
DInos: A Deep Reinforcement Learning
Approach to Generalizable Autoscaling

in Stateless Cloud Applications

Constantinos Bitsakos1(B) , Dimitrios Tsoumakos2 ,
Ioannis Konstantinou3 , and Nectarios Koziris1

1 CSLAB, National Technical University of Athens (NTUA), Athens, Greece
{kbitsak,nkoziris}@cslab.ece.ntua.gr

2 DBLAB, National Technical University of Athens (NTUA), Athens, Greece
dtsouma@mail.ntua.gr

3 Department of Informatics and Telecommunications, University of Thessaly, Volos,
Greece

ikons@uth.gr

Abstract. Efficient autoscaling in Kubernetes (K8s)-managed in-
memory systems like Redis remains a critical challenge, especially
under highly dynamic workloads. Traditional threshold-based mecha-
nisms (e.g., HPA) often fail to anticipate sudden demand surges, leading
to poor performance and inefficient resource use.

We introduce DInos, a Deep Reinforcement Learning (Deep RL)
agent enhanced with LSTM layers and transfer learning, designed for
proactive and adaptive autoscaling in Kubernetes. As an evolution of
our earlier agent DERP, DInos leverages temporal workload modeling
and pre-trained policies to generalize across deployments with mini-
mal retraining. DInos utilizes a customizable reward function balancing
throughput, latency, resource usage, and pod efficiency.

DInos achieves up to 17.3.× higher rewards in simulation and a
5.5.× improvement in real-world K8s-Redis deployments by forecast-
ing spikes, optimizing pod counts and maintaining low latency, providing
a robust autoscaling solution for volatile, cloud-native environments.

Keywords: Kubernetes · Deep Reinforcement Learning · LSTMs ·
Autoscaling Redis

1 Introduction

Kubernetes (K8s) is the de facto standard for orchestrating containerized appli-
cations, offering reactive autoscaling through mechanisms like the Horizontal
Pod Autoscaler (HPA) [37]. However, such threshold-based approaches strug-
gle with dynamic, time-sensitive workloads, often leading to overprovisioning or
increased latency.

c◯ The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
R. Wrembel et al. (Eds.): DEXA 2025, LNCS 16046, pp. 260–275, 2026.
https://doi.org/10.1007/978-3-032-02049-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-02049-9_20&domain=pdf
http://orcid.org/0009-0003-3669-0453
http://orcid.org/0000-0003-4420-8949
http://orcid.org/0000-0003-0352-4988
http://orcid.org/0000-0002-4890-8427
https://doi.org/10.1007/978-3-032-02049-9_20

DInos: Deep RL for Cloud Autoscaling 261

Redis, a stateless in-memory key-value database, is widely adopted in latency-
critical cloud services [29]. Under traffic spikes, reactive autoscaling approaches
frequently fail to respond well enough, resulting in degraded performance.

To overcome these limitations, our previous work introduced DERP [10], a
Deep Reinforcement Learning (Deep RL) autoscaler. DERP significantly outper-
formed traditional threshold-based autoscalers and earlier RL-based autoscaling
methods that used Q-tables or decision trees. In this paper, we further enhance
DERP by introducing a new deep neural network architecture, extending it to
utilize additional performance metrics such as CPU and memory usage, as well
as pod count.

Building on these improvements, we propose our main contribution: DInos,
an advanced LSTM-based Deep RL autoscaling agent that integrates transfer
learning for rapid generalization across deployments [39]. DInos leverages tem-
poral modeling and policy reuse to proactively anticipate workload changes and
optimize resource allocation. Both DERP and DInos are trained with a cus-
tomizable reward function that aims to balance throughput, latency, resource
usage (CPU and memory), and pod efficiency [38], enabling versatile adaptation
to diverse system goals.

DInos achieves up to a .17× improvement over DERP in simulation and a . 5.5×
gain over its non-transfer variant in real Kubernetes-Redis environments, clearly
demonstrating the significant advantages of temporal modeling and policy trans-
fer in proactive autoscaling. Furthermore, its transfer learning capability enables
DInos to quickly and effectively adapt to diverse environments, new applications,
different frameworks, and varying workloads without extensive retraining.

2 Related Work

Kubernetes (K8s) has emerged as a leading platform for cloud-native orchestra-
tion [4], driving substantial research in autoscaling. Traditional scaling mecha-
nisms include the Horizontal Pod Autoscaler (HPA) [37], Vertical Pod Autoscaler
(VPA) [6], and Cluster Autoscaler [3], relying on reactive CPU and memory
thresholds. Such methods often struggle under rapidly changing workloads, caus-
ing resource inefficiencies and latency spikes.

KEDA [19], an event-driven Kubernetes autoscaler, improves flexibility using
external metrics sources such as Kafka or Prometheus. However, its lack of
predictive intelligence and adaptive learning limits its effectiveness with highly
dynamic workloads.

Previous autoscalers employed reinforcement learning (RL) or heuristic-based
approaches, notably Tiramola [34] and VCONF [28], initially targeting NoSQL
or VM-based environments. Classic RL methods employing Q-tables or decision
trees [24, 27, 36] had inherent scalability limitations and insufficient generaliza-
tion.

Our earlier work, DERP [10], significantly outperformed these threshold-
based and classical RL methods by employing Deep Q-Learning with neural
networks. DERP introduced fine-grained autoscaling policies based on through-
put, latency, and resource metrics. Despite these improvements, DERP lacked

262 C. Bitsakos et al.

temporal modeling and knowledge transfer mechanisms, restricting its predictive
accuracy and generalizability.

