detection. The first application, derived from the telecommu-
nication analytics domain, calculates the influence score of a subscriber on a
telecommunications network (to be used in a recommendation system). Data
input is in the form of csv call detail records (CDR). For solving the problem,
we first model the CDR data as a graph: Each customer (i.e., phone number)
represents a vertex and each call corresponds to an edge. This way, we can di-
rectly apply the Pagerank algorithm. The available execution engines are: (i)
Spark, (ii) Hama and (iii) a centralized Java implementation.

Figure 5.a depicts the execution time of the workflow for various graph sizes
when executed over the available engines and when IReS is used. As expected,
the centralized (Java) implementation outperforms the others for small-scale
graphs. However, as input size grows and exceeds the memory limits of a single
node, this approach fails. Distributed platforms expose a different behavior. They

4 ASAP (Adaptive Scalable Analytics Platform) envisions a unified execution frame-
work for scalable data analytics. www.asap-fp7.eu/
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Fig. 5: Execution times for the (a) Influencer Detection, (b) Tourism Observation and
(c) Document similarity workflows vs. various input sizes.

incur overheads for small graphs but scale well for larger datasizes. The Hama-
based implementation achieves good performance for medium-sized graphs, but
as it relies on a distributed main-memory execution model, it also seizes to scale
when the graph cannot fit in the aggregate memory of the cluster. The important
thing to note is that IReS always adopts the fastest implementation alternative,
depending on the input size: For small data sizes, IReS picks Java for executing
the workflow; Hama is selected for graphs with over 1M edges while Spark is the
platform of choice for large graphs having more than 10M edges. The workflow
optimization algorithm and the YARN-based execution incur a small overhead,
which is more visible when the overall workflow execution time is limited, i.e.,
for small data sizes. As data size grows, this overhead is amortized and can be
considered almost negligible.

ITourism Observation. This application builds a tourism observation service
based on CDR data. The workflow consumes two datasets: (i) the CDRs and
(ii) a dataset that maps the GSM cells of the mobile network to geographical
regions. Both datasets reside in HDFS. The first operator, called user profiling,
joins the two datasets and outputs records that encode the temporal behaviour
of users. These vectors are subsequently clustered by a k-means algorithm to
discover typical calling behaviours. Both the user profiles and the clusters are
finally handed over to a proprietary classification algorithm that labels the calling
behaviours and returns the percentage of each label in each spatial region. For
example, we can deduce that in New York, 75% of the callers are residents and
25% commuters. For all the operators, IReS chooses between two alternative
implementations: (i) a centralized Python code based on the scikit-learn library
(ii) a Spark job based on the MLlib library.

Figure 5.b plots the workflow execution time as the size of the CDR dataset
increases. The centralized implementation performs better than Spark for CDR
datasets smaller than 1GB while Spark scales better as size grows. IReS always
adapts to the fastest engine. When the join selectivity of the user profiling oper-
ator is high, leading to small join results, IReS opts for a hybrid execution plan,
selecting the Spark implementation for the first operator and the centralized
Python implementations for the remaining two. This way, for large datasets,
IReS manages to outperform even the best single-engine execution.

IDocument Similarity. This application, which falls into the web data ana-
lytics category, aims to cluster similar documents together. The input dataset,
provided by a large, European web archiving organization, comprises text files
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Fig. 6: Optimization time vs. workflow size, 4 engines/operator: (a) Single-objective
optimization with DP-Planner (b) 2-objective optimization with H-Planner.

of 40 KB each. As a first step, documents go through an NLP pipeline consisting
of sentence detection, tokenization and stop-words removal. Documents are vec-
torized according to a vocabulary and the tf-idf metric is computed for each of
them. Finally, k-means clustering is used to group similar document-vectors. For
each operator, two implementations are available: (i) a distributed, Spark-based
implementation, and (ii) a centralized implementation (a Java-based implemen-
tation using the Stanford CoreNLP library for the NLP operator and a Python-
based implementation using scikit-learn for the tf-idf and k-means operators).

Figure 5.c presents the performance results of the Document Similarity work-
flow when varying the number of input documents. We observe that the central-
ized implementation outperforms Spark only for small datasets (less than 10K
documents in our case). Using our trained cost estimators, IReS selects the
proper engines and always performs as good as the fastest engine does. What is
more, for a range of input sizes, IReS picks hybrid plans that combine different
execution engines. Indeed, from 10K to 40K number of input documents IReS
maps the tf-idf operator to Python and the k-means operator to Spark. This
way, it outperforms even the fastest single-engine execution by up to 30%.

