
Docker-sec: A Fully Automated Container Security
Enhancement Mechanism

Fotis Loukidis – Andreou, Ioannis Giannakopoulos, Katerina Doka and Nectarios Koziris
Computing Systems Laboratory, National Technical University of Athens, Greece

{flouk, ggian, katerina, nkoziris}@cslab.ece.ntua.gr

Abstract—The popularity of containers is constantly rising
in the virtualization landscape, since they incur significantly
less overhead than Virtual Machines, the traditional hypervisor-
based counterparts, while enjoying better performance. However,
containers pose significant security challenges due to their direct
communication with the host kernel, allowing attackers to break
into the host system and co-located containers more easily than
Virtual Machines. Existing security hardening mechanisms are
based on the enforcement of Mandatory Access Control rules,
which exclusively allow specified, desired operations. However,
these mechanisms entail explicit knowledge of the container
functionality and behavior and require manual intervention and
setup. To overcome these limitations, we present Docker-sec, a
user-friendly mechanism for the protection of Docker containers
throughout their lifetime via the enforcement of access policies
that correspond to the anticipated (and legitimate) activity of the
applications they enclose. Docker-sec employs two mechanisms:
(a) Upon container creation, it constructs an initial, static set
of access rules based on container configuration parameters;
(b) During container runtime, the initial set is enhanced with
additional rules that further restrict the container’s capabilities,
reflecting the actual application operations. Through a rich
interaction with our system the audience will experience first-
hand how Docker-sec can successfully protect containers from
zero-day vulnerabilities in an automatic manner, with minimal
overhead on the application performance.

I. INTRODUCTION

In the last years, Cloud computing has prevailed over

traditional on-premise environments as a means of executing

applications and/or offering services for a wealth of rea-

sons, including reduced costs, seemingly infinite resources

purchased in a pay-as-you-go manner, scalability, ease of

maintenance, etc. One of the key enablers of Cloud Computing

is virtualization, since it can provide the necessary abstraction

that allows multiple independent virtual systems to share the

same pool of physical resources [1]. Recently, containers have

gained ground as a lightweight virtualization solution that

offers a plethora of benefits compared to Virtual Machines

(VMs), the traditional hypervisor-based alternatives.

Most importantly, containers incur significantly less over-

head than VMs, since they run as user-space processes on

top of the kernel, which they share with the host machine.

Moreover, they provide the ability to enclose application

components in lightweight units, simplifying their distribution

and deployment. As a result, large-scale applications can be

managed in an automated manner.

As their popularity rises, containers have been successfully

used in various use cases, while technologies around them

enjoy active development [2], [3]. Despite that, a low adoption

rate of container technology has been observed according to

the Cloud Foundation [4] and many researches designate se-

curity concerns as a determining factor [5]. Indeed, containers

were not designed with security in mind. Albeit providing

isolation to certain resources such as processes, file system,

network, etc. and enforcing quotas to CPU, RAM and disk

usage, containers are much more prone to attacks compared

to VMs due to the absence of a hypervisor, which adds an

extra layer of isolation between the applications and the host.

Since containers and host share the same kernel, compromised

or malicious containers can more easily escape out of their

environment and allow attacks on the host kernel.

The most effective way to harden the security of Linux

containers is to enforce Mandatory Access Control (MAC)

at the kernel level to prevent undesired operations both on the

host and the container side, using tools like AppArmor [6] or

SELinux [7]. However, this is a cumbersome process which

requires knowledge of the characteristics and requirements

of the application running inside the container and manual

creation of the specific security rules to be applied. A recent

attempt to automate the extraction of MAC rules [8] operates

on a per image rather than a per container instance basis,

leaving room for cross-container attacks.

To overcome these limitations we demonstrate Docker-sec,

an open-source1, automatic and user-friendly mechanism for

securing Docker and generally OCI2 compatible containers.