Other ML-based autoscalers, such as Imdoukh et al. [16] and the Bi-LSTM
system by Dang-Quang and Yoo [11], enhanced workload forecasting but lacked
an integrated adaptive RL framework, limiting responsiveness.

Research by Toka et al. [33] and Koukis et al. [18] explored predictive
scaling and network overhead impacts, respectively. Studies like SCADIS [17],
Harmonia [40], and performance benchmarks [9, 22, 30] provided insights into
Redis-specific scenarios. Additional work investigated node-level elasticity [32],
extreme-scale workloads [21], and dynamic cloud scaling strategies [7, 25].

Advancements in LSTM network optimization [20, 39], and Deep RL method-
ologies [15, 38] underscored the importance of combining temporal forecasting
with RL. Transfer learning has also been recognized as critical for rapid gen-
eralization across deployments [26]. Kubernetes-based ML management frame-
works, like Scanflow-K8s [23] and performance studies by Fogli et al. [12], further
emphasize the need for intelligent autoscaling.

Our proposed solution, DInos, significantly surpasses even the enhanced
DERP architecture by integrating LSTM-based temporal forecasting, Double
Deep Q-Learning, and transfer learning into a single agent. Unlike previous
methods that treat forecasting and scaling separately, DInos learns proactive
and predictive scaling strategies simultaneously. DInos demonstrates a substan-
tial cumulative reward improvement of .17.3× over DERP in simulations and
achieves a .5.5× reward gain compared to a non-transfer learning baseline in
real Kubernetes/Redis deployments. These improvements result directly from
DInos’ capability to forecast resource needs, optimize provisioning proactively,
and adapt rapidly to previously unseen workloads.

In summary, DInos represents an adaptive, intelligent autoscaling framework
capable of leveraging historical workload patterns and generalizing across envi-
ronments, establishing a robust solution for dynamic cloud-native autoscaling.

3 System Model and Background

3.1 Kubernetes and Redis Setup

Our system is deployed on a Kubernetes (K8s) cluster running a stateless Redis
environment (Fig. 1). Redis, being an in-memory key-value store, is well-suited
for dynamic autoscaling due to its statelessness and fast response times. Kuber-
netes orchestrates Redis pods and enables elastic scaling in response to workload
fluctuations.

Metrics such as CPU-memory usage and latency are retrieved directly from
the Kubernetes Metrics Server [5] and provided to our Deep RL agents for scaling

DInos: Deep RL for Cloud Autoscaling 263

decisions. Prometheus [2] and Grafana [1] were used only for monitoring and
visualization. Our custom autoscaler interacts with the control plane to apply
scaling actions via the kube-api-server.

Fig. 1. System architecture of our proposed DInos autoscaling agent within a Kuber-
netes cluster. The agent interacts with the Kubernetes control plane by receiving time-
series metrics from Redis pods via the Metrics Server. Based on these inputs, DInos
issues proactive scaling decisions–adding or removing pods–by communicating with the
kube-api-server. The agent learns workload patterns using deep reinforcement learn-
ing, enabling intelligent resource allocation that balances performance and cost across
dynamic environments.

3.2 Deep Reinforcement Learning Agents

We compare two Deep RL-based agents: a dense-layer agent (enhanced DERP)
and an LSTM agent enhanced with transfer learning (DInos). Both agents take
a state vector of system metrics–load, CPU usage, memory usage, latency, and
pod count–and return scaling actions.

DERP Agent (Dense). DERP enchance our previous work [10] by using
two dense layers (128 units each) with ReLU activations. It is trained using a
Double DQN [8] to avoid overestimation of Q-values and provides a baseline for
comparison, This architecture is shown in Fig. 2.

– Input: System state vector
– Hidden: Two dense layers with 128 neurons
– Output: Q-values for scaling actions

264 C. Bitsakos et al.

Fig. 2. Double Deep Q-Network
(Double DQN) architecture used by
both DERP and DInos for stable
learning and decision-making. It
separates action selection (online net-
work) from value estimation (target
network), mitigating Q-value over-
estimation and improving training
stability. This architecture supports
discrete action spaces, such as scaling
decisions for pod count.

Fig. 3. LSTM-based neural network
architecture employed by DInos. The
LSTM layers are designed to cap-
ture long-term temporal dependencies
in workload metrics, including peri-
odic trends and abrupt spikes. This
enables the agent to proactively scale
resources by forecasting future system
states rather than reacting to current
load alone.

DInos Agent (LSTM + Transfer Learning). DInos extends the dense-layer-
based DERP variant with LSTM layers and transfer learning. It leverages these
LSTM layers to effectively model temporal patterns in workloads. Initially, a
base model is extensively trained in a simulation environment whose parameters
and load scenarios have been carefully formalized based on extensive real-world
experiments and observations (Fig. 7, right). This pretrained model thus cap-
tures generalized scaling policies applicable to various workload patterns. DInos
is subsequently initialized with this pretrained model when deployed in new
environments, enabling it to rapidly adapt to different workloads with minimal
additional training. Fine-tuning occurs on the target workload using a smaller
batch size of 16, significantly accelerating adaptation and ensuring robust per-
formance across diverse real-world deployment scenarios.

