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ABSTRACT

In this paper we present a distributed framework that sup-
ports customized deployment of a variety of indexing engines
over million-node overlays. The key aim is to provide the
appropriate integrated set of tools that allows numerous ap-
plications with large-scale, different requirements to evaluate
and test the performance of various application protocols for
very large scale deployments (multi million nodes - billions
of keys). Using lightweight and efficient collection mecha-
nisms, our system enables real-time registration of multiple
measures, integrating support for real-life parameters such
as node failure models and recovery strategies. Experiments
have been performed at the PlanetLab network and at a
typical research laboratory in order to verify scalability and
show maximum re-usability of our setup.

1. INTRODUCTION

Our era can be characterized by an explosion in the pro-
duction of data: Web 2.0, business processes, government
regulations, etc, all produce increasing volumes of informa-
tion that need to be stored, indexed and queried. This is
especially true for social information that, in the form of
blogs, wikis, social bookmarkings, etc, allows users to con-
stantly evolve their ways to communicate. In this plethora
of information sources, personalization is necessary to en-
hance user-experience and allow access to the most relevant
parts of the data. It has been reported [5] that over 80%
of users prefer the numerous personalization services that
businesses and social sites offer.

Personalization often entails the formulation and main-
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tenance of user profiles that are either implicitly logged or
explicitly given by users. The desired scalability and efficacy
to handle the advanced processing required are provided by
distributed solutions as both academic and business innova-
tion has already indicated.

Contemporary distributed systems involve very large pop-
ulations of commodity nodes independent of the specific un-
derlying architecture: BitTorrent has reported stats where
over 20 million daily active users download over 400,000 tor-
rents on average and the number of users is already 100+
millions. Other P2P-based networks like Live messenger re-
port 300+ millions of monthly active users online and 25+
million nodes (peak online time) in the Skype chat network.

On the other hand, the processing and retrieval needs per
application range vastly: Social and web advertising sites
perform map-reduce based intensive processing to identify
trends and mine useful information (e.g., [10]), while re-
altime applications or simple analytics tools require effi-
cient point-range-aggregate queries over bulk personalized
datasets (e.g., [4]). Thus, it is also imperative that, be-
sides the required scalability, the platform should be mod-
ular enough to provide support for different types of stor-
age/processing engines.

Personalized access may occur at either of the three levels
of a distributed system [3]: Data description, selection (i.e.,
querying) and result presentation. In this work, we present
a framework that is able to efficiently and scalably support
millions of physical cooperating nodes running different pro-
tocols and diverse personalized datasets on different levels
of granularity. As such, its contribution closely relates to
the selection and result presentation levels of access.

In this paper, we present the DREAM framework that is
able to deliver and to provide two key features:

First, DREAM supports and facilitates the deployment of
very large-scale (multiple million) P2P node systems. It
also includes simple, easy and organized tools to achieve the
collection of numerous statistics and execution of web-scale
concurrent queries.

Second, its modular design enables the use of multiple in-
dexing/processing engines, allowing different applications or
even groups of users within the same application to cus-



tomize their processing needs.

The DREAM system can simulate 600,000+ nodes in a
stand-alone environment and millions of nodes as it can be
executed in a distributed mode within a researcher’s lab-
oratory. In this sense, it takes advantage of the available
resources from multiple computers, that usually exist in a
typical laboratory or a research network. DREAM brings
forward appropriate tools and ready to use infrastructure
in order to facilitate the researchers’ tasks in-line with the
framework. Multiple protocols have been simulated in order
to show that it takes couple of hours to initialize a network
of 100000 nodes at a middle range configured PC.

Distributed simulations with DREAM can be designed
and delivered with the same framework in different envi-
ronments but with the same single setup. We show that
only a small scale laboratory environment (5 computing
machines) is an adequate environment to deliver multi -
million node simulations at ease. Furthermore, we present
the roadmap and demonstrate the results to deliver a small
scale laboratory setup to a successfully verified experiment
of six (6) protocol evaluations at the PlanetLab platform

(http://www.planet-lab.org) with limited effort given resources

available.

2. RELATED WORK AND MOTIVATION

Web Systems Personalization Adaptive web [2] makes
it possible to deliver personalized views or versions of a hy-
permedia document, improving usability and thus produc-
tivity. The user profile records information concerning the
user and his knowledge state. User profiles can be distribut-
edly stored across several servers.

