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Abstract
As the volume and diversity of available datasets continue to in-
crease, assessing data quality has become crucial for reliable and
efficient Machine Learning analytics. A modern, game-theoretic
approach for evaluating data quality is the notion of Data Shap-
ley which quantifies the value of individual data points within a
dataset. State-of-the-art methods to scale the NP-hard Shapley com-
putation also face severe challenges when applied to large-scale
datasets, limiting their practical use. In this work, we present a
Data Shapley approach to identify a dataset’s high-quality data
tuples, Chunked Data Shapley (C-DaSh). C-DaSh scalably divides
the dataset into manageable chunks and estimates the contribution
of each chunk using optimized subset selection and single-iteration
stochastic gradient descent. This approach drastically reduces com-
putation time while preserving high quality results. We empirically
benchmark our method on diverse real-world classification and
regression tasks, demonstrating that C-DaSh outperforms existing
Shapley approximations in both computational efficiency (achiev-
ing speedups between 80× – 2300×) and accuracy in detecting
low-quality data regions. Our method enables practical measure-
ment of dataset quality on large tabular datasets, supporting both
classification and regression pipelines.

CCS Concepts
• Computing methodologies→Machine learning;Machine
learning approaches; Supervised learning; Unsupervised learn-
ing; Ensemble methods; • Information systems→ Specialized
information retrieval; Data cleaning; Data analytics.
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1 Introduction
Data grows exponentially, in volume as well as variety and velocity
[12]. As data increases at this pace in data centres, organisations
struggle with the performance of their decision-making algorithms,
one promising reason is the data quality. Selecting the “right” data
for the used of an data-driven algorithm (such as machine learning)
can improve the algorithm’s performance efficiency [18].

The plethora of available data within the organisation’s data
centres can cause the identification of high-quality data to be a real
struggle. Using the human factor to identify high-quality data is
time-consuming, as well as drop the performance of the data-driven
algorithm. Automating data selection using AI techniques has been
gamy tracing the data context is named as Data-Centric Artificial
Intelligence (AI) [17, 18, 33]. Data-Centric AI techniques besides
automate the data selection, improve the selection of the high qual-
ity data and the performance of a data-driven ML algorithm. Also,
because data quality is described on different dimensions using
Data-Centric AI can focus on the specific dimension’s that matters
[14].

What constitutes Data Quality can vary depending on different
contexts and applications. Previous studies have focused on tradi-
tional data quality issues, such as low accuracy due to poor data
quality, dataset completeness with respect to real-world scenarios,
and consistency among the data tuples within a dataset [4, 32].
More recent studies define low data quality with respect to the size,
order, and distribution of the data [11]. Others emphasize on more
nuanced dimensions, such as bias and fairness, which can result to
discriminatory results in machine learning models trained on sub-
optimal datasets [3, 24]. A recent study [21] categorises data quality
in six different dimensions: representation, completeness, feature
accuracy, target accuracy, uniqueness and target class balance. Data
Quality can be depended on the data tuple features, such as corrup-
tion or missing, which is a problem that Data Shapley works try
to resolve [27, 28]. As a data-centric AI approach, Data Shapley
quantifies the importance of individual data tuples in a data-driven
learning algorithm, identifying its quality and value by their contri-
bution to overall model performance [31, 33]. However, computing
Data Shapley is an NP-hard problem, and various approximations
have been designed to improve its computational efficiency [10, 30].
Data Shapley approximations remain computational expensive, of-
ten require hours to find each data tuple quality value for a whole
dataset with thousands of lines working in parallel mode [10]. In
a Data Shapley approximation study [20], they mentioned that a
critical component in making these approximations practical is the
selection of the most informative subset combinations, which can
significantly influence both accuracy and efficiency.

https://doi.org/10.1145/3746252.3761305
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://doi.org/10.1145/3746252.3761305


CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Andreas Loizou and Dimitrios Tsoumakos

For instance having a repository like MIMIC-III, which contains
daily patient reports from Beth Israel Deaconess Medical Center
[15], it is crucial to identify the missing or corrupted data tuples, as
they can negatively impact ML algorithms. Previous studies [10, 20],
showed that approximate methods can be used to detect low-quality
data tuples. However, these methods still suffer from high computa-
tional complexity, often requiring hours to days. This makes their
application to large-scale, real-world scenarios impractical.

In order to enable practical assessment of dataset quality, we pro-
pose a Data Shapley approximation method called Chunked Data
Shapley (C-DaSh). This method aims to close the gap between the
computational efficiency and identify the quality of each data tuple
accurately. C-DaSh, instead of evaluating the contribution of each
individual data tuple, groups data tuples into chunks and computes
the contribution of each chunk to the performance of a data-driven
ML algorithm. By incorporating a subset selection prior to the
Data Shapley computation, we identify the most optimal subsets
which enhances the ability of our method to identify low-quality
data chunks. Unlike most existing Data Shapley approximation
methods that are limited to either classification or regression/time-
series tasks, our approximation method is designed to work effec-
tively for both tasks. In comparison to prior baseline work by [10],
which introduces two Data Shapley approximations methods, the
Gradient Shapley(G-Shapley) and Truncated Monte Carlo Shapley
(TMC-Shapley), our approach demonstrates improved accuracy in
detecting low-quality data and achieves considerably improved
performance.