– Input: Sequence of past states
– LSTM: Memory layers with fine-tuning
– Output: Q-values for scaling decisions

The Spike Factor: While DERP reacts to general workload trends, it struggles
with sudden spikes. DInos’ LSTM layers anticipate these patterns using temporal
memory, adjusting resources proactively–particularly effective for flash-sale or
seasonal traffic surges (Figs. 3, 4).

DInos: Deep RL for Cloud Autoscaling 265

3.3 Reward Function

The reward function balances five objectives:

. reward = load_factor · next_load − latency_factor · next_latency
− pods_penalty · num_pods − cpu_penalty · cpu − memory_penalty · memory

(1)

This reward formulation is designed to highlight the versatility and capability
of our agents in learning optimal scaling strategies under multiple objectives.
While this particular reward function focuses on balancing throughput, latency,
and resource consumption, it is fully customizable. System operators or cloud
vendors can easily redefine the reward structure to reflect specific operational
goals or application priorities–such as cost minimization, latency guarantees, or
energy efficiency. DInos and enhanced DERP retain their effectiveness across
such formulations, showcasing their adaptability to diverse autoscaling policies
and deployment environments.

3.4 Simulation Environment

Workload patterns are generated using a sinusoidal base, Gaussian noise, and a
sharp spike between timesteps 1500âĂŞ1600 to emulate bursty real-world traffic.

Fig. 4. Input metrics generated by the simulation environment: load, CPU usage, mem-
ory usage, and latency over 5000 timesteps. The load follows a sinusoidal pattern with
added Gaussian noise and a sharp spike between timesteps 1500 and 1600, simulating
a burst workload. These metrics form the state input for both enhanced DERP and
DInos, testing their ability to maintain performance under dynamic and unpredictable
conditions.

266 C. Bitsakos et al.

CPU, memory, and latency metrics are modeled accordingly after observing real-
world behaviors (see Fig. 4 and the right subfigure of Fig. 7).

3.5 Training Details

Both agents are trained using the Huber loss function [14] for stability. A Dou-
ble DQN framework (Fig. 2) is used to decouple action selection from value
estimation and improve learning in noisy environments.

3.6 DInos Autoscaling Algorithm

Algorithm 1 DInos: Transfer Learning Autoscaler
1: Input: Pretrained model (optional), current system state . st
2: Initialize Q-network (pretrained if using DInos)
3: Initialize target network and replay buffer . R
4: for each timestep . t do
5: Observe . st
6: if exploration condition met then
7: Select random action . at

8: else
9: Select action . at = argmaxa Q(st, a)

10: end if
11: Apply . at, observe . rt, . st+1

12: Store .(st, at, rt, st+1) in . R
13: Sample minibatch from . R
14: for each .(st, at, rt, st+1) in minibatch do
15: Compute target: . y = rt + γ maxa Q̂(st+1, a)
16: if transfer learning is enabled then
17: . Q(st, at) ← (1 − α)Q(st, at) + αy
18: else
19: . Q(st, at) ← Q(st, at) + η(y − Q(st, at))
20: end if
21: end for
22: Periodically update target network . Q̂
23: end for

4 Implementation

4.1 Training Setup

We trained two Deep RL agents–an enhanced version of DERP (with dense
layers) and DInos (with LSTM and transfer learning)–using system metrics col-
lected from a Redis cluster orchestrated by Kubernetes. The input state for each
agent includes:

DInos: Deep RL for Cloud Autoscaling 267

– Load (request rate to Redis),
– CPU usage,
– Memory usage,
– Latency,
– Number of pods.

The environment simulated dynamic workloads with oscillating patterns and
abrupt traffic spikes (see Fig. 4), allowing agents to learn both reactive and proac-
tive autoscaling behavior.

Agents selected one of three actions–add, remove, or maintain pods–every
15 s. The reward was computed at each timestep using the following weighted
linear function:

. reward = 3.0 · next_load − 5.0 · next_latency
− 10.0 · num_pods − 0.5 · next_cpu_usage − 0.5 · next_memory_usage

(2)

This formulation promotes high system throughput (via the positive weight
on load) and low latency, while discouraging over-provisioning and excessive
resource usage. The specific weights were determined through empirical tuning
and sensitivity analysis during simulation experiments. These coefficients are not
fixed and can be adapted to suit different infrastructure priorities, such as cost
minimization or latency-critical performance.

4.2 Kubernetes Integration

To enable real-time scaling by the agents, we disabled the default Horizontal Pod
Autoscaler (HPA) and created a custom Python environment class that directly
interfaces with the Kubernetes API. This class executes scaling actions issued
by the agent and fetches current system metrics from the Kubernetes Metrics
Server [5].

The cluster is configured with stateless Redis pods, ensuring that pod addi-
tion or removal can be handled gracefully without service disruption.

4.3 Challenges and Observations

Several technical challenges emerged during development:

– Latency sensitivity: Capturing realistic latency patterns required simu-
lating spikes during load surges, guided by latency trends observed in the
real-world environment. This helped ensure that the simulation environment
reflected realistic system behavior and reinforced the agents ability to respond
appropriately.

– Temporal forecasting: DERP, even the enchanced version, was unable to
anticipate future workload shifts. In contrast, DInos successfully leveraged
LSTM layers to recognize and prepare for recurring spikes, improving respon-
siveness (see Fig. 3).

268 C. Bitsakos et al.

– Cost-performance tradeoff: The pod penalty in the reward function
helped balance throughput against overprovisioning, though it required care-
ful tuning to avoid excessive scaling.

