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Abstract—A stable marriage problem (SMP) of size n involves
n men and n women, each of whom has ordered members of
the opposite gender by descending preferability. A solution is
a perfect matching among men and women, such that there
exists no pair who prefer each other to their current spouses.
The problem was formulated in 1962 by Gale and Shapley, who
showed that any instance can be solved in polynomial time, and
has attracted interest due to its application to any two-sided
market. Still, the solution obtained by the Gale-Shapley algorithm
is favorable to one side. Gusfield and Irving introduced the
equitable stable marriage problem (ESMP), which calls for finding
a stable matching that minimizes the distance between men’s
and women’s sum-of-rankings of their spouses. Unfortunately,
ESMP is strongly NP-hard; approximation algorithms therefor
are impractical, while even proposed heuristics may run for
an unpredictable number of iterations. We propose a novel,
deterministic approach that treats both genders equally, while
eschewing an exhaustive exploration of the space of all stable
matchings. Our thorough experimental study shows that, in con-
trast to previous proposals, our method not only achieves high-
quality solutions, but also terminates efficiently and repeatably
on all tested large problem instances.

I. INTRODUCTION

The stable marriage problem (SMP) [1], [2] pertains to
matching the agents in two sets of size n, where each agent
maintains a preference ranking over those in the other set.
Variants of the problem appear in any two-sided market, as
in matching doctors to hospitals [3], [4], students to schools
[5], or sailors to ships [6]. In the classic formulation, the two
sets consist of men and women in a marriage market, while
the problem calls for matching men and women to each other
in such a way that there exist no two people who would both
rather be married to each other than to their assigned spouses.
When no such pair exists, the whole matching is said to be
stable. The problem was formulated by Gale and Shapley [7],
who proved that a stable solution can always be arrived at by
an O(n2) algorithm.

Unfortunately, the Gale-Shapley Stable Marriage Algorithm
(SMA) only yields highly satisfied men and dissatisfied
women, or vice versa, namely a male optimal or female

optimal solution [8]; therefore it is inappropriate for most
real-world applications, which require matchings to be not
only stable, but also equitable [1], [9]. Thus, the equitable
stable marriage problem (ESMP) has attracted attention on its
own [10]–[15]. The ESMP calls for finding a stable matching
that satisfies a notion of equity between the two sides of
the examined market. Such equity implies avoiding unequal
degrees of happiness among the two sides. At the same time,
equity and overall happiness are not necessarily compatible,
thus, equity should not be achieved at the cost of sacrificing the
overall happiness. A solution that achieves equity by yielding
equally miserable men and women would not be attractive.
Unfortunately, the problem of optimizing equity alone is
NP-hard [10]. Recent research has provided approximation
algorithms [11] or heuristics [12]–[15] for this problem. Still,
to date there is no practical algorithm that efficiently yields
equitable stable matchings for large problem instances.

In this paper, we provide an efficient and practical solution
for the ESMP. We eschew an exhaustive search over stable
matchings, and instead build on the Gale-Shapley algorithm
in a manner that treats both sides equitably and still achieves
stable solutions. Achieving such equity is a nontrivial problem.
We conduct a thorough experimental study of our techniques
on much larger data than those of previous studies, compared
against a recent alternative [15] that does not always terminate,
as well as to the Gale-Shapley algorithm.

II. BACKGROUND AND RELATED WORK

An instance I of the stable marriage problem (SMP)
consists of n men and n women, where each person has a
preference list that strictly orders all members of the opposite
gender. If a man m prefers w1 to w2, we write w1 �m w2; a
similar notation is applied to women’s preferences. A perfect
matching M on I is a set of disjoint man-woman pairs on I .
When a man m and a woman w are matched to each other
in M , we write M(m) = w and M(w) = m. A man m and
a woman w are said to form a blocking pair for M (or to
block M ) when: (i) M(m) 6= w; (ii) w �m M(m); and (iii)



m �w M(w). A matching M is unstable if a blocking pair
exists for M , and stable otherwise. The SMP calls for finding
a stable matching M .