The main contributions of our work can be summarised as fol-
lows:

• We introduce a novel Data Shapley approximation algorithm,
C-DaSh, that partitions datasets into chunks and computes
quality scores per chunk instead of individual data tuples.
Using our subset selection process to identify the most infor-
mative data chunks, our method effectively reduces compu-
tational complexity from exponential to manageable levels
with no degradation in accuracy.
• We extend the applicability of our method to support both
classification and regression/time-series tasks, demonstrat-
ing versatility across different domains.
• We provide an experimental evaluation across multiple real-
world datasets with varied data quality issues (noise, missing
values, label corruption), comparing our method against two
established Data Shapley approximation techniques. Results
show that C-DaSh can identify data quality more accurately,
achieving impressive speedups ranging from 80× to 2300×.
We also provides insights into optimal chunk sizes and subset
configurations, balancing accuracy and efficiency for real-
world deployments.

Our work is structured as follows: Section 2 presents the Data
Shapley problem formulation, along with two baseline approxi-
mations. Section 3 outlines the motivation behind our proposed
approach, based on the limitations of existing methods and emerg-
ing requirements. It also introduces our proposed method, C-DaSh,
and the adopted subset selection strategy. In section 4, we pro-
vide a comprehensive experimental evaluation, comparing C-DaSh
against two baseline methods, and exploring trade-offs between

different configuration settings of C-DaSh. Related work in the area
of data quality, both with and without the Data Shapley approach,
is described in Section 5. Section 6 concludes the paper with key
findings and directions for future research.

2 Problem Formulation
Consider a large collection of tabular datasets without any infor-
mation related to it. Each dataset 𝐷 comprises data tuples 𝑥 𝑗 rep-
resented as 𝐷 = (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛). Each data tuple 𝑥 𝑗 has the
same number of features with the other data tuples, as well as be
on the same domain. For a given Machine Learning (ML) algorithm
A (such as Multilayer Perception, SVM, etc.) we aim to assess the
“quality” of the data tuples and distinguish between the low data
quality with the high ones.

Data Shapley [27, 28], rooted in game theory, offers a principled
way to evaluate the contribution or “quality” of each data tuple
as a player. Having a performance metric𝑀 such as Mean Square
Error, Accuracy, F-1 score, etc., and a learning algorithm A, finds
for each data tuple its quality value, find its contribution among
all the available subset combinations using all the rest data tuples
from the dataset 𝐷 . Data Shapley value 𝑑𝑠 𝑗 for a data tuple 𝑥 𝑗 and
a performance metric𝑀 can be computed as:

𝑑𝑠𝑀𝑥 𝑗
=

∑︁
𝑍⊆𝐷\{ 𝑗 }

|𝑍 |! · ( |𝐷 | − |𝑍 | − 1)!
|𝐷 |! (𝑀 (𝑍 ∪ { 𝑗}) −𝑀 (𝑍 )) (1)

where 𝑍 is a subset with data tuples (set of players) from dataset
𝐷 . When a subset 𝑍 consists all the rest data tuples except 𝑥 𝑗 is
named as the “grand coalition”. After the Data Shapley algorithm,
is applied on 𝐷 , we have a 𝐷𝑆 = (𝑑𝑠1, 𝑑𝑠2, 𝑑𝑠3, . . . , 𝑑𝑠𝑛), where 𝑛
is the total number of tuples in dataset 𝐷 . Low 𝑑𝑠 𝑗 values denote
low-quality tuples and vice-versa. However, Data Shapley is an NP-
hard problem [8], with a complexity of𝑂 (2𝑛), making it impossible
to identify the quality of a large-scale dataset.

Truncated Monte Carlo Shapley [10] is a Data Shapley approxi-
mation that tries to speedup the calculation of Data Shapley values.
Firstly, this method applies a random permutation on the tuples of
dataset 𝐷 . For each Monte Carlo iteration, is applied for each data
tuple, the Data Shapley equation to find its marginal contribution on
the ML algorithmA. For each data tuple 𝑥 𝑗 the subset 𝑍 consists all
the permuted data tuples before the 𝑥 𝑗 , such as 𝑍 =

(
𝑥1, . . . , 𝑥 𝑗−1

)
.

Multiple Monte-Carlo permutations with the same procedure are
repeated until the truncation is met. Truncation is a strategy used
to assess whether the performance of a learning algorithm A on
a subset 𝑍 , as measured by the performance metric 𝑀 , meets a
predefined tolerance threshold. It helps determine when the mar-
ginal contributions of all data tuples are sufficiently accounted for.
The final Data Shapley value is the average from all Monte-Carlo
permutations marginal contribution of the specific tuple. However,
this approximation may speedup the runtime efficiency, with com-
plexity𝑂 (𝑚 · 𝑛) (in practice𝑚 ≈ 3𝑛, so𝑂 (𝑛2)) where𝑚 is the total
number of Monte-Carlo permutations until the truncation is met.
However, for a large-scale dataset with thousands of tuples is still
not efficient.

Gradient Shapley [10] is another Data Shapley approximation.
Using the Stochastic Gradient Descent (SGD) [2] on algorithm A
when is applicable can use the knowledge from the subset data
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tuples and distinguish the high-quality data tuples from the lower
one more accurately. This approximation uses randomly selected
batches with random permutations, similarly to the Truncated
Monte Carlo Shapley. Using the random subsets update the model
hyperparameters. For each data tuple applies the Data Shapley
equation using the model hyperparameters information from the
SGD which gained it from the previous data tuples. Using that in-
formation find for 𝑥 𝑗 , its marginal contribution on the algorithmA
and the performance metric𝑀 . The subset 𝑍 for each data tuple 𝑥 𝑗
is all the previous data tuples where update the model hyperparam-
eters using SGD, such as 𝑍 =

(
𝑥1, . . . , 𝑥 𝑗−1

)
. The complexity time

in this approximation is𝑂 (𝑛 ·𝑇 · 𝑑), where 𝑑 is the model hyperpa-
rameters dimensionality and 𝑇 is the number of gradient descent
steps (how many times random permutations are performed). This
approximation may improve the runtime efficiency compared to
the exact Data Shapley computation, but for large-scale datasets
will not be efficient.