Web Services Personalization The process of combi-
nation for fine-grained multidimensional user models with
knowledge representation and management techniques for
making Web Services knowledge-aware usually involves a
number of Web Services distributed in a network of numer-
ous nodes [7].

Social Web The Social Web provides an unpreceded en-
vironment to gather user activity and data. User data is
distributed across different Web systems, and the aggrega-
tion of such user profile information is transformed into a
distributed computation task. A user’s profile can be stored
in different network systems that formulate a world of nodes
with partial knowledge of each other in accordance to a
shared-nothing architecture [1]. A social network service is
essentially user oriented and thus the user is a basic entity
of the system. The users are associated with specific, unique
IDs in the network (UID). Content is the other important
entity of our model. Content is an abstraction of every type
of data that can be indexed, retrieved, and stored in the
system. Mainly, it refers to files that users own and wish to
make available to the social network. For indexing purposes,
each content item is represented by a set of terms (e.g. key-
words) that describe it. We call this set of terms the content
profile. Consider the (popular nowadays) cloud infrastruc-
tures for social content profiles. Each node in the cloud
maintains a tuple with attributes: UID, OS, load, Nodeld,
time, profile-keyword e.t.c. Collectively, these makeup a re-
lation, CloudNodes, and we wish to execute queries such as:
SELECT COUNT(UID)

FROM Cloudnodes
WHERE TIME=last week AND UID=10234 AND Nodeld
IN Facebook

in order to find how many times the user with identifier
10234 visited facebook during the last week.

In order to study the growing number of distributed ser-
vices and user profiles, research is closely related to the
development and usage of distrirbuted frameworks that al-
low numerous applications with large-scale, different require-
ments to evaluate and test the performance of various ap-
plication protocols for very large scale deployments (multi
million nodes - billions of keys). The analysis of Naicken [9]
shows that P2P simulators do not usually support the cre-
ation of more than 10,000 nodes [8]. Only a limited number
of cases conducts experiments with more nodes [6], how-
ever even then no more than a few 100,000 P2P nodes,
mainly because of memory requirements. The presented
framework, using lightweight and efficient collection mech-
anisms can easily reach > 600,000 P2P nodes in a stand
alone PC and multi-million P2P node in a small network
that every research laboratory has. P2P simulators fail to
include real-time registration of multiple measures as well as
inline features to simulate easily and seamlessly (a) random-
ized node departures and (b) node failures (and node failure
scenarios) to depict more realistically real life conditions [9],

[6].
3. BASIC ARCHITECTURE

In this section, the basic architectural features are pre-
sented in short. The figures following depict the main parts
of the framework environment, how the packages are related
and the design decisions that have been made. The modu-
lar architecture allows the researcher to develop quickly and
using a clear approach every new protocol that one might
want to test on large scale simulations.

3.1 Admin Tools

To support a GUI for multiple protocol implementations
and to allow wide customization in testing scenarios and
collection of metrics, a number of administration tools have
been packaged into the simulation framework. GUI allows
the high level researcher and protocol designer to perform
protocol testing without involving source code at all. Fur-
thermore GUI facilitates validation of protocols by indepen-
dent researchers in an easy and straight forward Ul function-
ality that incorporates collection and presentation of met-
rics. Admin tools have specifically been designed to support
reports on a collection of wide variety of metrics including,
protocol operation metrics, network balancing metrics, and
even server metrics. Such metrics include frequency, maxi-
mum, minimum and average of: number of hops for all basic
operations (lookup-insertion-deletion path length), number
of messages per node peer (hotpoint-bottleneck detection),
routing table length (routing size per node-peer) and addi-
tionally detection of network isolation (graph separation).
All metrics can tested using a number of different distribu-
tions (e.g. normal, weibull, beta, uniform etc). Additionally,
at a system level memory can also be managed in order to
execute at low or larger volumes and furthermore execution
time can also be logged. The framework is open for the
protocol designer to introduce additional metrics if needed.
Futhermore, XML rule based configuration is supported in
order to form a large number of different protocol testing
scenarios. It is possible to configure and schedule at once a
single or multiple experimental scenarios with different num-
ber of protocol networks (number of nodes) at a single PC



or multiple PCs and servers distributedly.

