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Abstract. Efficient autoscaling in Kubernetes (K8s)-managed in-
memory systems like Redis remains a critical challenge, especially 
under highly dynamic workloads. Traditional threshold-based mecha-
nisms (e.g., HPA) often fail to anticipate sudden demand surges, leading 
to poor performance and inefficient resource use. 

We introduce DInos, a Deep Reinforcement Learning (Deep RL) 
agent enhanced with LSTM layers and transfer learning, designed for 
proactive and adaptive autoscaling in Kubernetes. As an evolution of 
our earlier agent DERP, DInos leverages temporal workload modeling 
and pre-trained policies to generalize across deployments with mini-
mal retraining. DInos utilizes a customizable reward function balancing 
throughput, latency, resource usage, and pod efficiency. 

DInos achieves up to 17.3.× higher rewards in simulation and a 
5.5.× improvement in real-world K8s-Redis deployments by forecast-
ing spikes, optimizing pod counts and maintaining low latency, providing 
a robust autoscaling solution for volatile, cloud-native environments. 

Keywords: Kubernetes · Deep Reinforcement Learning · LSTMs · 
Autoscaling Redis 

1 Introduction 

Kubernetes (K8s) is the de facto standard for orchestrating containerized appli-
cations, offering reactive autoscaling through mechanisms like the Horizontal 
Pod Autoscaler (HPA) [ 37]. However, such threshold-based approaches strug-
gle with dynamic, time-sensitive workloads, often leading to overprovisioning or 
increased latency. 
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Redis, a stateless in-memory key-value database, is widely adopted in latency-
critical cloud services [ 29]. Under traffic spikes, reactive autoscaling approaches 
frequently fail to respond well enough, resulting in degraded performance. 

To overcome these limitations, our previous work introduced DERP [ 10], a 
Deep Reinforcement Learning (Deep RL) autoscaler. DERP significantly outper-
formed traditional threshold-based autoscalers and earlier RL-based autoscaling 
methods that used Q-tables or decision trees. In this paper, we further enhance 
DERP by introducing a new deep neural network architecture, extending it to 
utilize additional performance metrics such as CPU and memory usage, as well 
as pod count. 

Building on these improvements, we propose our main contribution: DInos, 
an advanced LSTM-based Deep RL autoscaling agent that integrates transfer 
learning for rapid generalization across deployments [ 39]. DInos leverages tem-
poral modeling and policy reuse to proactively anticipate workload changes and 
optimize resource allocation. Both DERP and DInos are trained with a cus-
tomizable reward function that aims to balance throughput, latency, resource 
usage (CPU and memory), and pod efficiency [ 38], enabling versatile adaptation 
to diverse system goals. 

DInos achieves up to a .17× improvement over DERP in simulation and a . 5.5×
gain over its non-transfer variant in real Kubernetes-Redis environments, clearly 
demonstrating the significant advantages of temporal modeling and policy trans-
fer in proactive autoscaling. Furthermore, its transfer learning capability enables 
DInos to quickly and effectively adapt to diverse environments, new applications, 
different frameworks, and varying workloads without extensive retraining. 

2 Related Work 

Kubernetes (K8s) has emerged as a leading platform for cloud-native orchestra-
tion [ 4], driving substantial research in autoscaling. Traditional scaling mecha-
nisms include the Horizontal Pod Autoscaler (HPA) [ 37], Vertical Pod Autoscaler 
(VPA) [ 6], and Cluster Autoscaler [ 3], relying on reactive CPU and memory 
thresholds. Such methods often struggle under rapidly changing workloads, caus-
ing resource inefficiencies and latency spikes. 

KEDA [ 19], an event-driven Kubernetes autoscaler, improves flexibility using 
external metrics sources such as Kafka or Prometheus. However, its lack of 
predictive intelligence and adaptive learning limits its effectiveness with highly 
dynamic workloads. 

Previous autoscalers employed reinforcement learning (RL) or heuristic-based 
approaches, notably Tiramola [ 34] and VCONF [ 28], initially targeting NoSQL 
or VM-based environments. Classic RL methods employing Q-tables or decision 
trees [ 24, 27, 36] had inherent scalability limitations and insufficient generaliza-
tion. 

