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ABSTRACT
In this work we present H2RDF , a fully distributed RDF
store that combines the MapReduce processing framework
with a NoSQL distributed data store. Our system features
two unique characteristics that enable efficient processing
of both simple and multi-join SPARQL queries on virtu-
ally unlimited number of triples: Join algorithms that exe-
cute joins according to query selectivity to reduce process-
ing; and adaptive choice among centralized and distributed
(MapReduce-based) join execution for fast query responses.
Our system efficiently answers both simple joins and com-
plex multivariate queries and easily scales to 3 billion triples
using a small cluster of 9 worker nodes. H2RDF outper-
forms state-of-the-art distributed solutions in multi-join and
nonselective queries while achieving comparable performance
to centralized solutions in selective queries. In this demon-
stration we showcase the system’s functionality through an
interactive GUI. Users will be able to execute predefined or
custom-made SPARQL queries on datasets of different sizes,
using different join algorithms. Moreover, they can repeat
all queries utilizing a different number of cluster resources.
Using real-time cluster monitoring and detailed statistics,
participants will be able to understand the advantages of
different execution schemes versus the input data as well as
the scalability properties of H2RDF over both the data size
and the available worker resources.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed Systems
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1. INTRODUCTION
With the advent of the Semantic Web, vast opportunities

have emerged for semantic stores to better match user needs.
A wide variety of RDF (or triple) stores such as Jena SDB
[11], BigOWLIM [12], Sesame [2], etc have been designed
in order to parse, store and query RDF data that become
constantly available.

Research has focused either on optimizing centralized que-
ries or on distributing query processing (especially due to the
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data explosion [7]): In the first case, the creation of mul-
tiple indices that materialize a different number of 〈s,p,o〉
index combinations for SPARQL queries has been applied
(e.g., [4, 16, 14]). Several approaches that distribute data
and/or computation have also been proposed to tackle the
big data problem. Representative such systems include Vir-
tuoso Cluster Edition [6], OWLIM Enterprise [12], 4store
[10], HadoopRDF [13], etc.

A problem that has not been tackled so far is efficient
processing of both simple and complex, multi-join SPARQL
queries in a distributed fashion. In SPARQL, even a simple
query may translate to multiple triple patterns which have
to be joined. Centralized systems are highly dependent on
main memory constraints in order to process those joins,
making them highly vulnerable to the growth of the data
size ([9, 3, 15]) and query selectivity. Current distributed
systems operate on datasets of virtually any size, but fea-
ture poor query execution: Centralized execution for queries
with small input and high selectivity is greatly more efficient
than distributed processing. To gain optimal performance
in both selective and non selective queries, we believe that
an adaptive approach is required.

In this work we demonstrate the H2RDF system, a dis-
tributed RDF store that combines a multiple-indexing scheme
with BigTable [1] and MapReduce (M/R) [5]. H2RDF is a
high-performance system that allows distributed SPARQL
query processing. It creates and distributes three RDF in-
dices on subject, predicate and object over an HBase clus-
ter of commodity nodes. H2RDF features a join executor
module that, for any given join, selects the most advanta-
geous join scenario, choosing between centralized and fully
distributed (through the M/R framework). In this demon-
stration paper, we present the H2RDF system and make
the following contributions:
• We describe how RDF data are stored in a horizontally

scalable NoSQL store (HBase). Our system allows bulk-
import M/R jobs in order to load, index and keep statis-
tics on large RDF data sets.
• We describe a number of different join strategies which

take the query selectivity together with the inherent fea-
tures of the M/R and HBase systems into account to min-
imize the processing time.
• We present a query execution engine that, based on a join

cost model, chooses the best method on a per-join basis.
In effect, this module adaptively chooses the best join al-
gorithm as well as its distributed or centralized execution.

In this demonstration, we will allow participants to interact
with H2RDF on four levels:
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Figure 1: H2RDF architecture

(1) Dataset used: we allow users to choose dataset from
a selection of preloaded LUBM [8] datasets. (2) SPARQL
query: users can write their own SPARQL query or se-
lect one of LUBM’s test queries. (3) Cluster specifications:
we allow users to choose the number of concurrent map-
pers/reducers for query execution. (4) Join algorithm: users
can choose the join algorithm used, notice the performance
differences and familiarize themselves with our adaptive join
execution model.