3.2 Overlay Scalability

Apart from the fact that a number of packages facilitate
development, a number of different protocols are available
as sample code and executables in order to allow familiar-
ization with the development and usage of the simulator:
Chord, Baton*, Nested Balanced Distributed Tree (NBDT),
NBDT*, R-NBDT* with advanced load distribution and
ART [11]. Moreover, the respective abstract classes and
programming steps are depicted also at a simplistic dummy
protocol in order to guide the programmers that first use the
simulation framework proposed. The framework is particu-
larly designed to allow large scale experimental evaluation
of node based protocols. The incoroporation of metrics col-
lection methods into the framework minimizes the memory
needed and frees up space for more nodes to be executed.
Moreover, distributed scenarios allow multiple computers to
participate in the same experiment increasing radically the
number of nodes simulated. The simulator is organized in
packages as shown in Figure 1(a).

4. NODE FAILURE AND DEPARTURE

The presented framework supports new operations and
services so that it provides services for node failure and net-
work recovery and for node departures and substitutions.
Simulators up to now tend to limit themselves to support
(a) import of nodes for the creation of overlay network and
(b) searching, (c) import and deletion of keys in nodes.

The classes and packages of the framework include all
the necessary code parts to facilitate the researcher in order
to detect, control departures and execute simulation using
them. The message passing environment is designed to be
possible to detect during simulations whether the message
recipient is online or not (i.e. it does not take for a fact that
the nodes are always available as done in rest of simulators).

It is common place that sudden departure of nodes with-
out notice can bring large scale problems to routing messages
within a P2P network. Such sudden simultaneous depar-
tures of multiple nodes makes difficult to failure recovery
routing strategies find an alternative path to avoid failure
nodes. In such cases, sending messages to the same node
more than one time is probable. In order to overcome such
cases, the simulator infrastructure includes tools to store all
intermediate nodes that a message visited in its path for the
sake of the simulation study even in cases that a protocol
does not need such information. As a result, all path can be
stored and studied after each message is sent. Moreover, to
support departure and node failures for any protocol, node
selection strategies take into consideration exception lists for
nodes that have failed while running any distribution for ex-
periments. Simulator facilities allow passing failed node lists
and/or departed node lists to preprocessing of distributions
utilized to retrieve randomized node ids during experimental
runs.

DREAM determines the state of each node based on the

state of each thread implementing it (RUNNABLE, BLOCKED,

TERMINATED). However, in order to handle self willing
node departures and sudden retirement of nodes, the node
has to pass through different states during simulation, in-
dependent from the thread state that implements it. These
states are fixed in the class named PeerState, that was cre-
ated as a part of network Overlay package, and they are

following: (a) WORKING: online and ready, (b) CANDI-
DATE_SUBSTITUTE: node substitution by existing node
or nodes at the network, (¢) VOLUNTARILY_LEFT: node
self-willing departure, (d) FAILED: abrupt node failure.

Next, it is crucial to monitor for overlay network par-
titioning after failure of successive nodes, which results in
isolation of nodes. This happens when all routing pointers
to nodes outside the isolated partition are broken. In other
words, the minimum number of routing pointers that should
break in order that a group of nodes is separated from the
overlay network equals to S as follows:
S =" contacts of all nodes of team —

> internal contacts between nodes

Furthermore, details on the statistics needed to monitor
failures and departures of nodes are: (a) The number of
steps (hops) to find the suitable overlay network point for
additions in the overlay network. This calculation is real-
ized with the infiltration of message JOIN_RESP from the
Network Filter class. (b) Number of steps to find a sub-
stitute when a intermediary node wishes to withdraw itself.
This calculation is realized with the infiltration of message
REPLACEMENT_RESP from the Network Filter class. (c)
Number of search queries, additions or deletions of keys that
failed, either because the expected node has departed, or
because the network has been partitioned and it is not pos-
sible to access the requested destination. This calculation
is realized with the sum of messages QUERYFAILED_RES
from the Network Filter class. In particular, a main tar-
get of this framework is to maintain robust collection and
analysis of statistical data that results from the experiments
at all new failure detection and overcome scenarios strate-
gies. The importance of experimental analysis is of more
major importance, because it confirms the theoretical anal-
ysis, it elects problems and potential omissions that had not
been located during the theoretical study, and constitutes
a proof for the proposal that is presented. Moreover, the
more realistic the simulation is, the smaller the divergence
of experimental results from the real life results.

5. DREAM EXPERIMENTAL EVALUATION

In the following we present the large-scale simulations we
executed in order to verify the efficiency of our novel frame-
work.