Our earlier work, DERP [ 10], significantly outperformed these threshold-
based and classical RL methods by employing Deep Q-Learning with neural 
networks. DERP introduced fine-grained autoscaling policies based on through-
put, latency, and resource metrics. Despite these improvements, DERP lacked
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temporal modeling and knowledge transfer mechanisms, restricting its predictive 
accuracy and generalizability. 

Other ML-based autoscalers, such as Imdoukh et al. [ 16] and  the Bi-LSTM  
system by Dang-Quang and Yoo [ 11], enhanced workload forecasting but lacked 
an integrated adaptive RL framework, limiting responsiveness. 

Research by Toka et al. [ 33] and Koukis et al. [ 18] explored predictive 
scaling and network overhead impacts, respectively. Studies like SCADIS [ 17], 
Harmonia [ 40], and performance benchmarks [ 9, 22, 30] provided insights into 
Redis-specific scenarios. Additional work investigated node-level elasticity [ 32], 
extreme-scale workloads [ 21], and dynamic cloud scaling strategies [ 7, 25]. 

Advancements in LSTM network optimization [ 20, 39], and Deep RL method-
ologies [ 15, 38] underscored the importance of combining temporal forecasting 
with RL. Transfer learning has also been recognized as critical for rapid gen-
eralization across deployments [ 26]. Kubernetes-based ML management frame-
works, like Scanflow-K8s [ 23] and performance studies by Fogli et al. [ 12], further 
emphasize the need for intelligent autoscaling. 

Our proposed solution, DInos, significantly surpasses even the enhanced 
DERP architecture by integrating LSTM-based temporal forecasting, Double 
Deep Q-Learning, and transfer learning into a single agent. Unlike previous 
methods that treat forecasting and scaling separately, DInos learns proactive 
and predictive scaling strategies simultaneously. DInos demonstrates a substan-
tial cumulative reward improvement of .17.3× over DERP in simulations and 
achieves a .5.5× reward gain compared to a non-transfer learning baseline in 
real Kubernetes/Redis deployments. These improvements result directly from 
DInos’ capability to forecast resource needs, optimize provisioning proactively, 
and adapt rapidly to previously unseen workloads. 

In summary, DInos represents an adaptive, intelligent autoscaling framework 
capable of leveraging historical workload patterns and generalizing across envi-
ronments, establishing a robust solution for dynamic cloud-native autoscaling. 

3 System Model and Background 

3.1 Kubernetes and Redis Setup 

Our system is deployed on a Kubernetes (K8s) cluster running a stateless Redis 
environment (Fig. 1). Redis, being an in-memory key-value store, is well-suited 
for dynamic autoscaling due to its statelessness and fast response times. Kuber-
netes orchestrates Redis pods and enables elastic scaling in response to workload 
fluctuations. 

Metrics such as CPU-memory usage and latency are retrieved directly from 
the Kubernetes Metrics Server [ 5] and provided to our Deep RL agents for scaling
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decisions. Prometheus [ 2] and Grafana [ 1] were used only for monitoring and 
visualization. Our custom autoscaler interacts with the control plane to apply 
scaling actions via the kube-api-server. 

Fig. 1. System architecture of our proposed DInos autoscaling agent within a Kuber-
netes cluster. The agent interacts with the Kubernetes control plane by receiving time-
series metrics from Redis pods via the Metrics Server. Based on these inputs, DInos 
issues proactive scaling decisions–adding or removing pods–by communicating with the 
kube-api-server. The agent learns workload patterns using deep reinforcement learn-
ing, enabling intelligent resource allocation that balances performance and cost across 
dynamic environments. 

3.2 Deep Reinforcement Learning Agents 

We compare two Deep RL-based agents: a dense-layer agent (enhanced DERP) 
and an LSTM agent enhanced with transfer learning (DInos). Both agents take 
a state vector of system metrics–load, CPU usage, memory usage, latency, and 
pod count–and return scaling actions. 

DERP Agent (Dense). DERP enchance our previous work [ 10] by using  
two dense layers (128 units each) with ReLU activations. It is trained using a 
Double DQN [ 8] to avoid overestimation of Q-values and provides a baseline for 
comparison, This architecture is shown in Fig. 2. 