3.2 Workflow Planner

In this section we experimentally evaluate the performance of the IReS multi-
engine workflow planner when performing single- or multi-objective optimization
with respect to: (i) the optimality of yielded plans, (ii) the number of available
alternative implementations of each operator and (iii) the workflow complex-
ity. For these experiments, we use the synthetic, Pegasus-generated workflows.
This gives us the flexibility to create arbitrarily large workflow graphs and test
complex topologies that are more difficult to obtain in practice. To perform op-
timization, IReS requires performance profiles for every operator available in the
IReS library. As these operators are part of a synthetic workflow, models have
to be simulated. To every targeted optimization objective Mi (e.g., execution
time, cost, memory utilization, etc.), we randomly assign a domain of the form
Ri = (0, Ni] ,i.e., a range where Mi can obtain a value from. The Mi value of
each materialized operator is selected uniformly at random in Ri. To further
stress the Planner in terms of the number of possible execution plans that need
to be processed, we make the assumption that all operators are compatible in
their inputs/outputs. As a side effect, no auxiliary operators are required.
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Fig. 7: (a) Relative error and (b) planning time of various algorithms for a synthetic
10-node workflow (single-objective). (c) Pareto frontiers (multi-objective).

In Figure 6.a we assess the performance of the DP-Planner algorithm for
the single-objective optimization problem, while Figure 6.b presents the per-
formance of the H-Planner algorithm for the 2-objective optimization problem,
when ranging the number of workflow nodes from 30 to 1000, considering 4 al-
ternative execution engines per operator. Here we should note that DP-Planner
discovers the exact optimal plans, while H-Planner trades optimality for speed,
returning approximate, near-optimal solutions.

Both planning algorithms exhibit similar behaviour, scaling linearly with
the graph size. The CyberShake, Epigenomics and Inspiral workflows of the
same size require comparable times to be processed by each of the algorithms.
Only Montage deviates in the single-objective case, exhibiting slightly increased
planning times due to its dense structure: The Montage graph is more connected,
having multiple nodes with high in- and out-degrees. Since the complexity of DP-
Planner is O(op ·m2 ·k), k being the number of inputs of each operator, the high
in-degrees of Montage have a linear impact on optimization time.

For both the single- and multi-objective optimization cases, even under the
extreme scenario of 1000-node workflows, the overhead of IReS is less than 12
seconds in all runs. An average 30-node workflow, can be optimized and sched-
uled for execution with IReS in the sub-second time-scale. This also holds for all
of the real-life workflows utilized throughout this section, which require planning
times in the order of milliseconds. This allows us to expect that the IReS Planner
can handle the most complex multi-engine workflow scenarios under any single-
or multi-objective optimization policy with negligible overhead compared to the
total execution time of the analytics workflow itself.

In the next experiment, we investigate the quality of the execution plans
that IReS selects in both the single- and multi-objective policy scenarios, as
well as the cost for discovering them for all planning algorithms employed. As
a baseline, we implement an exhaustive algorithm that enumerates all possible
execution plans of a workflow and selects the optimal one(s). The complexity
of it is exponential to the number of workflow nodes and highly affected by the
number of available engines for each operator. As the cost of constructing the
optimal solution for the Pegasus graphs is prohibitive, for this experiment we
use a smaller synthetic graph of 10 nodes. This is the largest graph size on which
the exhaustive algorithm successfully runs in our machine. The synthetic graph
has been created by removing nodes from the smallest available Montage graph



16 Katerina Doka et al.

until we end up with 10 nodes. We assume that all operators have the same
number of alternative implementations, which ranges from 2 to 5.

Figure 7.a plots the relative error between the cost of the selected and the cost
of the optimal plan as the number of operator alternatives increases, when using
three algorithms: DP-Planner and two variations of H-Planner, the light one that
runs for 100 generations and the heavy one that runs for 1000 generations. The
more the generations, the longer it takes for the algorithm to execute but the
closer the results are to the optimum. As expected, DP-Planner always achieves
optimal results. Zero relative error is also observed for the heavy version of H-
Planner, since it performs a more extensive search to discover the optimal plan.
The light version of H-Planner, configured to run for an order of magnitude
less generations, deviates from the optimum, but still less than 30%. Moreover,
in that case, the number of alternative implementations has a monotonically
increasing effect on the relative error.