2. ARCHITECTURE
In Figure 2 we present an overview of H2RDF ’s architec-

ture. The system receives RDF triple datasets that are im-
ported into HBase using one M/R, highly efficient bulk im-
port job. The same job also creates all the required statistics
needed by our join planner algorithm. Queries are parsed
using Jena’s SPARQL parser, to ensure syntax correctness
and create the query graph. The Join Planner iterates over
the query graph and greedily chooses the join that needs to
be executed, according to the selectivity and the cost of all
possible joins. Each join is executed by the Join Executor
module that decides which algorithm (distributed M/R or
centralized) will be used for every join. Centralized joins
are executed in a single cluster node, while distributed joins
launch M/R jobs to process them. Below we describe each
module in more detail.

2.1 HBase Indexing
Our goal is the efficient execution of all different SPARQL

queries. To achieve that, we materialize three of the six
possible indices, namely the spo, pos and osp combinations.
A six index approach can have better performance only for
certain queries that contain filters on variables. For all other
queries, 3 indices suffice for optimal performance.

Indices are stored in HBase tables in the form of key-
value pairs. In this section we describe the H2RDF spo
index. The same hold for the other two indices. We use the
name SP O to indicate that we keep a B+ tree based on the
combination of subject and predicate values.

The SP O index is responsible for triple patterns that
have either bound subject or bound subject and predicate.
The concatenation of subject and predicate values creates
the row key, whereas the column identifiers of the current
row consist of all the objects associated with the partic-
ular subject-predicate combination. All indices store only
the 8-byte MD5Hashes of {s,p,o} values; a table containing
the reverse MD5Hash to value mappings is kept and used
during object retrieval. Index statistics (i.e., the number

Subject Predicate Object Index
any

? pos
? osp

? spo
? ? osp

? ? spo
? ? pos
? ? ? any

Table 1: Index for each query pattern combination.

of objects for the specific subject-predicate combination and
the number of predicate-object combinations for every sub-
ject) are kept in special columns and rows of each index
table. Subject-predicate bound queries are answered with
an exact-key lookup for the rowid that results from the sp
combination. Subject bound queries are answered with a
range query ([subject,increment(subject)]).

Table 1 shows the eight different types of triple patterns,
corresponding to all combinations of bindings in a triple. For
each pattern, the table indicates the index that can be used
to retrieve the corresponding data efficiently; “?” denotes
the existence of a variable in a triple’s position, while “ ”
means that the position is bound (i.e., fixed). For example,
the triple pattern (?, , ) can be answered using the POS
index, as it has bound predicate and object. The patterns
having all positions bound, or all unbound, ( , , ) and (?,
?, ?), can be answered by any index. For ( , , ), we can
select the index having the smallest B+ tree depth, which is
usually OSP. For (?, ?, ?) we choose an index considering
any joins that must be performed on the triple pattern.

2.2 Join Execution
A key point in implementing a system capable of evalu-

ating SPARQL queries is determining the way that the sys-
tem executes joins between triple patterns. Our system is
designed to execute both distributed and centralized joins.
Distributed joins are executed using MapReduce, while cen-
tralized joins are executed in a single cluster node. In this
section, we describe the different strategies used to execute
distributed and centralized joins.

SPARQL queries with multiple joins are executed by feed-
ing the results of one join to the next. Therefore, we choose
to have the same I/O specifications for joins. We store all
bindings in the value part of key-value pairs without using
the key part. The value part has the following pattern:
jpat var1$bindings var2$bindings....varN$bindings,
where var1 ... N are the different join variables, bindings
contains one or more values of the corresponding variable
and jpat is a unique id for each query pattern or join result
which helps us recognize the origin of each key-value pair.
This format gives some grouping properties, that allows the
representation of multiple combinations of bindings in one
key-value pair. We are now ready to describe the different
strategies used to execute joins in H2RDF .