A. The Gale-Shapley Algorithm

The standard algorithm for solving the SMP, proposed by
Gale and Shapley [7], goes through a series of iterations.
At iteration i, each single man proposes to his most highly
preferred woman to whom he has not yet proposed, who may
or may not be already engaged; subsequently, each woman
considers all proposals she received from suitors, as well as
her current fiancé, if such exists, and accepts (or retains) an
engagement to the most preferable among them. This process
goes on until all men (and, in consequence, all women)
become engaged. At that point all marriages are final and
stable [1].

The Gale-Shapley algorithm terminates successfully after
a quadratic number of steps (yet linear in the input size of
preference lists). During its operation, once a woman becomes
engaged she remains engaged, while she may improve her
position by rejecting one fiancé for another. On the other hand,
an engaged man may be abandoned by his spouse and become
single again. A woman’s status changes only once from single
to engaged, and thereafter her ranking of her spouse can only
improve, while a man’s status may change back and forth
multiple times, while the ranking of his assigned spouse can
only worsen. A bachelor m never has to look back to a
woman w who has already rejected him; once w rejects m,
she will never prefer him to than any future spouse. Thus,
the algorithm is characterized by a monotonicity of men’s
and women’s rankings of their assigned fiancés. Nevertheless,
even though women can reject one fiancé for another, women
passively react to men’s proposals, while men actively make
proposals on their own. In effect, the algorithm caters to the
well-being of men and not to that of women; in the matching
it generates, each man gets the highest, and each woman the
lowest, preference they could get in any stable solution; this
matching is male-optimal and female-pessimal [8].

B. Quality Metrics and Previous Solutions

Even while the matching returned by the Gale-Shapley al-
gorithm is an extreme proposer-optimal solution, any instance
I of the problem may admit many different stable matchings.
One can reasonably try to achieve a matching that is not only
stable, but also judged to be good by some quality metric.
Past research has defined three quality criteria. Let prm(w)
(respectively, prw(m)) denote the position of woman w in
man m’s preference list (respectively, of m in w’s list). The
regret cost r(M) of a stable matching M is:

r(M) = max
(m,w)∈M

max{prm(w), prw(m)} (1)

On the other hand, the egalitarian cost c(M) is:

c(M) =
∑

(m,w)∈M

prm(w) +
∑

(m,w)∈M

prw(m) (2)

Finally, the sex equality cost is defined as:

d(M) =

∣∣∣∣∣∣
∑

(m,w)∈M

prm(w)−
∑

(m,w)∈M

prw(m)

∣∣∣∣∣∣ (3)

Gusfield and Irving [1] formulated the optimization prob-
lems of finding stable matchings that minimize each of these
quality metrics. These are tough problems, as admissible stable
matchings grow exponentially in the problem instance size
[16]. Nevertheless, Gusfield [17] proposed an O(n2) algorithm
for the minimum-regret SMP, while Irving et al. [18] provided
a O(n4) solution for the minimum-egalitarian SMP, later
improved to O(n3) by Feder [19]. These algorithms exploit
a lattice represented by a polynomial-size rotation poset [20],
containing all stable matchings. In contrast, there is no known
polynomial-time solution for minimizing the sex equality cost.
Kato [10] proved that this problem is strongly NP-hard, while
Iwama et al. [11] provided an O

(
n3+

1
ε

)
approximation algo-

rithm that obtains a stable matching M such that d(M) ≤ ε∆,
for a given constant ε, where ∆ = min{d(M0), d(Mz)}, M0

the man-optimal and Mz the woman-optimal stable matching;
a O

(
n3+2 1+ε

δ

)
variant bounds both d(M) and c(M) in terms

of ε and δ. Gelain et al. [12], [21] provided a local search
algorithm that finds an arbitrary stable marriage other than
the male-optimal or female-optimal ones for small problem
sizes, yet did not provide any results on quality metrics.
Aldershof et al. [22] have shown how to refine the set of
linear inequalities that describe the stable matching polytope
and proposed a randomized procedure that results in stable
matchings that do not favor one group over the other, yet does
not attempt to optimize a cost metric. In [23], Roth and Vande
identified that starting from an arbitrary matching and allowing
randomly chosen blocking pairs to match, the final matching
will be stable with probability equal to one. This interesting
approach examines the idea of transforming a possibly not
stable matching and transforming it into a stable matching.
However, there exist no guarantees regarding the equality
aspect of the matching, since the choice of blocking pairs must
be random and also the execution time of this methodology
may be prohibitive for big data sizes. Furthermore, in [24],
Ma demonstrated that not all possible stable matchings are
reachable from any random starting position.