Figure 7.b presents the corresponding planning times. We see that the ex-
haustive algorithm, denoted as Exhaustive, very soon becomes unaffordable even
for small graphs: For 5 implementations per operator, the algorithm needs al-
most an hour to investigate all possible plans. The fastest planning algorithm
is DP-Planner, requiring at most 35msec for discovering the optimal plan (in
the case of 5 alternatives/engine). The light version of H-Planner follows, with a
constant planning time of around 110ms, regardless of the number of alternatives
per engine. The heavy version of H-Planner is 2 orders of magnitude slower than
the light one. Even so, it requires less than 10 seconds to provide results, time
certainly affordable especially when the quality of results is the desideratum.

Next, we consider two optimization objectives, Objective 1 and Objective
2, under the same experiment configuration. In this case the Planner returns
a set of approximate pareto-optimal execution plans. DP-Planner is unable to
handle multi-objective planning, thus only the two variations of H-Planner are
evaluated. Figure 7.c plots all possible execution plans in terms of their Objective
1 and Objective 2 values in grey, considering 4 alternatives/operator. The black
marks depict the pareto optimal frontier [18], as designated by the exhaustive
algorithm. The heavy version of H-Planner produces the plans in red while the
light version the plans in blue. Both H-Planner variations result in plan sets that
lie close to the pareto optimal ones and cover their entire frontier, with H-Planner
heavy producing results closer to optimal. To quantify the quality of the two
H-Planner versions, we calculate the Hausdorff distance [25] between resulting
plan sets and the pareto optimal one (as calculated by the exhaustive algorithm).
The Hausdorff distance is a metric that measures how far two subsets of a metric
space are from each other and is defined as the greatest of all distances from a
point in one set to the closest point in the other set. More formally, assuming A
is the approximate plan set and P the pareto optimal one, the Hausdorff distance
between the two sets is dH(A,P ) = max∀a∈A{min∀p∈P {d(a, p)}}, where d(a, p)
is the Euclidean distance between points a and p. For the experiment of Figure
7.c, it holds that dH(A,P ) = 15.6 for H-Planner heavy and dH(A,P ) = 60.7
for the H-Planner light. The plan set produced by the heavy version of the H-
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Fig. 8: Total execution time in the presence of failures. (a) Eng1 is the fastest for all
operators. (b) The fastest engine alternates between Eng1 and Eng2

planner is 4× closer to the pareto-optimal than the one produced by the light
version. Experiments with ranging the number of alternative implementations
per operator show no qualitative difference.

3.3 Fault-tolerance mechanism

In this section, we test IReS under the presence of failures and evaluate its re-
silience. To have a better control over the experiment, we assume a synthetic,
sequential workflow of four operators, Op1 to Op4, each having two implementa-
tions (Eng1, Eng2 ). Each operator/engine combination has a performance model
drawn from a uniform distribution.

We conduct four experiments, simulating the failure of Op1 to Op4 respec-
tively, by disabling the engine selected by IReS during operator execution. As
explained in Section 2.3, IReS will cancel the execution of the failed operator and
all subsequent ones, it will determine the subgraph of the initial workflow that
needs to be re-planned and will issue a request to the Planner for a new plan.
The IReS fault-tolerance mechanism is compared to two alternative strategies:
(a) TrivialReplan, which does not materialize intermediate datasets and thus
requires re-scheduling of the whole workflow and (b) SubOptPlan, which repre-
sents the hypothetical case where the initial execution plan had been selected
excluding the failed engine, i.e., the workflow execution is ab initio suboptimal,
but not affected by the engine failure.

Figure 8 plots the gain in workflow execution time achieved by the IReS
and SubOptPlan strategies compared to TrivialReplan when each of the Op1

to Op4 fails. In Figure 8.a, Eng1 is the fastest alternative for all operators.
Since IReS does not need to re-execute the successfully completed operators, the
workflow performance ameliorates as failures occur later in the execution path.
Contrarily, the performance of workflows executed with TrivialReplan naturally
degrades as the position of the failed operators moves towards the end of the
workflow, since larger parts of the workflow need to be re-executed. Thus, IReS
exhibits increasing performance gains that reach 50%. The performance gain of
SubOptPlan, which always runs the whole workflow in Eng2, is always worse than
that of IReS, with the exception of Op1 failure: When Op1 fails, IReS can not take
advantage of any intermediate result and has to re-schedule the whole workflow
from scratch. The new plan coincides with the SubOptPlan plus the replanning
overhead. When failures occur at later stages, IReS exploits the performance
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gains of the operators successfully executed on Eng1, thus the performance gain
compared to SubOptPlan increases.