Map phase join: The input data of the Map Phase Join
comes from all joined triple queries formed in key/value pairs
of the above format. Mappers read values contained in each
pair and break them up to find the join variable. For each
join variable binding, they produce a key-value pair with the
binding as the key and the bindings for all other variables
contained in the input pair as the value. The pattern id is
also added in the value. Key-value pairs produced by map-
pers are sorted and grouped together based on their key.
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Reducers take as input for each join variable’s binding, a
list of values that correspond to it. The join is performed
by checking which of the keys were contained in all input
queries and by counting the different pattern ids. Reducers
create the output by simply merging the key and the corre-
sponding list of values.
Reduce phase join: This algorithm is based on the idea
that one of the patterns receives a very small number of in-
put data compared to the rest. Using only this pattern as
input, we manage to reduce the amount of data processed
and achieve better performance for selective joins. The map
function is exactly the same as in the map phase join. The
difference is in the reduce phase: We only get the bindings
that come from the input query. For every mapped binding,
we search our indices to see if it matches with the other que-
ries. This approach, however, is not always the best choice.
In joins where all input queries have large input it becomes
ineffective because it needs many index accesses.
Partial input join: This algorithm combines the advan-
tages of both Map and Reduce phase joins. It allows the
choice of a variable number of input triple patterns and uti-
lizes both preceding join algorithms: Input triple patterns
are joined using Map Phase Join, while the rest are joined
using Reduce Phase Join. This algorithm allows us to have
the best performance in all types of different joins. Natu-
rally, the performance of the algorithm largely depends on
whether we make the correct choice for the input pattern(s).
Using the statistics gathered during bulk import, we are able
to know the exact size of input for every triple query and
select the correct input ones.
Centralized join: A M/R job needs a large amount of
time for initialization. When input data is small, this ini-
tialization time becomes comparable or significantly larger
than the required data processing time. In a cluster of 10
nodes, it takes almost 30 seconds for a M/R job, with no
input data, to finish. To achieve optimal performance in all
cases of different input size joins, we allow the join to be exe-
cuted in a single node, without launching a MapReduce job.
To cooperate with MapReduce joins, the centralized joins
use the same input/output format and implement the same
partial input algorithm. The choice between distributed or
centralized execution is done greedily using an offset param-
eter that represents the size of data that can be centrally
processed during MapReduce’s initialization overhead. This
is then compared to the cost of a M/R join.
Partial Input Join Cost Model: Joins are executed us-
ing our partial input join algorithm. This algorithm is very
flexible and can be controlled by its input triple queries (pat-
terns). Let M be the set of input triple patterns and R be
the set of the rest of the triple patterns of the join. Thus, M
patterns are joined using Map Phase Join while R of them
are joined using Reduce Phase Join. We measure the com-
plexity of the M/R job using only read operations and index
accesses. The cost of the map and reduce stage is:
CMap = index + n1o1read + · · ·+ index + nmomread
CRed = |n1∩n2 · · ·∩nm| ·(index+o1read+ index+orread),
where: index: time to scan the B+ tree, read: time to read
a key-value pair, ni: number of bindings for the joining vari-
able of the ith triple pattern, oi: number of bindings for the
non-joining variables that correspond to one binding of the
joining variable (refers to the ith triple pattern), m: number
of queries in M and r: number of queries in R.

In the map phase, we only read bindings that match with

Table 2: Import and query exec times for LUBM
10K & 20K for H2RDF, HadoopRDF and RDF-3X

LUBM10k LUBM20k
H2RDF HadRDF RDF3X H2RDF HadRDF RDF3X

Imp(min) 118 336 562 282 794 1526
Q1(sec) 0.6 149 0.4 0.6 352 0.4
Q2(sec) 417 838 1158 709 1187 3305
Q3(sec) 0.8 222 0.5 0.9 425 0.6
Q4(sec) 2.1 1245 0.8 2.3 2570 0.8
Q7(sec) 1.9 1809 0.7 2.0 3475 0.8
Q9(sec) 651 1378 260 967 2803 Failed
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Figure 2: Distributed join execution for different
number of universities and nodes for the Q2 query

the M queries. Bindings that match with all the M queries
pass the map phase join and their number is |n1∩n2 · · ·∩nm|.
This number can be approximated by min (n1, n2, . . . , nm).
For each of them, we retrieve the bindings that match with
the R queries during the reduce phase join. The cost of a
partial input join is:

CostPIJ = O

(∑
i∈M

nioi

)
+ O

(
min
i∈M

ni

∑
j∈R

oj

)
which can be easily computed using the statistics held in our
indices.