Most recently, Everaere et al. [14], [15] proposed heuristics
that achieve equitable stable marriages, culminating in Swing
[15], a deterministic algorithm that allows both sides to
repetitively issue proposals; yet, unfortunately, Swing invests
a O(n2) time complexity per iteration, and may run for an
unpredictable number of such iterations even on small data
sizes. Thus, no efficient algorithm that provides a solution
of low sex equality cost exists. Swing++ [25] tries to solve
the non-termination problem of Swing by detecting repetitive
patterns of proposals and isolating the responsible agents;
unfortunately, it constitutes a step backward rather than a step
forward from Swing: it still does not guarantee termination,
while it also burdens the algorithm’s runtime with elaborate



cycle-detection and stability-checking mechanisms. Similarly
in [26] the problem is represented in the form of a “marriage
table” and the proposed algorithm named ZigZag, targets
to compromise global satisfaction, sex equality and stability.
This approach guarantees termination, but does not guarantee
stability. We strive to provide such algorithms that achieve
both equity, i.e., low d(M) and high overall happiness, i.e.,
low c(M). Other works have studied variants of the SMP
in the presence of preference ties and incomplete preference
lists [27], [28], agents having incentives to misreport their
preferences [29]–[31], partially ordered preferences [32], and
weaker notions of stability [33].

III. EQUITABLE STABLE MARRIAGE

We now set out to devise an algorithm that provides an
equitable solution to the SMP. As discussed, the Gale-Shapley
algorithm assigns two strictly defined and mutually exclusive
roles to the problem’s two sides. One side is designated as
proposers, assuming an active role, while the other side is
relegated to the role of acceptors, expecting and reacting to
the proposers’ initiatives. In consequence, the outcome of the
algorithm is proposer-optimal and acceptor-pessimal. In an
extreme case, assume that each man mi ranks woman wi

as his first preference: prmi(wi) = 1, while wi ranks mi

as her last preference: prwi(mi) = n, for i ∈ [1, n]. Then,
the outcome of the algorithm will be a stable matching M
where M(mi) = wi, i ∈ [1, n]; thus, all women obtain
their last choice, while all men obtain their first choice. We
reason that, in order to obtain a more equitable solution to
the SMP, the algorithm should treat both sides in an equitable
and non-discriminatory manner. Ideally, the algorithm should
be gender-blind, and the roles of the two sides interchangeable
with each other. Thus, we allow both genders (groups) to act
as both proposers and acceptors. In particular, at each iteration
of the algorithm, we should assign the role of proposer to the
one side and that of acceptor to the other. In the following we
analyze the mechanics of this approach and the dilemmas it
raises, and show how a stable matching can still be obtained
in this setting.

A. A Gender-Neutral Proposal

To render our discussion gender-neutral, we present it in
terms of two groups of size n, A and B, where ai ∈ A and
bi ∈ B for i ∈ [1, n]. Let `ai be the preference list of agent ai
and `bi that of bi; each preference list holds the desired spouses
of each agent ordered by their rank. For instance, `b4 [10] = a2
means that a2 is the 10th preference of b4. We express the
same relationship as prb4 [a2] = 10. If ai prefers bj with rank c,
then `ai [c] = bj and prai [bj ] = c. We postulate that the role of
proposers can be assumed by either group at a given iteration.
It follows that an agent in either group, say ai ∈ A, can issue
proposals towards the members of the opposite group, starting
out from its first preference and moving to a subsequent
one at each iteration. Moreover, members of both groups can
exhibit both the behavior characteristic of men as well as that
of women in the Gale-Shapley algorithm. In particular, if a