In the setup of Figure 8.b, we randomly pick which of Eng1 or Eng2 is the
best alternative for each operator. Once again, IReS plans always outperform the
TrivialReplan ones, with an increasing performance gain as failures occur later
in the execution. Compared to SubOptPlan, we see that there are still cases
where IReS performs better (failure of Op2 and Op4). When the selected engine
of Op1 or Op3 fails, SubOptPlan slightly outperforms IReS due to the extra cost
that the replanning and launching of new containers incurs.

4 Related Work

Data federation approaches have a long tradition, having extensively studied
query execution across multiple data sources for decades [32, 35, 17]. However,
these approaches focus solely on SQL analytics and fail to optimize query ex-
ecution over datasets split between multiple sources. On the contrary, recent
attempts in the field of data management aim to provide a unified query lan-
guage or API over various datastores. SparkSQL [14], part of the Apache Spark
project [3], and PrestoDB [9], powered by Facebook, are two production sys-
tems that provide a query execution engine with connectors to various external
systems such as PostgreSQL, MemSQL, Hive, etc. However, to perform any op-
eration on external data they both need to fetch and distribute them internally,
missing out on many engine-specific optimizations.

Polystores have recently been proposed as a means to combine data from
heterogeneous sources [21, 38]. They consist of a multitude of data stores, each
accommodating different query types. In a polystore environment, data migra-
tion among stores is frequent and cumbersome, requiring pairwise, bi-directional
connections between the available data stores and creating additional load. Data
move can be facilitated by special communication frameworks like PipeGen [24],
which use binary buffers to transfer data. Such frameworks can complement
IReS, providing efficient move operators whenever data transfer is required.

Recent research works like the Cascading Lingual project [4] and CloudMd-
sQL [30] try to optimize query resolution over heterogeneous environments by
pushing query processing to the datastores that manage the data as much as
possible. They mostly provide rule-based optimizations while considerable effort
is devoted to the translation between the involved storage engines’ native query
languages. All of the above approaches, unlike IReS, focus solely on storing and
querying Big Data, rather than performing any complex analytics workflow.

In the field of workflow management, HFMS [34] aims to create a planner
for multi-engine workflows, but focuses more on lower-level database operators,
emphasizing on their automatic translation from/to specific engines via an XML-
based language. Yet, this is a proprietary tool with limited applicability and
extension possibilities for the community. Contrarily, IReS is a fully open-source
platform that targets both low and high level operators.

Musketeer [23] and Rheem [13] also address multi-engine workflow execution,
acting as mediators between an engine’s front- and back-end. They first map a
user’s workflow to an internal representation and then apply a set of rule-based
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optimizations before sending it for execution. They focus more on the translation
of scripts from one engine to another, being thus tied to specific programming
languages and engines. Contrarily, IReS is engine agnostic, treating operators as
black boxes. This allows for extensibility to new engines and easy addition of
new operators regardless of their implementation language.

5 Conclusions

Deciding on the exact platforms, configurations and resources to execute long
and complex Big Data workflows on, especially when multiple execution criteria
are involved, is a daunting task, even for the most knowledgeable and experi-
enced system architect. IReS alleviates this burden, by automatically planning
the execution of workflow parts over different platforms, abstracting away their
specifics. Based on cost and performance estimations, IReS is able to make the
most out of each available platform, matching tasks to the most beneficial run-
times and data to the most suitable stores. IReS proves extremely useful in the
case of large workflows with complex structure or of tasks with unknown and
hard-to-predict behaviour. Moreover, depending on the workflow and the opera-
tors involved, IReS has the potential of yielding significant gains in cost and per-
formance compared to statically scheduled, single-engine executions. The IReS
prototype already supports a number of compute and data engines and has been
extensively evaluated in optimizing and scheduling a variety of diverse, business-
driven as well as synthetic workflows. The experiments showcase (a) a speedup of
up to 30% in the execution of the tested workflows, (b) the efficiency of the multi-
objective optimizer, which discovers the close-to-optimal pareto plans within a
few seconds and (c) the reliability of the system, which manages to recover from
failures with minimum impact on the workflow execution time.
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