3 Methodology
3.1 Motivation
Determining a multi-dimensional “quality” score for each data tuple
in a large-scale dataset capturing aspects such as noise, complete-
ness, and more is a highly challenging task. It involves addressing
various additional complexities and circumstances, including what
performance metric 𝑀 you must couple with learning algorithm
A and how you efficient is the quality value of the identification
on the low-quality data tuples [10]. Data Shapley has the ability to
integrate a lot of data quality dimensions, but its high complexity
makes it difficult for large-scale datasets. Data Shapley approx-
imation methods have been introduced that try to improve the
runtime efficiency, without affecting the identification of the low
data quality. However, their practicality is limited to datasets with
a ten of thousands of tuples [10]. Nowadays, datasets comprise
hundreds to millions data tuples, making it difficult to apply these
approximations as they would require months to execute to find the
“right” high-quality data tuples for an ML algorithm. Our motiva-
tion stems from these limitations. We aim to design and implement
a novel approximation of the Data Shapley that not only scales to
large datasets but also provides an interpretable, high-precision dis-
tinction between the low-quality data tuples and the high-quality
among a large dataset. Computing per tuple Data Shapley values is
computationally expensive, our approach leverages chunk-based
strategy assigning a quality value to each chunk. Our approxima-
tion method incorporates SGD [2], to more accurately estimate the
contribution of each chunk. Additionally, we employ an smart sub-
set selection strategy to enhance the identification of low quality
chunks. Together, these techniques significantly reduce computa-
tional overhead while preserving the integrity and precision of the
data quality assessment.

3.2 Chunked Data Shapley
3.2.1 Data Quality Measurement. To reduce the computational
complexity of calculating the Data Shapley value for an entire
dataset 𝐷 , we partition the dataset into 𝑐 chunks of the same size 𝑙 ,
where the total amount of chunks 𝑐 ≪ 𝑛, as well as the chunk size

Algorithm 1 Chunked Data Shapley
Require: Dataset𝐷 , Machine Learning algorithmA, performance

metric𝑀 , chunk size 𝑙 , total number of subsets 𝑘 , threshold 𝑡ℎ,
Constant variable 𝐶

1: Initialize Split dataset D into c chunks of size l
2: Initialize Chunks Data Shapley quality values DS as 𝑑𝑠 𝑗 = 0

for 𝑗 = 1, ...., 𝑐
3: while Truncation Criterion is not Met do
4: Initialize k Subsets from dataset D
5: Execute subset selection on S using threshold th
6: Initialize w0 ← Random Parameters
7: for each chunk 𝑐ℎ 𝑗 ∈ 𝐷 for 𝑗 = 1, ..., 𝑐 do
8: Include Subsets 𝑍 ⊆ S \ { 𝑗}
9: 𝑤 𝑗 (𝑍 ) = 𝑤 𝑗−1 − 𝜂 𝑗

∑
𝑥∈𝑍 ∇L(𝑤 𝑗 , 𝑥)

10: 𝑑𝑠𝑀
𝑐ℎ𝑗

=
∑

𝑍 ⊆S\{ 𝑗 }
𝐶

|𝐷 | · |𝑍 | (𝑀 (𝑤𝑗 (𝑍∪{ 𝑗 }) )−𝑀 (𝑤𝑗 (𝑍 ) ))
11: end for
12: end while
13: Having Chunk Data Shapley Quality values 𝐷𝑆 =

(𝑑𝑠1, 𝑑𝑠2, 𝑑𝑠3, . . . , 𝑑𝑠𝑙 )
14: Return Dataset quality values 𝐷𝑆

𝑙 ≪ 𝑛. For each chunk 𝑐ℎ 𝑗 from the set (𝑐ℎ1, 𝑐ℎ2, 𝑐ℎ3, . . . , 𝑐ℎ𝑐 ) we as-
sign a corresponding data quality score value 𝑑𝑠 𝑗 . Upon completing
the approximation process for all chunks, we obtain a Data Shapley
quality score vector 𝐷𝑆 = (𝑑𝑠1, 𝑑𝑠2, 𝑑𝑠3, . . . , 𝑑𝑠𝑐 ). Organising the
dataset into distinct chunks, non-overlapping multiple data tuples,
we significantly speed up computation, as the number of required
subset evaluations is greatly reduced. Before computing the Data
Shapley values, we perform a subset selection step to identify the
most informative and representative subsets S for evaluation. As
highlighted in [20], careful subset selection leads to more accurate
quality estimates for individual data tuples. A detailed explanation
of our subset selection strategy is provided in Subsection 3.2.2.

First we partition the dataset 𝐷 into chunks with equal size of
𝑙 . Once the subset selection step (described at subsection 3.2.2) is
performed, we apply the Data Shapley computation over the se-
lected subsets of chunks by using the knowledge information from
the SGD [2] optimisation function. We use the SGD optimisation
function to retrieve from the model hyperparameters the chunks
data tuples knowledge information and identify their true quality
value score more accurately. Previous Data Shapley studies [10, 30]
using SGD achieved that and identify the low-data quality and the
high one more accurately. For each chunk 𝑐ℎ 𝑗 , we compute its data
quality value by considering all subsets 𝑍 ∈ S that do not con-
tain chunk 𝑐ℎ 𝑗 . Using the subsets 𝑍 , we create a model checkpoint
𝑤 𝑗 for chunk 𝑐ℎ 𝑗 , which includes all the data tuples informations
from 𝑍 . One complete single run of our method results in a set
of model checkpoints𝑊 = (𝑤1,𝑤2, · · · ,𝑤𝑐 ), where 𝑐 is the total
number chunks. The Shapley value calculation for chunk 𝑐ℎ 𝑗 , over
a performance metric function𝑀 is calculated as follows:

𝑑𝑠𝑀
𝑐ℎ 𝑗

=
∑︁

𝑍⊆S\{ 𝑗 }

𝐶

|𝐷 | · |𝑍 |
(
𝑀 (𝑤 𝑗 (𝑍 ∪ { 𝑗})) −𝑀 (𝑤 𝑗 (𝑍 ))

)
(2)

where for the selected subsets 𝑍 ⊆ S do not contain data tuples
from chunk 𝑐ℎ 𝑗 are used to calculate its quality value. When chunk
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Algorithm 2 Subset Selection
Require: Chunks 𝑐ℎ, total number of subsets 𝑘 , Machine Learning

algorithm A, performance metric𝑀 , threshold th
1: Initialize randomly 𝑘 subsets S
2: for each chunk 𝑐ℎ 𝑗 ∈ 𝐷 for 𝑗 = 1, ..., 𝑐 do
3: while 𝑐ℎ 𝑗 is more than 25% in 𝑍 ∈ S do
4: Initialize new subsets 𝑍 for the S
5: end while
6: end for
7: for each Subset 𝑍 𝑗 ∈ S for 𝑗 = 1, ..., 𝑘 do
8: Get𝑀𝑗 from A using Subset 𝑍 𝑗

9: while𝑀𝑗 perform worst than the th do
10: Initialize new Subset 𝑍 𝑗 for the S
11: Check that none 𝑐ℎ is appear more than 25% in 𝑍 ∈ S
12: Get𝑀𝑗 from A using new subset 𝑍 𝑗

13: end while
14: end for
15: Return Subsets S

𝑐ℎ 𝑗 is not included in any subset, we use all the subsets from S.
First we obtain the data information knowledge from 𝑍 from the
performance metric𝑀 , and after that we update the model hyper-
parameters and create the new model checkpoint𝑤 𝑗 for chunk 𝑐ℎ 𝑗
and get its performance for metric 𝑀 . The model checkpoint is
calculated using the previous checkpoint𝑤 𝑗−1 and the optimised
loss function using SGD L, for all the chunks in subset 𝑍 as:

𝑤 𝑗 (𝑍 ) = 𝑤 𝑗−1 − 𝜂 𝑗
∑︁
𝑥∈𝑍
∇L(𝑤 𝑗 , 𝑥) (3)

where 𝜂 𝑗 is the learning rate at chunk 𝑐ℎ 𝑗 . This approach, using
the model checkpoint information from all the previous data tuples,
optimises the knowledge of the current chunk of data tuples to
identify if it contains low-quality data tuples. This approximation
with the combination of the optimal subset selection leads to an
accurate Shapley value and identifies more easily the data chunks
that contain low-quality data tuples, as well as require fewer itera-
tions for computation the Shapley value. Similarly to the existing
approaches a lower value for 𝑑𝑠 𝑗 means less valuable is for the
ML algorithm A. Algorithm 1 outlines the complete procedure,
taking as input a collection a dataset with 𝑛 tuples, a machine learn-
ing algorithm A, a performance metric 𝑀 , and the chunk size 𝑙 .
The procedure is repeated until the truncation criterion is satisfied,
following a similar approach to the work of [10].

3.2.2 Subset Selection. For Data Shapley approximations to come
closer to the actual value of the original algorithm, it is essential to
select an “optimal” amount of subsets. Initially, 𝑘 subsets are ran-
domly chosen, ensuring that each new subset contains data points
not present in more than twenty-five percent of the previously
selected subsets [20]. The number of subsets 𝑘 is much smaller than
the number of chunks 𝑘 << 𝑐 , as well as the length of the dataset
(𝑘 << 𝑛). This reduces redundancy and helps the algorithm better
capture diverse data contributions. To ensure that we select the
subset with the highest quality of data tuples, using the algorithm
A over all the subsets S, we capture for each subset how well it per-
forms over the metric𝑀 . Then, for each subset 𝑗 where his metric
from the function𝑀 is lower than the threshold th for classification

task and higher for regression, we make the creation of the subset
until achieved better performance than the threshold th. Algorithm
2, depict the subset selection method taking as input all the chunks
𝑐ℎ, a machine learning algorithm A, a performance metric𝑀 , and
a threshold th.

4 Experimental Evaluation
Our proposed Data Shapley approximation method, C-DaSh, is eval-
uated against two baseline approximation algorithms from [10],
available in an open-source repository. For all experiments involv-
ing a classification task, we employ a Multi-Layer Perceptron (MLP)
[1, 25, 26] with two hidden layers, and for the regression task ex-
periments, a similarly structured MLP tailored accordingly. The
learning rate 𝜂 for all methods using SGD was set to 0.001. The
parameters settings for the approximation algorithms are the same
as those used in [10]. In our work, the setting for the threshold
th for the subset selection has been set at 0.5 for the classification
experiments and 25 for the regression experiments. The threshold
for classification was selected because it corresponds to the mean
of the accuracy range (0 to 1). For regression, the threshold was
chosen the average RMSE after computed the algorithm A using
the entire training dataset. First, we discuss the efficiency of remov-
ing low-quality data tuples from the datasets and compare MLP’s
prediction accuracy. These low-quality data tuples exhibit different
such us noise, label corruption, missing data, etc. To evaluate pre-
diction performance, we train the MLP model five times for each
experiment, recording the prediction accuracy and reporting the
average result. Using the Local Outlier Factor (LOF), we demon-
strate the efficiency of our method in identifying outliers in large
scale datasets. Therefore, we compare the computational efficiency
of our approximation algorithm with the baseline methods from
[10]. Relative speedup was calculated using the formula 𝑆 =

𝑇1
𝑇2
,

where 𝑇1 is the execution time of the baseline method and 𝑇2 is the
execution time of C-DaSh with the optimal subset selection. We
demonstrate the effectiveness of C-DaSh through its ability to iden-
tify low-quality chunks in regression datasets where the temporal
order plays a critical role.