proposal issued by agent ai ∈ A is accepted by its recipient
bj ∈ B, then ai is engaged to bj and has no reason to issue
other proposals, as men do in Gale-Shapley’s algorithm. In
that case, we say that ai is content with its current partner,
as it has already exhausted all options to get engaged with a
more highly preferred member of B. However, as both sides
issue proposals, ai may later receive a proposal from an agent
bk ∈ B, such that prai [bk] < prai [bj ], meaning that ai prefers
bk to its current fiancé bj . Then ai will break its engagement
to bj and become engaged to bk instead, as women do in
Gale-Shapley’s algorithm. Thereafter, bj becomes single and
resumes proposing to other members of A.

Later, bk may receive a more tempting proposal from
another member of A. Then bk breaks up with ai, hence ai
resumes proposing to members of B. The interesting question
that arises then is at which position in ai’s preference list this
resumption should be directed to. One might be tempted to
think that the resumption can occur at prai [bj ], the last rank
to which ai has already proposed. Yet if that were to happen,
ai would miss the opportunity to propose to potential spouses
whom it may have rejected while it was engaged to bk, i.e.,
spouses of rank r ∈ [prai [bk], prai [bj ]]. Such opportunities
should not be missed; thus, ai should resume its proposals
from rank prai [bk]. Thus, when an agent resumes proposing
after a forced breakup, the resumption should not commence
from the point in its preference list it had previously reached,
but from the rank of the eloping partner. Each agent ai
maintains two indices on its preference list:

• nai , the next target to whom ai will propose; and
• mai , the current fiancé of ai.

When ai is single, then mai = ∞. When ai has to issue
a proposal, it should propose to `ai [nai ]. If ai breaks up
with bj in order to accept a proposal from bk, then it sets
nai = mai + 1 = prai [bk] + 1. Later, after bk breaks up with
ai, it sets mai = ∞, since ai is now single and proposes
to `ai [nai ], its next preference after bk, and proceeds until
it becomes engaged. On the other hand, ai may receive a
proposal from bj , where prai [bj ] > nai , while being single.
In such circumstances, ai accepts bj’s proposal, as a woman
would do in the Gale-Shapley algorithm, even though there
are still unexplored options more preferable than bj in its
preference list; ai will then be motivated to keep proposing to
those unexplored members of the opposite group.

From our discussion it follows that an agent can be in one
of three states, shown in the table below: At the beginning,
all agents are single, with m = ∞ and n = 1. When agent
a receives a proposal from b, where pra[b] = k > na, and
accepts, then ma = k. As a has not yet reached position ma

of its preference list in terms of proposals, it is motivated
to keep proposing to its unchecked preferences between na
and ma. After such proposals yield no positive response, na
reaches ma, hence a becomes content and ceases proposing.

Status single motivated content
index m =∞ m > n m = n



We now present the methods by which an agent evaluates
and issues proposals (functions EVALUATE and PROPOSE
respectively). Function M(ai) returns ai’s current partner, i.e.,
`ai [mai ]. For the sake of readability, we do not distinguish the
case when ai is single in this expression.

1: function EVALUATE(a, b) . a: acceptor, b: proposer
2: old = M(a)
3: if a.m ==∞ or pra[b] < a.m then
4: old.m =∞ . Break up with old
5: a.m = pra[b] . Engage with new
6: if a.n > pra[b] then
7: a.n← pra[b] + 1

8: else
9: return false

10: return true

1: function PROPOSE(a)
2: old = M(a)
3: if a.n < a.m then
4: b = `a[a.n]
5: if EVALUATE(b, a) then . b accepted a
6: old.m =∞ . Break up with old
7: a.m = a.n . Engage with new
8: else
9: a.n = a.n+ 1 . b rejected a

Algorithm 1 shows our methodology; its input is two
groups, wherein each member agent a comes with its pref-
erence list and its inverse (`a and pra, respectively). At each
iteration, one group is chosen to act as proposers, while the
other acts as acceptors. Each proposer agent then issues its
next proposal. The groups exchange roles across iterations for
the sake of equity. We discuss more on this exchange later.
The process goes on until all agents become content. In our
approach, an agent’s next target index n does not increase
monotonically, as in Gale-Shapley’s algorithm. In other words,
the monotonicity that characterizes Gale-Shapley’s algorithm
and guarantees its termination to a stable solution is lost. Al-
gorithm 1 does not provide an intrinsic termination guarantee.
The following theorem shows that, if the algorithm terminates,
then it terminates to a stable solution.