Despite these challenges, both agents were successfully trained in the sim-
ulated environment. DInos demonstrated superior performance by adapting to
future workload conditions through transfer learning and temporal modeling.
Full results are discussed in Sect. 5.

5 Experimental Results
5.1 Experimental Setup

Experiments were conducted on a Kubernetes cluster running on a large Ubuntu
20.04 VM with the following specs:
– RAM: 191 GiB, CPU: 32 vCPUs (Skylake, 2 GHz), GPU: Cirrus Logic,

Disk: 750 GiB (EXT4)

Using Kubernetes on such a high-resource VM allowed the setup to emulate a
full-scale cluster. We used Python 3.8 and PyTorch, and recorded load, latency,
CPU-memory usage and pod count for evaluation.

5.2 Autoscaling Agents Compared

We evaluate two Deep RL-based autoscaling agents:
– Enhanced DERP (Dense): A Deep Q-learning agent using dense layers
– DInos (LSTM + Transfer): An advanced LSTM-based agent that lever-

ages transfer learning for faster adaptation

5.3 Simulation Results

In the simulation environment our agents achieved:

– DERP: .2.2× 105 reward
– DInos: .3.8× 106 reward – a .17.3× improvement

Figure 4 illustrates the simulation environment, which features sinusoidal
workloads combined with random noise and a sharp demand spike. Under these
challenging conditions, DInos demonstrates a significant advantage over DERP,
both in terms of accumulated rewards and system responsiveness. This supe-
riority arises from DInos’ effective forecasting and proactive scaling strategies.
Detailed performance metrics and comparative analyses can also be found in
Figs. 5 and 6. Specifically, Fig. 6 (right) clearly illustrates DInos’ adaptive scaling
capabilities, as it dynamically adjusts pod counts in response to workload fluc-
tuations. The figure demonstrates how DInos efficiently balances resource usage
and latency by proactively predicting workload patterns and swiftly responding
to spikes, showcasing the adaptability and robustness of our agent under volatile
simulated conditions.

DInos: Deep RL for Cloud Autoscaling 269

Fig. 5. Comparison of total accumulated rewards between DERP and DInos at different
training checkpoints (1k, 2k, 5k, 10k, and 20k steps). While DERP’s performance
improves with training, it plateaus early. In contrast, DInos, leveraging LSTM layers
and transfer learning, achieves significantly higher rewards across all training durations,
highlighting its superior adaptability and learning efficiency in dynamic environments.

Fig. 6. Evaluation of DERP (left) and DInos (right) based on runtime metrics over
5000 timesteps. DERP responds reactively, often under- or over-provisioning during
spikes. DInos, using LSTM layers and transfer learning, shows superior stability by
anticipating load fluctuations and adapting pod count accordingly. The result is lower
average latency, better CPU and memory efficiency, and higher throughput under vary-
ing load.

5.4 Real-World Results

In real Kubernetes/Redis deployments, DInos achieved:

– DInos: .308,000 reward
– Baseline LSTM agent (no transfer): .56,000 reward

In real Kubernetes/Redis deployments, DInos achieved a cumulative reward
of .308,000, significantly outperforming its LSTM-based baseline without transfer
learning, which attained a reward of only .56,000. Due to DERP’s relatively lower
performance in the simulation scenarios, we excluded it from real-world eval-

270 C. Bitsakos et al.

uations and instead focused on comparing DInos with its closest non-transfer-
learning variant. This comparison demonstrates a remarkable .5.5× improvement,
underscoring the practical benefits of incorporating transfer learning and tem-
poral modeling into our RL framework.

Figure 7 (right) provides detailed metrics from the live Kubernetes/Redis
deployment, highlighting the real-world adaptability of DInos. The figure explic-
itly demonstrates how DInos proactively manages resource provisioning by fore-
casting load variations and promptly scaling pod counts, maintaining stable
resource utilization and consistently low latency despite noisy and spiky traffic.
This confirms that DInos can rapidly adapt to diverse production workloads
with minimal retraining effort, thereby validating the practical effectiveness and
robustness of our proposed solution in dynamic cloud-native environments.

Fig. 7. Real-world evaluation of DInos in a live Kubernetes/Redis deployment. Left:
Cumulative reward over 2000 timesteps, comparing DInos against its LSTM-only base-
line. DInos achieves a total reward of 308,000, outperforming the LSTM-only version
by 5.5. ×, showcasing the effectiveness of transfer learning in accelerating adaptation to
production environments. Right: Temporal system behavior of DInos, demonstrating
how the agent dynamically adjusts the number of Redis pods in response to noisy and
spiky load patterns. The figure shows that DInos maintains low latency and stable
resource usage while proactively scaling based on predicted workload trends.

5.5 Key Insights

– Load Forecasting: DInos anticipates spikes and scales preemptively via
LSTM memory, unlike DERP which reacts post-factum.

– Transfer Learning: DInos requires minimal retraining and adapts quickly
to new workloads, outperforming baseline LSTM agents in both accuracy and
speed.

– Resource Efficiency: DInos minimizes pod count while maintaining low
latency and high throughput.

DInos: Deep RL for Cloud Autoscaling 271

5.6 Performance Summary

Figure 8 highlights how DInos consistently outperforms the enchanced DERP
agent across all key metrics–accumulated reward, CPU usage, memory usage,
and system latency–in both simulated and real-world Kubernetes/Redis deploy-
ments. These metrics collectively demonstrate DInos’ superior adaptability, fore-
casting ability, and efficiency under volatile workloads.