Docker-sec protects containers from attacks against both the

host and the container engine, restricting the container access

to the resources that are truly necessary for the operation

of the encompassed application. Docker-sec uses AppArmor

to enforce access policies to all critical components of the

Docker architecture by applying secure profiles to each of

them. Container profiles are constructed based on (a) the static
analysis of the container execution parameters and (b) the

dynamic monitoring of the container behavior during runtime.

More specifically, Docker-sec offers users the ability to auto-

matically generate initial container profiles based on configu-

ration parameters provided during container initialization (e.g.,

allowing only specific folders and files to be mounted). If a

stricter security policy is required, Docker-sec can dynamically

1https://github.com/FotisLouk/docker-sec
2The Open Container Initiative (OCI) is a Linux Foundation project to de-

sign open standards for operating-system-level virtualization, most importantly
Linux containers.

1561

2018 IEEE 38th International Conference on Distributed Computing Systems

2575-8411/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDCS.2018.00169

enhance the initial profile with rules extracted through the

monitoring of real-time container execution during a pre-

production period. By virtue of its two mechanisms, Docker-

sec can protect containers since their very creation from zero-

day vulnerabilities, incurring only a minimal overhead on the

application performance.

Our demonstration of Docker-sec will showcase its ability to

i) automatically derive initial access rules that restrict container

capabilities to the very essential ones for its operation (via our

static analysis mechanism) and ii) enhance the initial set of

rules with additional ones that better reflect the enclosed ap-

plication operations (via our dynamic monitoring mechanism).

Both mechanisms will be demonstrated for Docker containers

hosted in a private Opestack IaaS cluster. The participants

will be able to interact with Docker-sec through an enhanced

Docker Web Management UI, choosing from a number of

different application containers and simulated attacks.

II. DOCKER-SEC ARCHITECTURE

Docker-sec is a container protection mechanism based on

Docker, the most popular Linux container implementation,

although it can easily be applied to any container abiding

the OCI standard. In a nutshell, Docker uses a client-server

architecture that consists of the Docker client and the Docker
host (Figure 1). The Docker client is the user interface to

Docker and interacts with the Docker host through the Docker
Engine, a daemon responsible for building, running, and

distributing the containers residing in the host machine. In

order to manage the container’s lifecycle, Docker Engine uses

containerd a lightweight daemon that can handle multiple

concurrent requests. Containerd, in turn, relies on runC, a

CLI tool, to handle low-level container operations. RunC is

usually executed by containerd-shim, a process which is used

to manage headless containers.

The basic sandboxing mehcanism of Docker is Linux

namespaces, which are able to virtualize and isolate various

components of the system. However, in order to provide the

required functionality, namespaces are usually tied to resources

of the host system that cannot be virtualized. For example,

although mount namespace offers the container a different

view of the file system hierarchy, usually various essential file

systems (such as cgroups and sysfs) are shared with the host.

Through them, a container can access sensitive information

and settings. Consequently, we need to identify the resources

that Docker allows the container to access, determine the

ones that are sensitive and protect them via Apparmor. It is

also important to guard the processes through which these

resources are assigned to containers, so as to allow only

legitimate access to them.

Docker-sec adds an additional security layer on top of

Docker’s security defaults by automatically creating per-

container AppArmor profiles. The system is protected from

malicious or undermined containers that try to take control

of the host or the containers running on it, since containers

cannot communicate with other processes via signals, ptrace

or D-Bus. Furthermore, Docker-sec enhances container secu-

rity through generating dynamic security profiles, given an

application workload. This way the privileges of a container,

(e.g., capabilities, network access, etc.) are confined to the bare

minimum that is needed for the specific workload. As a result,

users of Docker-sec can gain the benefits of a MAC system,

without having to deal with the complexity of maintaining it.