Algorithm 1 Equitable SMA
Input: A,B
Output: A stable matching w

1: w = ∅
2: k = 0
3: while not (everyone is content) do
4: k+ = 1
5: P = PICK PROPOSERS(A,B, k)
6: for all p ∈ P do
7: PROPOSE(p)
8: for all a ∈ A do
9: w = (a,M(a))

10: return w

Theorem 1: If Algorithm 1 terminates, it finds a stable
matching.

Proof: The proof is by reductio ad absurdum. Assume
the algorithm is executed for groups A and B and terminates,
yet the final matching M is unstable. Then M must contain
at least two unstable couples (ai, bj), (ak, b`) and a blocking
pair (ai, b`), where ai prefers b` to bj and b` prefers ai to
ak, prai [b`] < prai [bj ] and prb` [ai] < prb` [ak]. Since both
ai and b` are eventually content, they must have issued at
least two proposals to each other (once by ai and once by
b`), which were rejected. Without loss of generality, assume
ai rejected b`’s proposal as it was engaged to a more preferred
option, bf . However, since ai has ended up paired to a less
preferred partner, bf must have broken up with ai. Then ai
must have proposed to, and been rejected by, b`. However, b`
cannot have rejected that proposal and ended up content with
ak afterwards. A contradiction.

Example 1: Assume three men, m1, m2, and m3, and three
women, w1, w2, and w2, have the following preference lists:

• m1: w2, w1, w3 w1: m1,m2,m3

• m2: w1, w2, w3 w2: m3,m2,m1

• m3: w1, w3, w2 w3: m2,m1,m3

Assume each side gets a chance to propose in every
second iteration. In the first iteration, all men propose to
their first preference. After women respond, we get pairs
(m1, w2), (m2, w1), while m3 and w3 remain single. In Step
2, each woman proposes to her first preference. While m1

and m2 reject the proposals from w1 and w3, respectively,
m3 accepts the proposal from w2. Then the formed pairs
are (m2, w1), (m3, w2). In Step 3, men propose again; m2

is content with his current fiancé, yet m1 (single) and m3 (not
content with w2) propose to their next preferences, w1 and
w3, respectively; both accept, as w1 prefers m1 to m2 and w3

is single. Then the engagements become (m1, w1), (m3, w3).
In Step 4 it is the women’s turn; w1 is content, but w2,
being single, proposes to m2, who accepts; w3 also issues
a proposal to m1, who rejects her. The engagements now
become (m1, w1), (m2, w2), (m3, w3). Now all agents are
content, hence the algorithm terminates. The achieved scores
are c(M) = 12 and d(M) = 0. Gale-Shapley’s algorithm,
applied on the same problem instance, terminates at the stable
solution (m1, w2), (m2, w1), (m3, w3), with c(M) = 12 and
d(M) = 4. Notably, our solution achieves better (lower) sex
equality cost with the same egalitarian cost.

This simple yet powerful methodology achieves more equal
results, allowing each agent to continue negotiations until
a state is reached where each agent has achieved the best
possible outcome for themselves. The agents keep proposing
and evaluating offers from others, until they are no longer
motivated to continue proposing, exactly as in the Gale-
Shapley algorithm. However, the big difference in our case is
that an agent may be acting as a proposer and as an acceptor
in different algorithm steps, while in SMA each agent retain
their role throughout the algorithm’s execution. The idea that if
agents of opposing groups behave similarly, more equal results
will be achieved is commonly found in the literature (e.g. [14],
[15]). However, as we will analyze in the following section,



this approach may create a non-termination problem, since
the repeatability of some preferences may lead to the endless
repetitions of the algorithm’s states. To this end, several
approaches exploit the traditional algorithm to find a male-
optimal stable solution and transform this matching in order
to deliver more fair results (e.g. [12]). From our experience,
the monotonic property retained by SMA, is essential both
for the correctness and the termination of the algorithm. Any
approach that tries to provide “fair” features to the problem
while violating this monotonic property may either lead to not
stable solutions and/or may not terminate. However, as we are
discussing in the following section, we tackle these challenges
by employing a simple aperiodic proposer picking function
that breaks the repetitions in all tested problem instances.