All experiments were executed in a AWS EC2 server with 48
vCPUs of AMD EPYC 7R32 processors at 2.40GHz, and four A10s
GPUs with 24GB of memory each, 192𝐺𝐵 of RAM memory, and
1.5𝑇𝐵 of storage, running Ubuntu 24.4 LTS.

4.1 Datasets

Table 1: Dataset properties for experimental evaluation

Algorithm Dataset Name # Files # Tuples

Classification

Adult [5] 1 40𝐾
Bank

Marketing [23] 1 60𝑘

MIMIC-III [15] 1 55𝑘

Regression

Air Quality [7] 12 35𝐾
Household
Power

Consumption [13]
5 22𝑘 - 52𝑘
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(b) Bank Marketing Dataset
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(c) MIMIC-III Dataset

Figure 1: Compare C-DaSh with G-Shapley and TMC-Shapley prediction accuracy by removing low data quality from datasets
for classification task.

We evaluated C-DaSh using five real-world datasets: Three for
classification tasks and two for regression tasks. The Adult [5]
dataset contains approximately forty thousand individuals with
socio-economic features, and poses a binary classification prob-
lem: Predicting whether an individual’s income exceeds a certain
amount. It contains a substantial number of low-quality data tuples,
often affected by missing or corrupted values. The Bank Marketing
[23] dataset consists of data from a Portuguese banking institution,
collected through direct marketing campaigns conducted via phone
calls. It includes around sixty thousand individuals in a single file,
with the classification goal of predicting whether a client will sub-
scribe to a term deposit. The issue with the Bank dataset is that
there are a lot of outliers in the data tuples. The MIMIC-III dataset,
from Beth Israel Deaconess Medical Centre, is one of the largest
available medical datasets, with over forty thousand patients from
2001 to 2012. After preprocessing, we created a single dataset to
classify whether a patient has sepsis, following an approach similar
to [29]. As noted in [29], the MIMIC-III dataset suffers from missing
data tuples. The Air Quality [7] dataset comprises twelve sepa-
rate datasets, each from a different nationally controlled air-quality
monitoring site. Each dataset contains hourly air pollutants. The
regression task is to predict the air quality. The primary data qual-
ity issue of this dataset is the high volume of missing data tuples.
The Household Power Consumption (HPC) [13] dataset contains
electric power usage measurements from a household in Sceaux,
France. It includes five yearly datasets, each with between 22𝑘 and
52𝑘 data tuples recorded at one-minute intervals. The data quality
problem in this dataset is the presence of missing values during
certain periods of the day. Categorical columns across all datasets
were converted to numerical format using one-hot encoding.

4.2 Baseline Comparison
4.2.1 Prediction accuracy and outlier detection evaluation. Figure 1
visualises the comparison of our proposed approximation to the G-
Shapley and TMC-Shapley approximations on three classification
datasets, since these two baselines apply only to classification tasks.
In this experiment, we obtained the data Shapley values, and using
C-DaSh we remove the bottom 𝜆% (ranging from 0.1 to 0.5) of data
chunks based on their Data Shapley values, where each chunk has
a size of 256. The number of subsets 𝑘 used in our approximation

method was set to 50. For the G-Shapley and TMC-Shapley the
𝜆% lowest Shapley values of individual data tuples are removed.
Figure 1 for the three datasets depicts the accuracy (ranging from
0 to 1, where higher is better) as a performance metric 𝑀 of the
ML algorithm A on the y-axis. On the axis-x, the percentage of
removed data based on the lowest Shapley values is depicted.

Figure 1a shows that for the Adult dataset, our proposed method,
C-DaSh has a low improvement impact in prediction accuracy as
some of low-quality data are removed. It achieves slightly higher
accuracy compared to both G-Shapley and TMC-Shapley across all
levels of data removal. For example, with just 10% of the lowest-
quality data tuples removed, our method have 1% higher accuracy
than TMC-Shapley and almost the same prediction accuracy with
G-Shapley. This small improvement stems from optimal subset selec-
tion, which allows our method to effectively target the low-quality
chunks while preserving high-quality data. A drop in performance
typically indicates that most low-quality data tuples has already
been eliminated, and further removal begins to affect chunks which
containing high-quality data tuples.

Figure 1b illustrates that, for the Bank marketing dataset TMC-
Shapley for 𝜆 equal to or lower than 40%, the accuracy slightly
drops, suggesting that these methods mistakenly identify high-
quality tuples as low-quality. In contrast, C-DaSh, as well as G-
Shapley has a slight improvement until 30% has same performance
without any up-down trend. That’s show that both high-quality and
low-quality data tuples are removes. For 𝜆 value higher or equal
with 40%, C-DaSh has higher prediction accuracy with a small
difference. This further demonstrates that optimal subset selection
assists our method minimise the removal of valuable data while
effectively filtering out low-quality data, thereby preserving the
training performance of algorithm A.

Figure 1c demonstrates that, for the MIMIC-III dataset, C-DaSh
surpass both G-Shapley and TMC-Shapley in accuracy by approxi-
mately 7% and 15%, respectively. TMC-Shapley exhibits a significant
drop in performance accuracy up to 𝜆 equal with 40%, indicating
that it misclassifies high-quality tuples as low-quality. G-Shapley
performs better in overall, however for 𝜆 between 20% and 30%
purges high-quality data features, while at higher 𝜆, it begins to
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(b) Label Corruption as low data quality

Figure 2: Compare C-DaSh with G-Shapley and TMC-Shapley
prediction accuracy on Adult Dataset with manually anno-
tated different low data quality issues.

identify low-quality data tuples more effectively. C-DaSh consis-
tently achieves higher accuracy than both baselines due to its opti-
mal subset selection, which helps identify low-quality data chunks
and retain high-quality ones for training algorithm A across all 𝜆
values.

