DAPHNE Runtime: Harnessing Parallelism for
Integrated Data Analysis Pipelines

Aristotelis Vontzalidis!, Stratos Psomadakis!, Constantinos Bitsakos!, Mark
Dokter?, Kevin Innerebner?, Patrick Damme?*, Matthias Boehm*, Florina
Ciorba®, Ahmed Eleliemy®, Vasileios Karakostas®, Ales Zamuda’, and
Dimitrios Tsoumakos!

1 ICCS-National Technical University of Athens
2 Know-Center GmbH/TU Graz
3 Graz University of Technology
4 Technische Universitit Berlin
5 University of Basel
6 University of Athens
7 University of Maribor

Abstract. Integrated data analysis pipelines combine rigorous data man-
agement and processing, high-performance computing and machine learn-
ing tasks. While these systems and operations share many compilation
and runtime techniques, data analysts and scientists are currently deal-
ing with multiple systems for each stage of their pipeline. DAPHNE is an
open and extensible system infrastructure for such pipelines, including
language abstractions, compilation and runtime techniques, multi-level
scheduling, hardware accelerators and computational storage. In this
demonstration, we focus on the DAPHNE runtime that provides the im-
plementation of kernels for local, distributed and accelerator-enhanced
operations, vectorized execution, integration with existing frameworks
and libraries for productivity and interoperability, as well as efficient
I/O and communication primitives.

Keywords: Machine Learning Systems - High Performance Computing
- Vectorized Execution - Distributed Systems

1 Introduction

Complex end-to-end analysis requirements of modern analytics create a definite
trend towards integrated pipelines where data management, high-performance
computing and ML tasks are arbitrarily “mixed-and-matched”. Distinctive such
use-cases or domains include ML-assisted simulations, exploratory query process-
ing and data cleaning, etc. The DAPHNE projectﬁ is building an open and exten-
sible system infrastructure for such integrated data analysis pipelines. DAPHNE
[1] is built on top of MLIR [2], allowing seamless integration with existing appli-
cations and runtime libraries while also enabling extensibility for specialized data
types, hardware-specific compilation chains and custom scheduling algorithms.
Its technical contributions are available as open sourceﬂ under the Apache-2.0

8 https://daphne-eu.eu/
9 https://github.com/daphne-eu/daphne



2 Vontzalidis, Psomadakis, Bitsakos et al.

license. In this demonstration, we present an overview of the current design and
implementation of the DAPHNE execution engine and describe the demonstra-
tion scenarios and level of interaction with the participants.

2 DAPHNE Runtime Overview

The DAPHNE Runtime system [3] (DR henceforth) is a crucial component of
DAPHNE. It supports the execution of user-defined workflows and operations
specified in DaphneDSL (a high-level scripting language) or DaphneLib (high-
level Python API). The system utilizes a multi-level compilation chain based
on the MLIR infrastructure to convert DaphneDSL scripts into DaphnelR, an
intermediate representation. Multiple optimization passes allow for cost-based,
pipelined and efficient execution of kernels, i.e., code that implements the log-
ical operations on specific hardware in standalone or distributed mode. The
runtime system is designed hierarchically. The coordinator receives DaphneDSL
user code and generates an execution plan. The compiler determines whether
each workload should be executed locally or across multiple worker nodes. The
local runtime system handles execution on a single compute node, while the
distributed runtime system coordinates the distribution of work among worker
nodes and collects the results.

DR includes local and distributed kernels for executing computational, I/O
and combined operations, supporting heterogeneous hardware devices (CPUs,
GPUs and FPGAs). DR supports data structures such as matrices (both dense
and sparse formats) and frames that have a schema and rely on column-oriented
storage. DR’s vectorized execution works by fusing multiple operations together
and exploiting data parallelism. Data is split across multiple processing units
(e.g., CPUs) and each processing unit works on a chunk of data (local runtime
case). In distributed execution mode, DR uses distribution primitives (such as
broadcast, all-reduce, ring-reduce, scatter/gather, etc.) to distribute data and
code to worker nodes, similarly to the local runtime. Instead of CPUs, there are
multiple distributed nodes that receive chunks of data and perform computa-
tions on them. Each worker locally compiles the received code fragment in order
to optimize the code generation targeting its available resources (CPUs, acceler-
ators, etc.), and executes the generated code through the local runtime system
via the vectorized execution engine. This is pictorially described in Figure [1] for
the Connected Components algorithm.

Communication between cluster nodes is facilitated by utilizing common
frameworks. DR’s design allows for easy integration with different frameworks.
Currently, DR can successfully utilize gRPC and the MPI library. I/O support
is significant, currently allowing CSV, Arrow and Matrix Market formats. It is
also noteworthy to mention that DR implements a DAPHNE-specific file format
along with custom (de)serialization support to enable more efficient I/O and
network communication.