B. The Problem of Circular Dependencies

We have established that, in case Algorithm 1 terminates,
it achieves a stable solution too. As the algorithm offers both
sides the opportunity to act as proposers, we expect such a
stable solution to achieve good quality in terms of c(M) and
d(M). However, it is not guaranteed that such a termination
will eventually arise.

The algorithm terminates once all agents are content. Such
contentment would be guaranteed to arise if all proposers’
next target indexes were monotonically increasing, as in Gale-
Shapley’s algorithm. However, in Algorithm 1, an agent may
return to the same target preference several times. If agents’
preference lists follow a circular pattern, an infinite loop may
arise, in which a group of agents continuously reissue the same
proposals to, and break up with, each other. We illustrate an
example of such circularity as follows.

Example 2: Assume two men, m1, m2, and two women
w1, w2, are placed in each other’s preference lists according
to the following pattern:
• m1 : . . . , w1, . . . , w2 w1 : . . . ,m2, . . . ,m1

• m2 : . . . , w2, . . . , w1 w2 : . . . ,m1, . . . ,m2

Assume originally the only pair is (m1, w1). At a subse-
quent iteration, w1 proposes to m2, who accepts, hence we
get (m2, w1). Later, m2 proposes to w2, who accepts. Hence
we get (m2, w2). While now w1 can return to m1, she is still
busy proposing to others. Later, m1, still single, proposes to
w2, who accepts, deserting m2. Hence we get (m1, w2). While
m2 can now return to w1, she is busy making other proposals.
Eventually, w1 proposes to m1, hence m1 rejects w2, and we
get (m1, w1) again. Later m2 proposes to w1, who leaves m1,
hence we get (m2, w1) again. Later w2 proposes to m2; the
whole process may continue in a cycle.

In the above, stable states do exist: both (m1, w1), (m2, w2)
and (m1, w2), (m2, w1) are stable as far as these four agents
are concerned. Moreover, we can obtain these stable states; for
instance, if m1 and m2 propose to w1 and w2, respectively, at
the same iteration, then we arrive at a stable state. The problem
arises not due to the pattern of preferences per se, but due to
the timing of agents proposing to each other across iterations.
This timing depends on which side acts as proposers at each
iteration. As long as the decision of who act as proposers is

made in a state-dependent way, then, once the system arrives
at a state in which it has previously been, it is guaranteed to
enter an endless cycle. The same circumstances will lead to
an endless repetition of the same chain of actions and back to
the same state. It follows that, in order to avoid such cycles,
we should devise a way to pick proposers in a manner defined
by factors unrelated to the current problem state.

One way would be to pick proposers in a randomized
fashion. Yet, in such a case, our experiments would not be
strictly reproducible, casting doubts on the veracity of results.
We then opt for picking proposers not as a function of the
problem state, but as a function of the algorithm iteration. To
guarantee fairness among the two sides, a periodic function
would be fit for that purpose; however, the very periodicity of
such a function is liable to lead to endless cycling in the state
graph as well, in case the number of iterations within a cycle
matches an integer number of periods. Therefore, we opt for a
function that is: (i) deterministic but not state-dependent, (ii)
leading to evenly distributed outcomes, and (iii) aperiodic. As
we describe in the following section, the desired properties are
provided by a composition of a trigonometric and a polynomial
function.

C. Assigning Proposers

Our Equitable Stable Marriage Algorithm (ESMA) uses
the PICK PROPOSERS function shown below. Proposers are
picked using the sign of the function sin(k2), where k is the
algorithm’s iteration counter, leading to repeatable and evenly
distributed, yet aperiodic sequences. If the sign of the function
is positive, then the first group is picked; else the second is
assigned as the proposer group.