Fig. 1. Docker components protected with AppArmor in Docker-sec

Docker-sec creates secure AppArmor profiles for all Docker

components that require protection to render the environment

more secure. First of all, Docker-sec creates and enforces

AppArmor profiles on containers, which serve as an entry

point of an attacker, since they run arbitrary code and are

accessible by users of the virtualized applications. The goal

is to construct a separate profile per container, placing each

one in a separate security context in order to restrict the

sharing of resources among containers. Second, Docker-sec

creates AppArmor profiles to protect runC, since it is the only

process that can directly interact with containers via signals.

Thus, Docker-sec is able to protect the entire process of

launching the container, i.e., from the moment that runC starts

initializing the container until it hands the control over to the

process running inside it. Finally, Docker Engine is protected

with a separate AppArmor profile, since users that can access

it have full control over containers, images, volumes and

network. The components of Docker that are automatically

protected via AppArmor profiles via Docker-sec are designated

with red locks in Figure 1.

�Container Profile: Container profiles are created using

rules extracted from the configuration of each container and

enhanced with rules based on the behavior of the contained

application. To that end, Docker-sec employs two mechanisms:

(a) Static analysis, which creates initial profiles from static

Docker execution parameters and (b) dynamic monitoring
which enhances them through monitoring the container work-

flow during a user-defined testing period.

The Static Analysis mechanism collects important static

information about the container and its accesses. This informa-

tion, which is either provided by the user as command line ar-

gumets or generated by Docker and obtained through Docker-

specific commands, is used to derive initial security rules

and construct the appropriate profiles under which the new

container will be launched. More specifically, when the user

executes docker create or docker run, commands

with which the Docker Engine constructs the requested con-

1562

tainers, Docker-sec collects from the command line arguments

important information such as the container volumes, i.e., the

files and folders of the host filesystem mapped to the container,

as well as the container user, root or non-root, and the

accompanying privileges. Moreover, through docker info,

the command that displays system wide information regarding

the Docker installation, Docker-sec obtains information like

the ID of the container, which is a SHA256 checksum, and the

mount point of the container’s root file system. By knowing

this information, Docker-sec can enforce runC to transition

to a temporary AppArmor profile, which is designed for the

initialization phase of the specific container. After this phase

ends and before handing the control over to the container

process, runC transitions to the AppArmor profile which will

be used (and possibly enhanced by the Dynamic Monitoring

mechanism) during the container’s runtime.

Dynamic Monitoring allows the user to specify a training

period for a specific container, during which Docker-sec will

collect data about the behavior of the container. After initiating

the training session, the user utilizes the part of the application

she is interested in, making use of all the required application

functionality, so that Docker-sec can determine the privileges

(e.g., network access, file-system access, capabilities) that

are necessary for the container to function properly. At the

end of the training period Docker-sec analyzes the audit log

that records the legitimate container accesses and adds the

corresponding rules to the containers runtime profile, possibly

discarding unnecessary privileges that were initially granted

to it by the runtime profile generated by the static analysis

phase. The training process can be repeated, if necessary,

until all the required functionality is captured and imprinted

in the container profile. Of course, during the training of the

container runtime profile, it is important that only authorized

and trusted users have access to the container and the container

application. Otherwise, it is possible to record and grant access

to system resources that are not needed by the container,

undermining system security. It is worth noting, that while one

container is under training mode, the rest of the containers are

still protected.

Fig. 2. Training process for container runtime profile

To provide the above functionality, Docker-sec uses Ap-

pArmor’s capabilities for auditing certain accesses that are

required by a process. AppArmor can set a profile in either

enforce mode, where all the profile rules are enforced and no

violations are allowed, or in a complain mode where violations

of the rules are recorded but allowed for the execution of

the corresponding system calls. In addition to the above, it is

possible, through appropriate rules, to mix these two modes,

providing greater flexibility. In particular, by maintaining a

profile in enforce mode, we can choose to monitor and log

the set of accesses governed by the rule, while the remaining

rules of the profile continue to be enforced protecting the

system. Therefore, by utilizing this capability, we can monitor

the container’s access to specific resources.
�RunC Profile: Since runC directly interacts with container