5.1 Simulation Environment

A standalone experimental evaluation at a typical research
laboratory computer can be performed either using the GUI
or filling out XML configuration files with the necessary the
parameters of execution.

First, we demonstrate the efficiency of our framework to
deploy a number of distributed protocols and test their lookup
performance. Using a single-PC configuration (Intel Core2
Duo CPU @ 3GHz, 3GB RAM) we simulate 100K node over-
lays with siz different protocols: Chord, BATON* NBDT,
NBDT*, R-NBDT* and ART. Results that register the re-
quired time for overlay construction and memory require-
ments are presented in Figure 1(b). Firstly, we note that
even a single typical PC can easily host wide scale experi-
ments. Secondly, our framework easily host a wide variety
of protocols and manages to very efficiently build a large
overlay using minimal resources: At most 1 GB of memory
is required for 100K overlay construction and full function-
ality. Execution times for this mode are also very small,
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Figure 1: Simulator modules and main performance measurements

ranging from 35min to at most 115min for NBDT.

The distributed environment that was used for the re-
mainder of the experiments consists of a total of 5 PCs (In-
tel(R) Xeon(R) CPU E5504 @ 2.00GHz, 8BG RAM) run-
ning over Ubuntu 9.10. To show the potential of the frame-
work we evaluated the performance of a number of proto-
cols. Exploiting the efficiency and its ability to function in
a distributed environment, we executed large-scale simula-
tions, altering the size of the network from 100,000 up to
2,000,000+ nodes with different flavours of protocols. Node
failure and recovery scenarios have been evaluated as well as
node departures and substitutions to test fault tolerance per
protocol. Trials have been made with single, and 2-core up
to 8-core processors and with 0.5 GB up to 16 GB of RAM
memory verified that the simulator scaled without problems
and did not need any changes of its configuration. This is
also verified for experiments with 1 up to 12 PCs which is
a number of PCs expected available at a typical Univer-
sity Lab (WAN experiments are also done on 50 Planetlab
points, please see section below). Furthermore the number
of nodes simulated scaled near-linearly.

Figures 2 and 3 present results while experimenting with
protocol Baton® for up to two million nodes. The perfor-
mance of P2P protocols is greatly dependent on the average
path length between two random network nodes. Figure 2(a)
shows the path used in order to define insert and deletion of
keys to nodes. Results verify that the cost is logarithmically
increasing with the network population. Moreover, experi-
ments show that query costs are decreasing with a fanout
increase. In particular, the gain received from the fanout
increase is larger when the network becomes more massive.
This is expected as the larger the number of nodes, the
smaller the tree height becomes with the fanout increase (in
terms of rate). As a consequence, we have verified for over-
lays up to 2M nodes that the cost of search, insert and delete
in Baton* protocol is O(logm N), where m is the fanout fac-
tor and N is the number of nodes. Note that original results
presented in [8] are up to 10K nodes.

Figure 2(b) shows the average routing table length. It is
clear that with an increase in the network size, the routing
information that has to be maintained per node is also in-
creasing: Increasing the number of nodes, more levels are

created in the tree and therefore, the number of neighbours
maintained at each node is increasing too. Moreover, a
fanout increase leads to an increase of routing table length
and, as a result, the cost of updating it. Experiments verify
that faster search is possible using larger routing tables.

Figure 3(a) presents the load that each node receives,
counting the number of messages received for any of the
operations for node populations up to 2M nodes and for
3K operations. As shown, the maximum number of mes-
sages in the experiments reached 13 and this only happens
for a single node. On the contrary, 30,590 nodes receive
a single message. As a result, we note that the protocol
successively balances the load among nodes. This also ver-
ifies that DREAM includes all the necessary features and
tools to detect and research on load balancing techniques
for P2P network protocols. As discussed in section 3, a list
of collectable metrics are available to evaluate and exper-
iment with protocols at application, protocol and system
level. Figures 4(a) and 4(b) show a number of metrics for
Chord, and ART, while figure 4(c) shows more metrics of
Baton* in Planetlab.