Figure 2 illustrates two different low-quality data scenarios for
the Adult dataset, Gaussian noise added to 20% of the data tuples
(Figure 2a) and label corruption where 20% of the labels were flipped
(Figure 2b). In both experiments, our goal is to exclude data tuples
with missing values for better evaluation approximation algorithms’
ability to identify and handle specific data quality issues. In both
Figures, the x-axis represent the percentage (𝜆% ) of removed data tu-
ples, while the y-axis reports the prediction accuracy of the learning
algorithmA. At 𝜆 equal to 20%, C-DaSh successfully removes most
of the low-quality data tuples and outperforms both G-Shapley and
TMC-Shapley by 30% and 40% respectively. However, G-Shapley
identifies some of the high-quality data tuples until 𝜆 equals 20%,
but for higher 𝜆 values mistakenly classifies some high-quality data
tuples as low-quality, and that leads to a significant drop in predic-
tion accuracy. In the label corruption from Figure 2b, TMC-Shapley
identifies more low data quality data tuples at 𝜆 equals with 10%
and outperforms C-DaSh by almost 12%. However, for higher 𝜆
values, C-DaSh consistently outperforms both methods.

We designed a second method in which we chunk the datasets
evaluate the ability of chunking as a method, using either the G-
Shapley or TMC-Shapley approximation. The overall quality value
of a chunk is computed by averaging for each chunk all of its tuple
Shapley scores. As in our proposed C-DaSh method, each chunk
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(b) MIMIC-III Dataset

Figure 3: Compare prediction accuracy between C-DaSh and
a Chunk Average method where uses the quality values from
G-Shapley or TMC-Shapley on Adult and MIMIC Datasets by
remove the 𝜆%.

is assigned a quality value based on one of the two approxima-
tion methods. To evaluate how accurately C-DaSh identifies chunk
quality score value, we compare it with the chunked version of
both approximation methods. All the three methods use the same
chunks containing equal number of data tuples (chunk size of 250
data tuples for the Adult and MIMIC-III datasets). Figure 3 presents
the prediction accuracy results from these experiments. The y-axis
of both sub-figures depicts the prediction accuracy, while the x-axis
indicates the percentage of removed low-quality chunks (ranging
from 10% to 30%). For the Adult dataset (Figure 3a), when 10% of the
chunks were removed, both baselinemethods slightly outperformed
C-DaSh, with less than a 0.5% improvement. Furthermore, at higher
removal percentages, C-DaSh outperformed the chunk-averaging
with the data quality values based on the baselines’ approximations.
This indicates that C-DaSh can more precisely identify low-quality
chunks with more precision compare to the baseline averaging
method. For the MIMIC-III dataset (Figure 3b), C-DaSh consistently
achieved higher accuracy than the chunk averaging using the TMC-
Shapley across all removal percentages.While G-Shapley at 𝜆 equals
with 20%, achieved prediction accuracy comparable to C-DaSh. In
contrast, C-DaSh continued to identify low-quality chunks more
effectively. However, both of baseline chunking methods either per-
forms similarly (G-Shapley), or better (TMC-Shapley) than C-DaSh
on both datasets. This demonstrates that employing chunking is
beneficial for the dataset, as it enables more precise identification
of low-quality data chunks.
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Table 2: Data Shapley Approximations Outlier Detection Av-
erage Error over 𝜆% percentage of removing low data quality
data tuples

Dataset
Name

DS
Approximation

Method
𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.3

Adult
C-DaSh 1.260 1.262 1.266

TMC-Shapley 1.274 1.312 1.327
G-Shapley 1.275 1.312 1.327

Bank
Marketing

C-DaSh 1.046 1.046 1.049
TMC-Shapley 1.096 1.076 1.068
G-Shapley 1.096 1.076 1.068

MIMIC-III
C-DaSh 1.148 1.150 1.153

TMC-Shapley 1.348 1.340 1.303
G-Shapley 1.348 1.340 1.303

Table 2 presents the absolute outlier factor scores obtained using
the Local Outlier Factor (LOF) [6] method for the three classifica-
tion datasets of Adult, Bank Marketing, and MIMIC-III. LOF detects
anomalies by comparing a point’s local density to that of its neigh-
bours, flagging points with significantly lower density as outliers.
In this experiment, we applied our proposed C-DaSh method and
compare it against G-Shapley and TMC-Shapley approximations.
For each method, we removed the lowest-quality data either chunks
(for C-DaSh) or individual tuples (for the baselines) at removal rates
of 𝜆 equal with 0.1, 0.2, and 0.3. A lower absolute LOF score indi-
cates a more effective removal of outlier data tuples. In Table 2, bold
values represent the best-performing method for each dataset and
𝜆 value. Our proposed method consistently outperformed both of
G-Shapley and TMC-Shapley across all datasets. This demonstrates
that chunk-based subset selection in C-DaSh provides a more robust
mechanism for identifying and removing low-quality or outlier data.
Also, is notably at 𝜆 equal with 0.1, C-DaSh achieved the lowest
absolute LOF score for all the datasets, suggesting that most outliers
are captured early in the removal process. As 𝜆 increases, the abso-
lute LOF score increases, indicating that some high-quality tuples
are removed. This suggests that the most uninformative or noisy
data are identified and eliminated very early. Additionally, com-
pared to G-Shapley, which also leverages information from SGD for
the Shapley value estimation, C-DaSh consistently demonstrates
superior with chunk-based evaluation strategy.