processes through commands like docker run, docker
exec or docker stats, we have opted for a separate Ap-

pArmor profile for it. The runC profile contains the appropriate

rules, one per container, that allow runC to set each container’s

root mount point through the pivot_root system call and

assign it a separate temporary profile. This temporary profile,

used during the initialization of the specific container, protects

the container until its transition (via aa_change_profile
or aa_change_onexec functions) to the final container

profile, used during the container runtime as described earlier.
Thus, Docker-sec protects the whole container lifecycle,

starting from the runC profile, continuing with the temporary

profile, during container initialization, and ending up with

the final container profile, used during application runtime.

As a result, access to the containers via signals or ptrace

is allowed only to the legitimate procceses of the host, and

most importantly, containers cannot access or control host

processes via these mechanisms, minimizing the attack surface

and protecting from a variety of attacks (e.g., CVE-2016-

9962).
�Docker Daemon Profile: To protect the Docker Daemon,

Docker-sec adopts a modified version of the AppArmor

profile, available from the Docker github repository, which

restricts access exclusively to the resources and tools/binaries

(e.g. ps, cat, ls, etc.) that the Docker Engine requires for its

operation.

III. PRELIMINARY PERFORMANCE RESULTS

 40

 50

 60

 70

 80

prime fft stressIO rwd socket

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

disabled
enabled

0.64%

0.04%

0.94%
0.21%

3.50%

 0

 0.1

 0.2

 0.3

 0.4

Ubuntu
Debian

Alpine
Busybox

Average

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

disabled enabled

2.00% 4.94%
3.86% 1.28%

3.02%

Fig. 3. Performance overhead of Docker-sec

We now evaluate the performance overhead introduced

by Docker-sec during the launching of a container and the

execution of the contained application due to the enforcement

of the AppArmor profile. Our evaluation unfolds in two axes.

First, utilizing stress-ng3, a popular benchmarking tool used

to stress a computer system, we execute different workloads

and compare execution times, using an Ubuntu image drawn

from its official Docker Hub registry4. We consider two types

3http://kernel.ubuntu.com/c̃king/stress-ng/
4Docker Hub is a cloud-based registry service for container image discov-

ery, distribution and change management. https://hub.docker.com

1563

of Docker containers: One that is secured with Docker-sec

(referred to as “enabled”) and one that runs without any se-

curity profile enabled (referred to as “disabled”). The selected

workloads are i) prime, which calculates prime numbers, ii)

fft, which executes the Fast Fourier Transformation, iii) stress
IO, which executes sequential and random access reads/writes,

iv) rwd, which reads, writes and deletes files and v) socket,
which continuously opens and closes sockets. Second, we

measure the time required for the container’s bootstrap, using

5 different Docker images obtained from official repositories

on Docker Hub. The choice of the specific images has been

dictated by their bootstraping time: We chose images with

small initialization time as our worst case scenario, so as to

examine the maximum posssible relative overhead introduced

by our mechanisms.

Our evaluation indicates that utilizing Docker-sec introduces

a minimal overhead both during the container’s lifetime (Fig-

ure 3, left) and during the container’s bootstrapping (Fig-

ure 3, right). Specifically, in the former case, the observed

overhead does not exceed 3.5%. For CPU-bound applications

(e.g., prime, fft) the observed overhead is marginal, whereas

benchmarks that stress file system resources (i.e., stress I/O
and rwd) present slightly increased overhead that does not

surpass 1%. Interestingly, the highest overhead is measured for

the socket benchmark. This behavior is attributed to the fact

that the enforcement of AppArmor rules in socket creation/de-

struction takes more time than in all other cases. Finally, when

measuring the delay introduced in container bootstrapping for

different Docker images, we notice that Docker-sec introduces

a relatively constant overhead (between 2 – 4%) regardless of

the image type.