In simulation, DInos achieved a cumulative reward of .3.8 × 106, compared
to just .2.2 × 105 for DERP, representing a 17.3.× improvement. This dras-
tic gain reflects DInos’ capacity to anticipate spikes and proactively allocate
resources using its LSTM-enhanced decision-making. In real-world experiments,
DInos outperformed a non-transfer LSTM baseline with a reward of . 308,000
versus .56,000, demonstrating a 5.5. × gain in environments with real noise and
system complexity.

Notably, these improvements are achieved while maintaining lower average
CPU and memory consumption and significantly reducing latency fluctuations.
This confirms that DInos does not simply overprovision resources to gain perfor-
mance but instead learns to scale intelligently, minimizing cost while maximizing
responsiveness.

The underlying reward function, which balances system throughput, latency,
and resource usage, serves as a demonstration of the agent’s capability to opti-
mize under multi-objective conditions. However, this formulation is intentionally
flexible: system operators or cloud vendors can customize the reward structure to
reflect domain-specific policies–such as strict latency bounds, energy-aware scal-
ing, or monetary budget constraints. Both DERP and DInos maintain robust
performance across such variations, underscoring their versatility and gener-
alizability in real-world autoscaling scenarios.

Fig. 8. Summary table comparing DERP and DInos across simulation and real-world
deployments. Metrics include accumulated reward, average CPU and memory usage,
and system latency. DInos consistently outperforms DERP in both environments,
demonstrating better generalization, resource efficiency, and responsiveness to work-
load changes–especially in scenarios involving sharp demand spikes.

6 Discussion and Conclusion

Our experimental results confirm that Deep Reinforcement Learning (Deep RL)
can outperform traditional autoscaling strategies in Kubernetes environments.

272 C. Bitsakos et al.

While DERP (dense-layer-based) improved over threshold-based baselines, it
lacked the foresight needed for handling workload volatility. In contrast, DInos,
our LSTM-based agent enchanced transfer learning, learned to proactively scale
resources by identifying temporal workload patterns and leveraging knowledge
from prior deployments.

In simulation, DInos achieved a .17.3× improvement in accumulated reward
over DERP, and in real-world Redis deployments, it delivered .5.5× better per-
formance compared to a baseline LSTM agent without transfer learning. These
gains reflect more efficient resource utilization, lower latency, and better respon-
siveness under unpredictable workloads.

Future Directions

Future research can explore extending DInos to more complex environments:

– Stateful Applications: Applying DInos to stateful systems like Cassandra
introduces new challenges such as data replication, consistency, and safe pod
identity management due to the constraints of StatefulSets. Transfer learning
can accelerate adaptation in such environments by leveraging prior knowledge
to reduce retraining overhead.

– Expanded Metrics: Incorporating disk I/O, network bandwidth, or storage
usage could provide a more holistic view of system health and enable even
finer-grained scaling decisions.

– Advanced RL Architectures: Exploring algorithms like Dueling DQN [35],
PPO [31], or SAC [13] may improve stability or allow continuous action
spaces, especially in multi-objective environments.

Key Takeaways

DInos significantly improves upon prior Deep RL agents by combining LSTM
forecasting with transfer learning. This enables faster convergence, better gen-
eralization, and minimal retraining across different deployments. Our approach
demonstrates that predictive, learning-based autoscaling can lead to lower costs,
higher performance, and robust adaptability–making it a compelling choice for
modern, cloud-native systems.

These findings open new avenues for generalizing Deep RL-based autoscalers
beyond Redis, across cloud platforms, and into more complex distributed work-
loads.

Competing Interests. The authors declare no competing interests relevant to this
work.

DInos: Deep RL for Cloud Autoscaling 273

References

1. Grafana: The open platform for analytics and monitoring (2021). https://grafana.
com. Accessed 21 Oct 2024

2. Prometheus: Monitoring system and time series database (2021). https://
prometheus.io. Accessed 21 Oct 2024

3. Cluster autoscaler (2024). https://github.com/kubernetes/autoscaler/blob/
master/cluster-autoscaler/README.md. Accessed 22 Oct 2024

4. Horizontal pod autoscaler (2024). https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/. Accessed 22 Oct 2024

5. Kubernetes metrics server (2024). https://github.com/kubernetes-sigs/metrics-
server. Accessed 21 Oct 2024

6. Vertical pod autoscaler. https://kubernetes.io/docs/concepts/workloads/pods/
pod-lifecycle/#vertical-pod-autoscaling (2024). Accessed 22 Oct 2024

7. Ardagna, C., et al.: A competitive scalability approach for cloud architectures.
IEEE Trans. Serv. Comput. (2014). https://doi.org/10.1109/TSC.2014.2372786

8. Bell-Thomas, A.H.: Exploring variational deep Q networks. arXiv preprint
arXiv:2004.05615 (2020). https://arxiv.org/abs/2004.05615

9. Ben Seghier, N., Kazar, O.: Performance benchmarking and comparison of NoSQL
databases: Redis vs MongoDB vs Cassandra using YCSB tool. IEEE (2021).
https://doi.org/10.1109/ICRAMI52622.2021.9585956