4.2.2 Speedup Evaluation. Table 3 depicts the speedup achieved
between C-DaSh and baseline methods [10] (G-Shapley and TMC-
Shapley). For each dataset, the chunk size that achieved the highest
speed over the two baseline methods is highlighted in bold. Our
C-DaSh method, which uses data chunks rather than individual
tuples, achieves significant speedups in computation. Finding the
contribution of chunks, rather of individual data tuple, highly im-
proves computational efficiency among all datasets. Increasing the
chunk size up to 250 data tuples leads to improved computational
efficiency. This improvement occurs because fewer chunks exist
and the subset selection requires less time, allowing more effective
identification of high-quality data chunks that contribute positively
to the learning algorithm. However, when the chunk size exceeds

Table 3: C-DaSh Speedup over the G-Shapley and TMC-
Shapley computational efficiency

Dataset
Name Chunk Size

Speedup
over

G-Shapley (×)

Speedup
over

TMC-Shapley (×)

Adult

50 23.6 413.11
100 31.76 555.88
150 41.14 720
250 108 1890
500 25.71 450
1000 24.68 432

Bank
Marketing

50 36.56 618.75
100 75.36 1277.41
150 77.6 1315.37
250 80.68 1365.51
500 49.26 833.68
1000 48.24 816.49

MIMIC-III

50 49.31 467.12
100 74.22 853.61
150 112.5 1293.75
250 200 2300
500 53.73 617.912
1000 36.54 420.30

250 tuples, the computational efficiency of our C-DaSh drops, This
is because chunks are more likely to contain both high-quality and
bigger proportion of low-quality data tuples, making it harder to
identify the highest-quality chunks during subset selection.

4.3 Chunk Size Evaluation
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Figure 4: Prediction Accuracy comparison over different
chunk size by removing the 𝜆% lowest data quality chunks.
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In this experiment, we evaluated the impact of varying chunk
sizes on the performance of our proposed approximation method,
C-DaSh, using the Adult and Bank Marketing datasets. We varied
the chunk size from 50 to 1000 data tuples to assess its effect on
the accuracy of the machine learning algorithm A. For all the ex-
periments, we set the number of subsets 𝑘 to 50. We removed the
lowest-quality data chunks, with 𝜆 ranging from 0.1 to 0.3. Figure
4 presents the results of this experiment. Figure 4a corresponds
to the Adult dataset, while Figure 4b shows results for the Bank
Marketing dataset. In both sub-figures, the y-axis represents the
prediction accuracy, while the x-axis shows the 𝜆 percentage of
removed low-quality data tuples. For the adult dataset (Figure 4a),
we observe that for chunk sizes between 50 and 256 data tuples,
accuracy did not significantly change as more low-quality chunks
were removed. However, for chunk size equal to 256 our method
achieved its peak accuracy with a chunk size around 0.5% of the
total dataset size. As the chunk size increased to 500 and 1000 tuples,
the performance of the algorithmA slightly drops. This declines is
due to valuable data tuples being included in the removed chunks,
which negatively impacts the algorithm’s learning process. For the
Bank Marketing dataset (Figure 4b), at 𝜆 equal to 0.1, a chunk size
of 1000 tuples achieves the highest accuracy, with a small margin
over the next best size. This suggests that for larger chunk sizes
can effectively identifies low-quality data tuples, although the accu-
racy gains may be marginal compared to smaller chunks. However,
the differences between the prediction accuracy and chunk sizes
remains relatively small. This depicts C-DaSh, using the subset se-
lection, effectively identifies low-quality chunks without affecting
the prediction accuracy. Based on Figure 4 and Table 3, a chunk size
of approximately 250 data tuples offers the most balanced trade-off
between speedup and prediction accuracy.

4.4 Subset Size Evaluation
Figure 5 illustrates the experiment to evaluate C-DaSh under vary-
ing subset sizes on the Adult (Figure 5a) and MIMIC-III (Figure
5b). In this experiment, the subset size 𝑘 ranged from 25 to 500,
while the chunk size was fixed at 256 data tuples for both datasets,
because the trade-off between the chunk size and the speedup. In
both sub-figures, the x-axis represents the 𝜆% of the removed low
data quality chunks, and the y-axis the prediction accuracy. The
results indicate that increasing the subset size 𝑘 had minimal im-
pact to the impact on prediction accuracy for both datasets, as the
accuracy remained close. This suggests that the subset selection
step in C-DaSh, effectively helps identify the most optimal subsets
and improve the prediction accuracy regardless the 𝑘 size. Notably,
a subset size 𝑘 of 50 achieves the best performance, with accuracy
only 0.05% below the second-best result for the Adult dataset, and
1% lower for MIMIC-III. Overall, these results highlight that C-DaSh
is robust across varying subset sizes and can deliver high-accuracy
performance even with relatively few subsets.

4.5 Experimental evaluation on regression
datasets

Figure 6 illustrates the performance of C-DaSh on two regression
datasets, demonstrating its effectiveness in regression tasks. For
this experiment, we used Root Mean Square Error (RMSE) as the
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Figure 5: Prediction Accuracy comparison on C-DaSh over
different subset size by removing the 𝜆% lowest data quality
chunks.
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Figure 6: C-DaSh prediction accuracy on Regression Dataset
for daily and monthly chunks by removing the 𝜆% lowest
data quality chunks.