– Input: System state vector 
– Hidden: Two dense layers with 128 neurons 
– Output: Q-values for scaling actions
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Fig. 2. Double Deep Q-Network 
(Double DQN) architecture used by 
both DERP and DInos for stable 
learning and decision-making. It 
separates action selection (online net-
work) from value estimation (target 
network), mitigating Q-value over-
estimation and improving training 
stability. This architecture supports 
discrete action spaces, such as scaling 
decisions for pod count. 

Fig. 3. LSTM-based neural network 
architecture employed by DInos. The 
LSTM layers are designed to cap-
ture long-term temporal dependencies 
in workload metrics, including peri-
odic trends and abrupt spikes. This 
enables the agent to proactively scale 
resources by forecasting future system 
states rather than reacting to current 
load alone. 

DInos Agent (LSTM + Transfer Learning). DInos extends the dense-layer-
based DERP variant with LSTM layers and transfer learning. It leverages these 
LSTM layers to effectively model temporal patterns in workloads. Initially, a 
base model is extensively trained in a simulation environment whose parameters 
and load scenarios have been carefully formalized based on extensive real-world 
experiments and observations (Fig. 7, right). This pretrained model thus cap-
tures generalized scaling policies applicable to various workload patterns. DInos 
is subsequently initialized with this pretrained model when deployed in new 
environments, enabling it to rapidly adapt to different workloads with minimal 
additional training. Fine-tuning occurs on the target workload using a smaller 
batch size of 16, significantly accelerating adaptation and ensuring robust per-
formance across diverse real-world deployment scenarios. 

– Input: Sequence of past states 
– LSTM: Memory layers with fine-tuning 
– Output: Q-values for scaling decisions 

The Spike Factor: While DERP reacts to general workload trends, it struggles 
with sudden spikes. DInos’ LSTM layers anticipate these patterns using temporal 
memory, adjusting resources proactively–particularly effective for flash-sale or 
seasonal traffic surges (Figs. 3, 4).
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3.3 Reward Function 

The reward function balances five objectives: 

. reward = load_factor · next_load − latency_factor · next_latency
− pods_penalty · num_pods − cpu_penalty · cpu − memory_penalty · memory

(1) 

This reward formulation is designed to highlight the versatility and capability 
of our agents in learning optimal scaling strategies under multiple objectives. 
While this particular reward function focuses on balancing throughput, latency, 
and resource consumption, it is fully customizable. System operators or cloud 
vendors can easily redefine the reward structure to reflect specific operational 
goals or application priorities–such as cost minimization, latency guarantees, or 
energy efficiency. DInos and enhanced DERP retain their effectiveness across 
such formulations, showcasing their adaptability to diverse autoscaling policies 
and deployment environments. 

3.4 Simulation Environment 

Workload patterns are generated using a sinusoidal base, Gaussian noise, and a 
sharp spike between timesteps 1500âĂŞ1600 to emulate bursty real-world traffic. 

Fig. 4. Input metrics generated by the simulation environment: load, CPU usage, mem-
ory usage, and latency over 5000 timesteps. The load follows a sinusoidal pattern with 
added Gaussian noise and a sharp spike between timesteps 1500 and 1600, simulating 
a burst workload. These metrics form the state input for both enhanced DERP and 
DInos, testing their ability to maintain performance under dynamic and unpredictable 
conditions.
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CPU, memory, and latency metrics are modeled accordingly after observing real-
world behaviors (see Fig. 4 and the right subfigure of Fig. 7). 

3.5 Training Details 

Both agents are trained using the Huber loss function [ 14] for stability. A Dou-
ble DQN framework (Fig. 2) is used to decouple action selection from value 
estimation and improve learning in noisy environments. 