Overall, the DAPHNE Runtime plays a central role in executing integrated
data analysis pipelines and optimizing performance through parallelism in het-
erogeneous hardware settings. DR uniquely allows researchers to experiment



DAPHNE Runtime System 3

Connected Components Local vectorized execution per
while(iter<=maxi) { worker
// neighbor prop
c = max(rowMaxs(G * t(c)), c);

m Es )
iter = iter + 1;
}

CPUs

Broadcast MLIR code
fragment

Distribute

G Worker Nodes ,
- Workers start execution
c Cno c
[IIITTTT] == —) m =) [0
Broadcast - ) Collect output

Fig. 1. Example of distributing work hierarchically with the DAPHNE Runtime.

with different modules and subsystems (integration with different storage, com-
munication and serialization protocols), as its extensible design allows for de-
ployment combinations otherwise impossible by a single system.

3 Demonstration Description

In this demonstration we showcase the capabilities of DR, providing participants
with a comprehensive understanding of the runtime’s functionality and versatil-
ity via different scenarios and configurations. While DR’s contributions and pa-
rameters that affect its performance are manifold, in this demonstration we focus
on the following important features-dimensions: a) Execution mode (standalone
vs. distributed modes and scalability to available resources), b) communication
frameworks (gRPC vs. MPI), ¢) I/O features (distributed filesystem integra-
tion and serialization support) and d) hardware-specific execution (utilization of
accelerator resources).

Participants will be able to interact with DR via a comprehensive web-based
GUIL The GUI controls two deployments, namely an in-house 16-node cluster
and a Vega-bound deployment. Vegﬂ is a powerful supercomputer infrastruc-
ture that boasts impressive processing power and a high-performance network,
making it an ideal platform for showcasing the capabilities of DR. Three algo-
rithms (Connected Components, PageRank and Principal Component Analysis)
that utilize diverse inputs (real and synthetic data of various sizes and types)
and kernels will be available for execution. The Ul will integrate both textual
and graphical execution feedback in order to visually inspect the quality and
quantity of specific features under inspection. As such, our demonstration will
showcase the following DR functionalities:

Execution mode: We will showcase the ability of executing a workload
on a single machine versus distributing it across a cluster of variable size and
configuration. Participants can choose between different pipelines, input sizes
and cluster resources in order to study the performance trade-offs induced in
each case. Moreover, they can compare the execution speed and efficiency of
vectorized and non-vectorized computations, demonstrating DAPHNE’s ability
to leverage vectorization for performance. This functionality is shown in Figure
including a screenshot of our Grafana-based DR metrics visualizer.

10 https://www.izum.si/en/vega-en/



4 Vontzalidis, Psomadakis, Bitsakos et al.

’<>0 DAPHNE
Runtime

geneous Hardvare

Fig. 2. Use of the DAPHNE Runtime Ul

Communication frameworks: We will allow workflow execution with both
gRPC and MPI in different scenarios, such as latency-sensitive tasks and large-
scale data transfers, so as to provide insights into their suitability for different
algorithms currently implemented within DR.

I/0 features: We will demonstrate how DR currently integrates with HDF'S,
showcasing its ability to efficiently read data of variable sizes by leveraging data
locality in large-scale I/O compared to using the local file system. The partici-
pants can also observe the enhanced performance that the DAPHNE serialization
protocol brings forth compared to a default (protobuf) serialization protocol.

Hardware-specific execution: We will showcase how DR efficiently man-
ages the workload distribution and data movement using different hardware com-
ponents. Specifically, for the Connected Components algorithm (with available
accelerator-aware kernels), the DR, will offload computational tasks to accelera-
tors assuming their availability. By comparing the execution times and through-
put of tasks on a cluster with accelerators versus a cluster without, the audience
can witness the speedup achieved through heterogeneous hardware execution.

ACKNOWLEDGEMENTS

EThe DAPHNE project is funded by the European Union’s Horizon 2020 re-
search and innovation program under grant agreement number 957407 from

12/2020 through 11,/2024.

References

1. Damme, P., et.al.: DAPHNE: An Open and Extensible System Infrastructure for
Integrated Data Analysis Pipelines. In: CIDR (2022)

2. Lattner, C., et.al.: MLIR: Scaling Compiler Infrastructure for Domain Specific Com-
putation. In: CGO 2021 (2021)

3. D4.2: DSL Runtime Prototype. Public EU Project Deliverable. https://
daphne-eu.eu/wp-content/uploads/2022/12/D4.2-DSL-Runtime-Prototype.pdf
(2022)


https://daphne-eu.eu/wp-content/uploads/2022/12/D4.2-DSL-Runtime-Prototype.pdf
https://daphne-eu.eu/wp-content/uploads/2022/12/D4.2-DSL-Runtime-Prototype.pdf

	DAPHNE Runtime: Harnessing Parallelism for Integrated Data Analysis Pipelines