10. Bitsakos, C., Konstantinou, I., Koziris, N.: Derp: A deep reinforcement learning
cloud system for elastic resource provisioning. In: 2018 IEEE International Confer-
ence on Cloud Computing Technology and Science (CloudCom), pp. 21–29. IEEE
(2018)

11. Dang-Quang, N.M., Yoo, M.: Deep learning-based autoscaling using bidirectional
long short-term memory for Kubernetes. Appl. Sci. 11(9) (2021). https://doi.org/
10.3390/app11093835

12. Fogli, M., et al.: Performance evaluation of Kubernetes distributions in feder-
ated cloud infrastructure. In: IEEE International Conference on Cloud Computing
(2021). https://doi.org/10.1109/CLOUD.2021.00073

13. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maxi-
mum entropy Deep Reinforcement Learning with a stochastic actor. In: Proceed-
ings of the 35th International Conference on Machine Learning (ICML), pp. 1861–
1870. JMLR.org (2018)

14. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35(1),
73–101 (1964)

15. Ikemoto, J., et al.: Application of deep reinforcement learning to control prob-
lems. In: International Symposium on Control, Automation, and Systems (2019).
https://doi.org/10.23919/ICCAS.2019.8912116

16. Imdoukh, M., Ahmad, I., Alfailakawi, M.G.: Machine learning-based auto-scaling
for containerized applications. Neural Comput. Appl. 32(13), 9745–9760 (2019).
https://doi.org/10.1007/s00521-019-04507-z

17. Kimm, H., Li, Z., Kimm, H.: Scadis: supporting reliable scalability in Redis repli-
cation on demand. IEEE (2017). https://doi.org/10.1109/SmartCloud.2017.9

18. Koukis, G., Skaperas, S., Kapetanidou, I.A., Mamatas, L., Tsaoussidis, V.: Per-
formance evaluation of kubernetes networking approaches across constraint edge
environments (2024). https://arxiv.org/abs/2401.07674

19. Kubernetes-based Event Driven Autoscaling: KEDA: Kubernetes-based event
driven autoscaling. https://keda.sh/ (2024). Accessed 31 Mar 2024

https://grafana.com
https://grafana.com
https://grafana.com
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/README.md
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/README.md
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/README.md
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/README.md
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/README.md
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/README.md
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/README.md
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/README.md
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/README.md
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/README.md
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/README.md
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#vertical-pod-autoscaling
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#vertical-pod-autoscaling
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#vertical-pod-autoscaling
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#vertical-pod-autoscaling
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#vertical-pod-autoscaling
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#vertical-pod-autoscaling
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#vertical-pod-autoscaling
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#vertical-pod-autoscaling
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#vertical-pod-autoscaling
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#vertical-pod-autoscaling
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#vertical-pod-autoscaling
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#vertical-pod-autoscaling
https://doi.org/10.1109/TSC.2014.2372786
https://doi.org/10.1109/TSC.2014.2372786
https://doi.org/10.1109/TSC.2014.2372786
https://doi.org/10.1109/TSC.2014.2372786
https://doi.org/10.1109/TSC.2014.2372786
https://doi.org/10.1109/TSC.2014.2372786
https://doi.org/10.1109/TSC.2014.2372786
https://doi.org/10.1109/TSC.2014.2372786
http://arxiv.org/abs/2004.05615
https://arxiv.org/abs/2004.05615
https://arxiv.org/abs/2004.05615
https://arxiv.org/abs/2004.05615
https://arxiv.org/abs/2004.05615
https://arxiv.org/abs/2004.05615
https://arxiv.org/abs/2004.05615
https://doi.org/10.1109/ICRAMI52622.2021.9585956
https://doi.org/10.1109/ICRAMI52622.2021.9585956
https://doi.org/10.1109/ICRAMI52622.2021.9585956
https://doi.org/10.1109/ICRAMI52622.2021.9585956
https://doi.org/10.1109/ICRAMI52622.2021.9585956
https://doi.org/10.1109/ICRAMI52622.2021.9585956
https://doi.org/10.1109/ICRAMI52622.2021.9585956
https://doi.org/10.1109/ICRAMI52622.2021.9585956
https://doi.org/10.3390/app11093835
https://doi.org/10.3390/app11093835
https://doi.org/10.3390/app11093835
https://doi.org/10.3390/app11093835
https://doi.org/10.3390/app11093835
https://doi.org/10.3390/app11093835
https://doi.org/10.1109/CLOUD.2021.00073
https://doi.org/10.1109/CLOUD.2021.00073
https://doi.org/10.1109/CLOUD.2021.00073
https://doi.org/10.1109/CLOUD.2021.00073
https://doi.org/10.1109/CLOUD.2021.00073
https://doi.org/10.1109/CLOUD.2021.00073
https://doi.org/10.1109/CLOUD.2021.00073
https://doi.org/10.1109/CLOUD.2021.00073
https://doi.org/10.23919/ICCAS.2019.8912116
https://doi.org/10.23919/ICCAS.2019.8912116
https://doi.org/10.23919/ICCAS.2019.8912116
https://doi.org/10.23919/ICCAS.2019.8912116
https://doi.org/10.23919/ICCAS.2019.8912116
https://doi.org/10.23919/ICCAS.2019.8912116
https://doi.org/10.23919/ICCAS.2019.8912116
https://doi.org/10.23919/ICCAS.2019.8912116
https://doi.org/10.1007/s00521-019-04507-z
https://doi.org/10.1007/s00521-019-04507-z
https://doi.org/10.1007/s00521-019-04507-z
https://doi.org/10.1007/s00521-019-04507-z
https://doi.org/10.1007/s00521-019-04507-z
https://doi.org/10.1007/s00521-019-04507-z
https://doi.org/10.1007/s00521-019-04507-z
https://doi.org/10.1007/s00521-019-04507-z
https://doi.org/10.1007/s00521-019-04507-z
https://doi.org/10.1109/SmartCloud.2017.9
https://doi.org/10.1109/SmartCloud.2017.9
https://doi.org/10.1109/SmartCloud.2017.9
https://doi.org/10.1109/SmartCloud.2017.9
https://doi.org/10.1109/SmartCloud.2017.9
https://doi.org/10.1109/SmartCloud.2017.9
https://doi.org/10.1109/SmartCloud.2017.9
https://doi.org/10.1109/SmartCloud.2017.9
https://arxiv.org/abs/2401.07674
https://arxiv.org/abs/2401.07674
https://arxiv.org/abs/2401.07674
https://arxiv.org/abs/2401.07674
https://arxiv.org/abs/2401.07674
https://arxiv.org/abs/2401.07674
https://keda.sh/
https://keda.sh/
https://keda.sh/