3.6 DInos Autoscaling Algorithm 

Algorithm 1 DInos: Transfer Learning Autoscaler 
1: Input: Pretrained model (optional), current system state . st
2: Initialize Q-network (pretrained if using DInos) 
3: Initialize target network and replay buffer . R
4: for each timestep . t do 
5: Observe . st
6: if exploration condition met then 
7: Select random action . at

8: else 
9: Select action . at = argmaxa Q(st, a)

10: end if 
11: Apply . at, observe . rt, . st+1

12: Store .(st, at, rt, st+1) in . R
13: Sample minibatch from . R
14: for each .(st, at, rt, st+1) in minibatch do 
15: Compute target: . y = rt + γ maxa Q̂(st+1, a)
16: if transfer learning is enabled then 
17: . Q(st, at) ← (1 − α)Q(st, at) + αy
18: else 
19: . Q(st, at) ← Q(st, at) + η(y − Q(st, at))
20: end if 
21: end for 
22: Periodically update target network . Q̂
23: end for 

4 Implementation 

4.1 Training Setup 

We trained two Deep RL agents–an enhanced version of DERP (with dense 
layers) and DInos (with LSTM and transfer learning)–using system metrics col-
lected from a Redis cluster orchestrated by Kubernetes. The input state for each 
agent includes:
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– Load (request rate to Redis), 
– CPU usage, 
– Memory usage, 
– Latency, 
– Number of pods. 

The environment simulated dynamic workloads with oscillating patterns and 
abrupt traffic spikes (see Fig. 4), allowing agents to learn both reactive and proac-
tive autoscaling behavior. 

Agents selected one of three actions–add, remove, or maintain pods–every 
15 s. The reward was computed at each timestep using the following weighted 
linear function: 

. reward = 3.0 · next_load − 5.0 · next_latency
− 10.0 · num_pods − 0.5 · next_cpu_usage − 0.5 · next_memory_usage

(2) 

This formulation promotes high system throughput (via the positive weight 
on load) and low latency, while discouraging over-provisioning and excessive 
resource usage. The specific weights were determined through empirical tuning 
and sensitivity analysis during simulation experiments. These coefficients are not 
fixed and can be adapted to suit different infrastructure priorities, such as cost 
minimization or latency-critical performance. 

4.2 Kubernetes Integration 

To enable real-time scaling by the agents, we disabled the default Horizontal Pod 
Autoscaler (HPA) and created a custom Python environment class that directly 
interfaces with the Kubernetes API. This class executes scaling actions issued 
by the agent and fetches current system metrics from the Kubernetes Metrics 
Server [ 5]. 

The cluster is configured with stateless Redis pods, ensuring that pod addi-
tion or removal can be handled gracefully without service disruption. 

4.3 Challenges and Observations 

Several technical challenges emerged during development: 

– Latency sensitivity: Capturing realistic latency patterns required simu-
lating spikes during load surges, guided by latency trends observed in the 
real-world environment. This helped ensure that the simulation environment 
reflected realistic system behavior and reinforced the agents ability to respond 
appropriately. 

– Temporal forecasting: DERP, even the enchanced version, was unable to 
anticipate future workload shifts. In contrast, DInos successfully leveraged 
LSTM layers to recognize and prepare for recurring spikes, improving respon-
siveness (see Fig. 3).
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– Cost-performance tradeoff: The pod penalty in the reward function 
helped balance throughput against overprovisioning, though it required care-
ful tuning to avoid excessive scaling. 

Despite these challenges, both agents were successfully trained in the sim-
ulated environment. DInos demonstrated superior performance by adapting to 
future workload conditions through transfer learning and temporal modeling. 
Full results are discussed in Sect. 5. 

5 Experimental Results 
5.1 Experimental Setup 

Experiments were conducted on a Kubernetes cluster running on a large Ubuntu 
20.04 VM with the following specs: 
– RAM: 191 GiB, CPU: 32 vCPUs (Skylake, 2 GHz), GPU: Cirrus Logic, 

Disk: 750 GiB (EXT4) 

Using Kubernetes on such a high-resource VM allowed the setup to emulate a 
full-scale cluster. We used Python 3.8 and PyTorch, and recorded load, latency, 
CPU-memory usage and pod count for evaluation. 