performance metric, as it effectively captures both the magnitude
and direction of prediction errors. Figure 6a shows the prediction
accuracy of the HPC dataset, and Figure 6b for the Air Quality
dataset. For each dataset from the 𝑛 available datasets from both
Air quality and HPC, we removed 𝜆% of the chunks with the lowest
quality value 𝐷𝑆 𝑗 . In both sub-figures, the x-axis shows the per-
centage of removed low-quality data chunks, and the y-axis shows
the RMSE (lower is better) prediction error loss function. Since re-
gression datasets are sensitive to temporal order, we preserved this
order by constructing chunks based on daily or monthly intervals,
ensuring the natural structure of the data remained intact. For both
experiments, the number of subsets 𝑘 was fixed at 50. The results
show that our method for both daily and monthly effectively iden-
tifies and removes low-quality chunks, leading to reduced RMSE
as 𝜆% increases. Furthermore, we observe that for a daily chunk
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size, our algorithm performs better and can identify the days that
include missing or corrupted data. In contrast, for monthly chunks,
the error is higher because removing a chunk may eliminate both
low-quality and high-quality data tuples. On this experiment, we
evaluate only C-DaSh, as the baseline methods are not applicable to
regression algorithms A, with the exception of logistic regression,
which is primarily used for classification tasks.

5 Related Work
The goal of data quality methods is to examine dataset content and
select the “right” data for training a Machine Learning algorithm
instead of boosting the algorithm itself. Shapley value [28] has been
used to select the identical or valuable data tuples for the training
of Machine Learning algorithm. However, because of the exponen-
tial computational complexity time of Shapley value calculation,
approximations studies are suggested to reduce complexity time
without affecting the accuracy of detecting the low-quality data
tuples with traditional data errors (such as outliers, corrupted data,
missing values, etc). Study from [10], proposed two approxima-
tions (Truncated Monte Carlo Shapley and Gradient Shapley) to
improve the identification of low-quality data tuples. Identifying
the most optimal subsets to improve the quality of Shapley values
has been suggested and implemented from [20]. Their method uses
a kernel Hilbert space in the permutation functions and checks the
connections between permutations and the hypersphere, tries to
identify the highest-quality subsets. On lower-dimensional prob-
lems, their method has been shown to be more effective than the
higher-dimensional problems. 2-D Shapley [16] is a Data Shapley
approximation where, based on the two-dimensional counterfac-
tual calculation, they abstract the block valuation problem into a
two-dimensional cooperative game. Their proposed axioms for the
block valuation results to a unique representation of the Shapley
value for each block. In [30], noted the high complexity time issue
on the Data Shapley and its approximation methods when applied
to different subsets. To address this, they proposed an approxima-
tion that uses first or second-order Taylor expansions and gradient
dot-products or gradient-Hessian products between training and
validation data, to compute the Shapley value for each data tu-
ple. A distributional approach to Data Shapley computation was
proposed in the study by [9], where the Shapley value of a data
tuple is defined with respect to an underlying data distribution. A
Multi-Modal Data Shapley approach was proposed by [19], intro-
ducing the Shapley Value-based Contrastive Alignment (Shap-CA)
method to align image and text modalities using a Data Shapley
approximation. In their framework, each image-text pair is con-
sidered as a player, and its vector embedding is extracted using a
Large Language Model (LLM). Contrastive alignment is then ap-
plied to align the embeddings of the paired objects. The Shapley
value measures the marginal contribution of each image-text pair
to the overall vector embedding representation alignment. A higher
Shapley value indicates a stronger semantic alignment and greater
mutual contribution between the image and text components.

Other previous studies tried to identify low-quality data tuples
without using the Data Shapley value. Commet [22] optimises ML
algorithms through a step-by-step recommendation that identify
and clean low-quality data features with data errors (e.g., missing

values, Gaussian noise, categorical shift, and scaling), while max-
imising data cleaning efficiency under resource constraints. The
study by [21] demonstrates six data quality dimensions relevant to
ML and AI algorithms and proposes various data quality measure-
ment metrics to asses the quality of each data tuple on each of these
issues. The study aims to demonstrate the relationship between
the data quality dimensions and the main impact on the algorithm
performance. Our work builds on the concept of Data Shapley by
partitioning the dataset into equally sized chunks and computing a
quality score for each chunk, rather than for each individual data
tuple as done in previous Data Shapley approximation methods.
Additionally, we significantly reduce computational complexity
by approximating the Data Shapley values using only 𝑘 selected
subsets of data chunks, where each chunk contains 𝑙 data tuples
(𝑙 ≪ 𝑛).

6 Conclusions and Future Work
In this work, we addressed the challenge of assessing the “qual-
ity” of a dataset’s data tuple. We introduced a novel data Shapley
approximation method, termed C-DaSh, which estimates the qual-
ity of individual data chunks. By incorporating a subset selection
step before the data Shapley iterations, our approach effectively
identifies the most suitable quality subsets. Leveraging information
retrieved from stochastic gradient descent (SGD) enhances our ap-
proximation to identify the low-quality data tuples more accurately.
Our method can be applied to both classification and regression
tasks in machine learning models that use SGD as the optimisation
algorithm. Empirically, we demonstrated that our approach out-
performs two recent approximations, G-Shapley and TMC-Shapley
[10], in identifying low-quality data tuples across various data qual-
ity issues, while also achieving significant speedups from 80× to
2300×. Additionally, we explored the trade-offs between execution
time and accuracy over different chunk sizes, and analysed how
subset size impacts the precision of detecting low-quality data. For
future work, we aim to improve our subset selection strategy by
introducing a data structure that groups low-quality data tuples
in the same chunks, thereby enhancing the precision of quality
identification. Furthermore, we plan to extend our method to sup-
port multi-modal datasets that combine textual descriptions (e.g.,
captions or subtitles) with images or videos, enabling the evaluation
of data quality across different modalities.

7 GenAI Usage Disclosure
Generative AI tools such as Grammarly and ChatGPT were used
in some sections simply to improve the text’s flow and address
grammar and syntax mistakes.
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