IV. DEMONSTRATION DESCRIPTION

Docker-sec implements a command line interface similar to

Docker, appending the suffix -sec, to the existing docker

commands. Our automated system is based on AppArmor
and a wrapper utility written in bash, which is responsible

for creating AppArmor profiles tailored to specific container

instances and for interacting with Docker Engine to perform

the necessary operations in order to enforce them.

The attendees will interact with Docker-sec through a com-

prehensive, web-based GUI. The basic interaction dimensions

comprise container creation, new AppArmor profile creation

for a given container image, executing well known exploits and

training arbitrary container images with different workloads.

Our demonstration covers two use cases. In the first sce-

nario, the attendees will be able to verify Docker-sec’s effi-

ciency through building an enhanced security profile tailored

to a specific container instance and attempting to exploit it.

In the second scenario, the attendees will be able to create a

new security profile using an arbitrary container running any

given workload. More precisely:

�Exploiting containers: In the first use case, the user will be

able to start a new WordPress container using the Docker-sec

CLI. The container will be launched using the profile created

through the static analysis mechanism. After initializing the

container, the user will define a monitoring period and use

the container through the WordPress UI. During this period,

she will observe how the profile is being modified through

the dynamic monitoring mechanism, which audits specific

system resources, while protecting the rest of the system, since

the static profile is still being enforced. When the training

phase completes we will compare the static profile with the

dynamic one to determine the exact privileges required by the

specific application and to understand how Docker-sec restricts

container access.

Next, the attendees will be able to attack the host system

through an undermined container and compare the effects

of the attacks when the container uses (a) no profile (i.e.,

totally unprotected container), (b) a vanilla AppArmor profile,

(c) the profile created through the static analysis phase of

Docker-sec, and (d) the profile created by both the static and

the dynamic mechanisms of Docker-sec. In this step, after

gaining access to a shell inside the container, the users will

be able to “act maliciously” through the execution of various

simulated attacks, like modifying the SSH daemon, installing

new utilities inside the container or exploiting a vulnerability

of the container engine (e.g., CVE-2016-9962).

�Constructing new profiles: In the second use case, the

attendees will be given the opportunity to run Docker-sec for

a variety of Docker images and enclosed workloads. They will

be then able to compare the profiles generated for containers

of identical images but different workloads executing within

them. Through this process they will be able to discover the

different set of privileges required for each container and how

Docker-sec adapts to them. To that end, various benchmarks

will be available, including heavy application loads or stress-

ing of specific parts of a computer system, like CPU and

I/O. Moreover, due to the variety of benchmarks, users can

experience first-hand the overhead imposed by Docker-sec

and AppArmor for various application types and assess its

performance both in real life and extreme case scenarios.

ACKNOWLEDGEMENT

This work has been supported by the European Commission

in terms of the E2DATA H2020 ICT Project (780245).

REFERENCES

[1] L. Vaquero et al., “A Break in the Clouds: Towards a Cloud Definition,”
ACM SIGCOMM, vol. 39, no. 1, pp. 50–55, 2008.

[2] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
Omega, and Kubernetes,” Queue, vol. 14, no. 1, p. 10, 2016.

[3] S. Newman, Building microservices: designing fine-grained systems. ”
O’Reilly Media, Inc.”, 2015.

[4] “Hope Versus Reality, One Year Later An Update on Containers,”
https://www.cloudfoundry.org/wp-content/uploads/2012/02/Container-
Report-2017-1.pdf.

[5] “Portworx Annual Container Adoption Survey 2017,”
https://portworx.com/wp-content/uploads/2017/04/Portworx Annual
Container Adoption Survey 2017 Report.pdf.

[6] “AppArmor,” https://wiki.ubuntu.com/AppArmor.
[7] “SELinux,” https://selinuxproject.org.
[8] M. Mattetti et al., “Securing the Infrastructure and the Workloads of

Linux Containers,” in IEEE CNS, 2015, pp. 559–567.

1564