5.2 Autoscaling Agents Compared 

We evaluate two Deep RL-based autoscaling agents: 
– Enhanced DERP (Dense): A Deep Q-learning agent using dense layers 
– DInos (LSTM + Transfer): An advanced LSTM-based agent that lever-

ages transfer learning for faster adaptation 

5.3 Simulation Results 

In the simulation environment our agents achieved: 

– DERP: .2.2× 105 reward 
– DInos: .3.8× 106 reward – a .17.3× improvement 

Figure 4 illustrates the simulation environment, which features sinusoidal 
workloads combined with random noise and a sharp demand spike. Under these 
challenging conditions, DInos demonstrates a significant advantage over DERP, 
both in terms of accumulated rewards and system responsiveness. This supe-
riority arises from DInos’ effective forecasting and proactive scaling strategies. 
Detailed performance metrics and comparative analyses can also be found in 
Figs. 5 and 6. Specifically, Fig. 6 (right) clearly illustrates DInos’ adaptive scaling 
capabilities, as it dynamically adjusts pod counts in response to workload fluc-
tuations. The figure demonstrates how DInos efficiently balances resource usage 
and latency by proactively predicting workload patterns and swiftly responding 
to spikes, showcasing the adaptability and robustness of our agent under volatile 
simulated conditions.
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Fig. 5. Comparison of total accumulated rewards between DERP and DInos at different 
training checkpoints (1k, 2k, 5k, 10k, and 20k steps). While DERP’s performance 
improves with training, it plateaus early. In contrast, DInos, leveraging LSTM layers 
and transfer learning, achieves significantly higher rewards across all training durations, 
highlighting its superior adaptability and learning efficiency in dynamic environments. 

Fig. 6. Evaluation of DERP (left) and DInos (right) based on runtime metrics over 
5000 timesteps. DERP responds reactively, often under- or over-provisioning during 
spikes. DInos, using LSTM layers and transfer learning, shows superior stability by 
anticipating load fluctuations and adapting pod count accordingly. The result is lower 
average latency, better CPU and memory efficiency, and higher throughput under vary-
ing load. 

5.4 Real-World Results 

In real Kubernetes/Redis deployments, DInos achieved: 

– DInos: .308,000 reward 
– Baseline LSTM agent (no transfer): .56,000 reward 

In real Kubernetes/Redis deployments, DInos achieved a cumulative reward 
of .308,000, significantly outperforming its LSTM-based baseline without transfer 
learning, which attained a reward of only .56,000. Due to DERP’s relatively lower 
performance in the simulation scenarios, we excluded it from real-world eval-
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uations and instead focused on comparing DInos with its closest non-transfer-
learning variant. This comparison demonstrates a remarkable .5.5× improvement, 
underscoring the practical benefits of incorporating transfer learning and tem-
poral modeling into our  RL  framework.  

Figure 7 (right) provides detailed metrics from the live Kubernetes/Redis 
deployment, highlighting the real-world adaptability of DInos. The figure explic-
itly demonstrates how DInos proactively manages resource provisioning by fore-
casting load variations and promptly scaling pod counts, maintaining stable 
resource utilization and consistently low latency despite noisy and spiky traffic. 
This confirms that DInos can rapidly adapt to diverse production workloads 
with minimal retraining effort, thereby validating the practical effectiveness and 
robustness of our proposed solution in dynamic cloud-native environments. 

Fig. 7. Real-world evaluation of DInos in a live Kubernetes/Redis deployment. Left: 
Cumulative reward over 2000 timesteps, comparing DInos against its LSTM-only base-
line. DInos achieves a total reward of 308,000, outperforming the LSTM-only version 
by 5.5. ×, showcasing the effectiveness of transfer learning in accelerating adaptation to 
production environments. Right: Temporal system behavior of DInos, demonstrating 
how the agent dynamically adjusts the number of Redis pods in response to noisy and 
spiky load patterns. The figure shows that DInos maintains low latency and stable 
resource usage while proactively scaling based on predicted workload trends. 

5.5 Key Insights 

– Load Forecasting: DInos anticipates spikes and scales preemptively via 
LSTM memory, unlike DERP which reacts post-factum. 

– Transfer Learning: DInos requires minimal retraining and adapts quickly 
to new workloads, outperforming baseline LSTM agents in both accuracy and 
speed. 