We also show that our framework is able to collect connection-
specific metrics that can be used to evaluate node-failure and
recovery strategies on networks with multi million nodes.
The problem that massive failures cause is the invalidation
of links among them. As the search procedures have to over-
come non-reachable connections, it is hard to choose a path
that does not include failed nodes. Queries oscillate inside
the overlay until the alternative path is determined. Thus
an increase in node failures is expected to result in an in-
crease to search costs. In our setup, a network of 1M nodes
is initialized, with a 10% of randomly chosen nodes being
assigned to leave abruptly (sudden node death), without re-
building the network. The experiments continue increasing
the percentage of nodes failing in the network by 1% at each
round. In each step, the network is checked in order to ver-
ify that it is not partitioned into isolated areas that cannot
communicate. All the experiments are repeated for fanout 2
up to 10 for Baton*. Figure 3(b) shows the average number
of nodes that is expected to fail before the network is par-
titioned. The results verify that the network is resistant to
failures when a quarter of the nodes fails for fanout=2. A



Uniform
18

16
§_ 14 ./././I\./‘.\I—.—I"
£ 12 M

o N ®
© © ©

—o—fanout=4

s »
=}

Routing table lengh (avg)

~@—fanout=2

i

—s— fanout=10

-
© o ©

200 400 600 800 10001200 1400 1600 1800 2000

Number of Nodes (xI000)

(b) Routing table length

Figure 2: Baton* Simulations with up to 2 Million P2P nodes (1)

10
tt 8 - —a—fanout=4
—é 6 —@—fanout=2
5 4 fanout=10
=

0

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Nodes (xI000)
(a) Lookup cost
14

S .
§ 10
= s
Y 6
y ¢
-g 2
20

~ a DS A D

YO VAR PR & 40 8 F
» §

N

Number of Nodes

(a) Messages per node

100
90
80
70
60

50
40
30
20

10

Percentage (%)

~
IS

6 8 10

Fanout

(b) failure percentage

Figure 3: Baton* Simulations with up to 2 Million P2P nodes (2)

fanout increase results in higher degrees of tolerance.

52 DREAM at the PlanetL ab

PlanetLab is a distributed research networks infrastruc-
ture comprising 1091 computers, which are found in 505
different research locations. Each network participant allo-
cates computers and is given the possibility to use resources
from all the network to implement large scale experiments.
The need for transparent transfer of experimental configu-
ration and evaluation into large- scale infrastructures with
limited changes is a common vision for researchers and re-
search developers. DREAM has been verified to be easy to
setup and execute at the PlanetLab network using the same
experimental configuration as that inside a research lab. In
order to avoid involvement of PlanetLab computers that are
out of reach or overloaded the CoMon tool can be utilized
that it provides statistics for PlanetLab available resources,
both at nodes and slice level.

In the experimental simulation scenarios, 50 PlanetLab
points were selected, based on their statistics according to
the CoMon tool, so that they would not face severe problems
of network interconnection. In each evaluation, node failure
and recovery scenarios have been evaluated as well as node
departures and substitution in order to test fault tolerance
and robustness of each protocol tested. During experimen-
tation at the PlanetLab, we observed that execution times

are an order of magnitude larger than those required in our
lab. There exist cases where 6,000 P2P nodes in PlanetLab
take approximately 7.5 hours to return results. Slices of the
PlanetLab are often over-loaded and large-scale experiments
face enormous delays. Moreover, network communication
among PlanetLab slices is an additional overhead that has
to be taken into consideration when planning experiments.
However, Planetlab is useful in order to verify that an en-
gine under research is possible to work even under very large
communication obstacles and most importantly in wide area
networks. Figure 4(c), one notices how DREAM is executed
for Baton* P2P at the planetlab nodes.

6. CONCLUSIONSAND FUTURE STEPS

DREAM is presented as a novel framework to support
simulation with multi million nodes. Contrary to the rest
of P2P simulators, it supports the deployment of any dis-
tributed indexing and processing engine. Moreover it in-
cludes a robust framework to work easily on failure and re-
covery scenarios for the networks under design or research.
Furthermore, robust statistics are supported and all oper-
ations are available through a simple GUI developed using
Java tools. It is an ideal platform for multiple applications
storing and quering in a fully customized way. Experimen-
tal evaluation in multi million node networks for the Baton*
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protocol verified that the protocol indeed scales according
to the theoretic analysis for up to 2 M nodes and this was
possible to do with DREAM. Finally, the framework pre-
sented is easily used as-is within the PlanetLab, too. Future
steps, include the HCI analysis of GUI simulators in order
to detect common problems that P2P researchers face.
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