274 C. Bitsakos et al.

20. Kuchaiev, O., Ginsburg, B.: Factorization tricks for LSTM networks. arXiv
preprint arXiv:1703.10722 (2017). https://arxiv.org/abs/1703.10722

21. Lankes, S.: Hermitcore: a unikernel for extreme scale computing. ACM (2016).
https://doi.org/10.1145/2931088.2931093

22. Li, P., Luo, B., Zhu, W., Xu, H.: Cluster-based distributed dynamic cuckoo filter
system for Redis. Taylor & Francis (2019). https://doi.org/10.1080/17445760.2019.
1599889

23. Liu, P., et al.: Scanflow-k8s: Agent-based framework for autonomic management
and supervision of ml workflows in Kubernetes clusters. In: International Con-
ference on Machine Learning and Applications (2020). https://doi.org/10.1109/
ICMLA.2020.00041

24. Lolos, K., Konstantinou, I., Kantere, V., Koziris, N.: Elastic management of
cloud applications using adaptive reinforcement learning. In: 2017 IEEE Inter-
national Conference on Big Data (Big Data), pp. 203–212 (2017). https://api.
semanticscholar.org/CorpusID:19567764

25. Malhotra, M., et al.: Dynamic scaling of web services for xen based virtual cloud
environment. Int. J. Cloud Comput. (2020). https://doi.org/10.1504/IJCC.2020.
10034234

26. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)

27. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, New York, NY, USA (1994)

28. Rao, J., Bu, X., Xu, C., Wang, L., Yin, G.: VCONF: a reinforcement learning
approach to virtual machines auto-configuration. In: Proceedings of the 6th Inter-
national Conference on Autonomic Computing (ICAC 2009), pp. 137–146. ACM
(2009)

29. Sanfilippo, S., Stancliff, M.: Redis: A high-performance, in-memory, key-value
store. Redis Labs (2013). https://redis.io/

30. Sanka, A.I., Chowdhury, M., Cheung, R.: Efficient high-performance FPGA-REDIS
hybrid NoSQL caching system for blockchain scalability. Elsevier (2021). https://
doi.org/10.1016/j.comcom.2021.01.017

31. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

32. Thurgood, B., Lennon, R.G.: Cloud computing with Kubernetes cluster elastic
scaling. ACM (2019). https://doi.org/10.1145/3341325.3341995

33. Toka, L., Dobreff, G., Fodor, B., Sonkoly, B.: Machine learning-based scaling man-
agement for kubernetes edge clusters. IEEE Trans. Netw. Serv. Manage. 18(1),
958–972 (2021). https://doi.org/10.1109/TNSM.2021.3052837

34. Tsoumakos, D., Konstantinou, I., Boumpouka, C., Sioutas, S., Koziris, N.: Auto-
mated, elastic resource provisioning for NoSQL clusters using TIRAMOLA. In:
13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing (CCGrid), pp. 34–41. IEEE (2013)

35. Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., de Freitas, N.:
Dueling network architectures for Deep Reinforcement Learning. In: Proceedings
of the 33rd International Conference on Machine Learning (ICML), pp. 1995–2003.
JMLR.org (2016)

36. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)
37. Yeom, Y.J., Kim, T., Park, D.H., Kim, S.: Horizontal pod autoscaling in Kuber-

netes for elastic container orchestration. Sensors 20(16), 4621 (2020)
38. Yu, K., Liu, Y., Wang, Q.: Review of deep reinforcement learning. IEEE Access