– Resource Efficiency: DInos minimizes pod count while maintaining low 
latency and high throughput.
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5.6 Performance Summary 

Figure 8 highlights how DInos consistently outperforms the enchanced DERP 
agent across all key metrics–accumulated reward, CPU usage, memory usage, 
and system latency–in both simulated and real-world Kubernetes/Redis deploy-
ments. These metrics collectively demonstrate DInos’ superior adaptability, fore-
casting ability, and efficiency under volatile workloads. 

In simulation, DInos achieved a cumulative reward of .3.8 × 106, compared  
to just .2.2 × 105 for DERP, representing a 17.3.× improvement. This dras-
tic gain reflects DInos’ capacity to anticipate spikes and proactively allocate 
resources using its LSTM-enhanced decision-making. In real-world experiments, 
DInos outperformed a non-transfer LSTM baseline with a reward of . 308,000
versus .56,000, demonstrating a 5.5. × gain in environments with real noise and 
system complexity. 

Notably, these improvements are achieved while maintaining lower average 
CPU and memory consumption and significantly reducing latency fluctuations. 
This confirms that DInos does not simply overprovision resources to gain perfor-
mance but instead learns to scale intelligently, minimizing cost while maximizing 
responsiveness. 

The underlying reward function, which balances system throughput, latency, 
and resource usage, serves as a demonstration of the agent’s capability to opti-
mize under multi-objective conditions. However, this formulation is intentionally 
flexible: system operators or cloud vendors can customize the reward structure to 
reflect domain-specific policies–such as strict latency bounds, energy-aware scal-
ing, or monetary budget constraints. Both DERP and DInos maintain robust 
performance across such variations, underscoring their versatility and gener-
alizability in real-world autoscaling scenarios. 

Fig. 8. Summary table comparing DERP and DInos across simulation and real-world 
deployments. Metrics include accumulated reward, average CPU and memory usage, 
and system latency. DInos consistently outperforms DERP in both environments, 
demonstrating better generalization, resource efficiency, and responsiveness to work-
load changes–especially in scenarios involving sharp demand spikes. 

6 Discussion and Conclusion 

Our experimental results confirm that Deep Reinforcement Learning (Deep RL) 
can outperform traditional autoscaling strategies in Kubernetes environments.
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While DERP (dense-layer-based) improved over threshold-based baselines, it 
lacked the foresight needed for handling workload volatility. In contrast, DInos, 
our LSTM-based agent enchanced transfer learning, learned to proactively scale 
resources by identifying temporal workload patterns and leveraging knowledge 
from prior deployments. 

In simulation, DInos achieved a .17.3× improvement in accumulated reward 
over DERP, and in real-world Redis deployments, it delivered .5.5× better per-
formance compared to a baseline LSTM agent without transfer learning. These 
gains reflect more efficient resource utilization, lower latency, and better respon-
siveness under unpredictable workloads. 

Future Directions 

Future research can explore extending DInos to more complex environments: 

– Stateful Applications: Applying DInos to stateful systems like Cassandra 
introduces new challenges such as data replication, consistency, and safe pod 
identity management due to the constraints of StatefulSets. Transfer learning 
can accelerate adaptation in such environments by leveraging prior knowledge 
to reduce retraining overhead. 

– Expanded Metrics: Incorporating disk I/O, network bandwidth, or storage 
usage could provide a more holistic view of system health and enable even 
finer-grained scaling decisions. 

– Advanced RL Architectures: Exploring algorithms like Dueling DQN [ 35], 
PPO [ 31], or SAC [ 13] may improve stability or allow continuous action 
spaces, especially in multi-objective environments. 

Key Takeaways 

DInos significantly improves upon prior Deep RL agents by combining LSTM 
forecasting with transfer learning. This enables faster convergence, better gen-
eralization, and minimal retraining across different deployments. Our approach 
demonstrates that predictive, learning-based autoscaling can lead to lower costs, 
higher performance, and robust adaptability–making it a compelling choice for 
modern, cloud-native systems. 

These findings open new avenues for generalizing Deep RL-based autoscalers 
beyond Redis, across cloud platforms, and into more complex distributed work-
loads. 

Competing Interests. The authors declare no competing interests relevant to this 
work.
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