3. EXPERIMENTS
Our experimental setup consists of a variable number of

worker nodes and a single machine in the role of HDFS,
MapReduce and HBase master. The worker nodes have 2
Quad-Core E5405 Intel Xeon R©CPUs @ 2.00GHz, 8 GB of
RAM and a 500GB disk, while the master has similar CPUs
and disk, but only 4 GB RAM. Each worker node runs 5
mappers and 5 reducers, each consuming 512MB of RAM.
We use Hadoop v. 0.20.205 and HBase v. 0.92.0.

We compare H2RDF ’s query and import performance us-
ing two current state-of-the-art systems: The RDF-3X [14]
centralized store and HadoopRDF [13] distributed system.
We utilize the LUBM 10K and LUBM 20K datasets, con-
sisting of 1.3 and 2.7 billion triples respectively with a subset
of the benchmark queries. RDF-3X runs on a single worker
node while both HadoopRDF and H2RDF were executed
using a cluster of 9 worker and 1 master nodes. Table 2
confirms our premise: Our adaptive execution has the best
performance for large, non-selective queries (Q2 and Q9).
Regarding selective queries, H2RDF executes in centralized
manner, with directly comparable to the centralized system.
In all cases, our approach vastly outperforms the distributed
system under comparison.

Figure 2 shows the scalability results for Q2 (6 triple pat-
terns and 3 joining variables) M/R execution. In the first
graph, we test the scalability of our system versus differ-
ent dataset sizes in a 9-node cluster. We clearly note that
the M/R execution time is almost linear to the size of in-
put data. In the second graph, we measure the scalability
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of the system versus the number of available worker nodes.
The tests are executed using the LUBM5k dataset. We no-
tice that the processing is highly scalable since more nodes
reduce execution time almost linearly.

4. DEMONSTRATION DESCRIPTION
For demonstrating H2RDF , we use a comprehensive, real-

time GUI that attendees will utilize to interact on dataset,
query, cluster size and join execution levels. A sample of the
H2RDF functionality is available as a screencast in http:

//www.youtube.com/watch?v=38hsYzsQnAM.
Dataset Specification: We provide a set of pre-indexed

LUBM datasets to avoid the time-consuming loading opera-
tion. These datasets vary from 140 million to 3 billion RDF
triples with sizes ranging from 2.5 GB to 258 GB. Users
will be given an overview of the characteristics of each set
they wish to query before actually selecting it. The vari-
ety of sizes allows a better understanding of the scalability
properties of H2RDF .

SPARQL Query Specification: Participants will be
able to execute different SPARQL queries on the loaded
datasets. They can choose to execute one of the documented
LUBM test queries: A subset of the total 14 LUBM test
queries is selected to provide a good mixture of both sim-
ple and complex structures, OWL reasoning, and multiple
types of joins. For each of the pre-selected queries, the exact
SPARQL form, description and characteristics of the query
(i.e., number of triple patterns, number of variables, number
of required joins, selectivity) will be shown in order to ap-
propriately comment on the performance of H2RDF . Addi-
tionally, attendees will be able to specify their own SPARQL
query using a text-area field.

Cluster Resources: Participants will have the ability to
vary the amount of dedicated cluster resources used in order
to process each selected or manually created query. Our
interface allows three choices on the total number of Mapper
and Reducer processes that can be concurrently working on
a given query. This way, attendees can observe the effect
that increased resources have over the respective speed-up
in execution time. Using this feature, we can demonstrate
how demanding, high-input join queries scale to the number
of cluster workers while joins that can be executed on a
single node remain unaffected.

Join algorithms: H2RDF implements a hybrid join ex-
ecution model that contains centralized and M/R joins (full
input and partial input joins). To discuss on the perfor-
mance and operation of each algorithm, users will be able
to execute each query using one of those algorithms. In
this way, participants will observe first-hand why some al-
gorithms are more suitable for specific types of queries than
others. Moreover, they will be able to execute the query in
“auto”-mode, i.e., using our adaptive approach that selects
the optimal algorithm.

The progress of query processing is shown through the
Hadoop JobTracker’s site, which presents, in real-time, all
relevant job metrics. Participants can observe the interme-
diate outputs of each join and the final query output from
the cluster’s HDFS site. After query execution, selected pa-
rameters and aggregate metrics such as total execution time
and output size will be displayed in order to offer direct
comparisons and foster discussion among participants.

Figure 3: H2RDF demo interface.
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