(2020). https://doi.org/10.1109/ACCESS.2020.2979650

http://arxiv.org/abs/1703.10722
https://arxiv.org/abs/1703.10722
https://arxiv.org/abs/1703.10722
https://arxiv.org/abs/1703.10722
https://arxiv.org/abs/1703.10722
https://arxiv.org/abs/1703.10722
https://arxiv.org/abs/1703.10722
https://doi.org/10.1145/2931088.2931093
https://doi.org/10.1145/2931088.2931093
https://doi.org/10.1145/2931088.2931093
https://doi.org/10.1145/2931088.2931093
https://doi.org/10.1145/2931088.2931093
https://doi.org/10.1145/2931088.2931093
https://doi.org/10.1145/2931088.2931093
https://doi.org/10.1080/17445760.2019.1599889
https://doi.org/10.1080/17445760.2019.1599889
https://doi.org/10.1080/17445760.2019.1599889
https://doi.org/10.1080/17445760.2019.1599889
https://doi.org/10.1080/17445760.2019.1599889
https://doi.org/10.1080/17445760.2019.1599889
https://doi.org/10.1080/17445760.2019.1599889
https://doi.org/10.1080/17445760.2019.1599889
https://doi.org/10.1109/ICMLA.2020.00041
https://doi.org/10.1109/ICMLA.2020.00041
https://doi.org/10.1109/ICMLA.2020.00041
https://doi.org/10.1109/ICMLA.2020.00041
https://doi.org/10.1109/ICMLA.2020.00041
https://doi.org/10.1109/ICMLA.2020.00041
https://doi.org/10.1109/ICMLA.2020.00041
https://doi.org/10.1109/ICMLA.2020.00041
https://api.semanticscholar.org/CorpusID:19567764
https://api.semanticscholar.org/CorpusID:19567764
https://api.semanticscholar.org/CorpusID:19567764
https://api.semanticscholar.org/CorpusID:19567764
https://api.semanticscholar.org/CorpusID:19567764
https://api.semanticscholar.org/CorpusID:19567764
https://doi.org/10.1504/IJCC.2020.10034234
https://doi.org/10.1504/IJCC.2020.10034234
https://doi.org/10.1504/IJCC.2020.10034234
https://doi.org/10.1504/IJCC.2020.10034234
https://doi.org/10.1504/IJCC.2020.10034234
https://doi.org/10.1504/IJCC.2020.10034234
https://doi.org/10.1504/IJCC.2020.10034234
https://doi.org/10.1504/IJCC.2020.10034234
https://redis.io/
https://redis.io/
https://redis.io/
https://doi.org/10.1016/j.comcom.2021.01.017
https://doi.org/10.1016/j.comcom.2021.01.017
https://doi.org/10.1016/j.comcom.2021.01.017
https://doi.org/10.1016/j.comcom.2021.01.017
https://doi.org/10.1016/j.comcom.2021.01.017
https://doi.org/10.1016/j.comcom.2021.01.017
https://doi.org/10.1016/j.comcom.2021.01.017
https://doi.org/10.1016/j.comcom.2021.01.017
https://doi.org/10.1016/j.comcom.2021.01.017
https://doi.org/10.1016/j.comcom.2021.01.017
http://arxiv.org/abs/1707.06347
https://doi.org/10.1145/3341325.3341995
https://doi.org/10.1145/3341325.3341995
https://doi.org/10.1145/3341325.3341995
https://doi.org/10.1145/3341325.3341995
https://doi.org/10.1145/3341325.3341995
https://doi.org/10.1145/3341325.3341995
https://doi.org/10.1145/3341325.3341995
https://doi.org/10.1109/TNSM.2021.3052837
https://doi.org/10.1109/TNSM.2021.3052837
https://doi.org/10.1109/TNSM.2021.3052837
https://doi.org/10.1109/TNSM.2021.3052837
https://doi.org/10.1109/TNSM.2021.3052837
https://doi.org/10.1109/TNSM.2021.3052837
https://doi.org/10.1109/TNSM.2021.3052837
https://doi.org/10.1109/TNSM.2021.3052837
https://doi.org/10.1109/ACCESS.2020.2979650
https://doi.org/10.1109/ACCESS.2020.2979650
https://doi.org/10.1109/ACCESS.2020.2979650
https://doi.org/10.1109/ACCESS.2020.2979650
https://doi.org/10.1109/ACCESS.2020.2979650
https://doi.org/10.1109/ACCESS.2020.2979650
https://doi.org/10.1109/ACCESS.2020.2979650
https://doi.org/10.1109/ACCESS.2020.2979650

DInos: Deep RL for Cloud Autoscaling 275

39. Yu, Y., Si, X., Hu, Z., Zhang, J.: A review of recurrent neural networks: LSTM
cells and network architectures. Neural Comput. (2019). https://doi.org/10.1162/
neco_a_01199

40. Zhu, H., Bai, Z., Li, J.: Harmonia: Near-linear scalability for replicated stor-
age with in-network conflict detection. ACM (2019). https://doi.org/10.14778/
3368289.3368301

https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.14778/3368289.3368301
https://doi.org/10.14778/3368289.3368301
https://doi.org/10.14778/3368289.3368301
https://doi.org/10.14778/3368289.3368301
https://doi.org/10.14778/3368289.3368301
https://doi.org/10.14778/3368289.3368301
https://doi.org/10.14778/3368289.3368301

	DInos: A Deep Reinforcement Learning Approach to Generalizable Autoscaling in Stateless Cloud Applications
	1 Introduction
	2 Related Work
	3 System Model and Background
	3.1 Kubernetes and Redis Setup
	3.2 Deep Reinforcement Learning Agents
	3.3 Reward Function
	3.4 Simulation Environment
	3.5 Training Details
	3.6 DInos Autoscaling Algorithm

	4 Implementation
	4.1 Training Setup
	4.2 Kubernetes Integration
	4.3 Challenges and Observations

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Autoscaling Agents Compared
	5.3 Simulation Results
	5.4 Real-World Results
	5.5 Key Insights
	5.6 Performance Summary

	6 Discussion and Conclusion
	References