1: function PICK PROPOSERS(A, B, k)
2: if sin(k2) ≥ 0 then
3: return A
4: else
5: return B

The chosen function alternates due to its sin component, yet
progressively decreases its oscillation interval as the iteration
count k grows due to its quadratic component. The group
chosen as proposers depends on the sign of this function.
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It could be argued that, despite its oscillating nature, the
function may not guarantee a “fair” treatment of the oppos-
ing groups. To investigate this matter, we measure how the
deviation, defined as the difference between the times each
side has been chosen as proposers, divided by the number of
iterations k, evolves as a function of k. Figure 1 presents our
findings. As we see, absolute deviation stays below 0.5% in
the long run, while the favored side alternates as k grows.
The choice of a polynomial and a trigonometric function as
a proposer picking function leads all tested instances of the
problem to termination. In our experimentation, we identified
that the usage of a periodic function as a proposer picking
function leads the algorithm to endless loops, since the period
of the function may be synchronized with the repetition of the
problem states.

D. Performance Optimization

As we have seen, an agent a reiterates over its preference list
after a breakup using the next target index n. This provision
guarantees the stability of the state the algorithm terminates
at, yet it is also a computational burden. We discern that n
does not need to be upgraded to the position of an eloping
spouse. Assume n is the position of a’s target index when it
receives a proposal from b = `a[m], with m < n. Later, in
case b elopes, a does not have to re-propose to all preferences
between m and n. It suffices to propose to those suitors who
had proposed to a while it was engaged with b, and whom
it rejected as it was content; only those who have indicated
interest need to be probed. To achieve this effect, it suffices
to maintain a list of such suitors. This pruning of the proposal
target list speeds up the overall algorithm.

IV. EXPERIMENTAL EVALUATION

We now present our experimental study, which documents
that ESMA terminates on the tested large problem instances
and achieves good quality in terms of c(M) and d(M); in our
experiments, these metrics are normalized, i.e., divided by n.
The data sizes we employ greatly outnumber those used in
experimental studies of related works [10]–[15], which were
limited to n ≤ 200. We use sizes of up to 2000, while we
generate synthetic data of diverse skewness and type. Since
many real-world problems studied in the literature (e.g. the
Ministry of Education problem presented in [5]) entail a large
number of agents, we chose a problem size that could be
large enough to be realistic, yet leads Swing to terminate in a
reasonable.

All algorithms were implemented in Java and ran on an
Intel Xeon CPU at 2.00 GHz with 8GB RAM running Debian.
We compare ESMA’s performance in terms of the previously
presented equality costs against the classical Gale-Shapley
algorithm (SMA) and Swing [15]. Swing also allows both sides
to propose. Yet it issues redundant proposals, recapitulating
each agent’s preferences anew at each iteration, and works
in a simple alternating deterministic manner; thus, while
ESMA requires only linear time per iteration, Swing requires
quadratic time per iteration, and, moreover, easily falls into

non-terminating cycles, as Everaere et al. recognize. We found
that Swing does not terminate with 1% of 10, 000 randomly
generated data sets of any size, while ESMA never encoun-
tered such a problem. We chose to compare ESMA against
Swing because both algorithms guarantee that if termination
is reached, the solution is stable. We emphasize that all our
experiments are repeatable and our code is made available1 so
that any interested reader can try our algorithm on their own
data.

For the experimental evaluation, we generate synthetic pref-
erence lists following one of the following distributions: (i)
a Uniform distribution, creating preference lists by assigning
scores uniformly at random, (ii) a Gaussian distribution,
whereby preference lists are created starting from a default
order where ai has score(ai) = i, adding Gaussian noise
to those scores, and re-sorting and (iii) a distribution with
Discrete Regions, in which the agents are partitioned in two
disjoint sets of preferability: one set is annotated as the “hot
region”, indicating that the agents of this set are the most
desirable in the opposite group and the “cold region” which
is formed of the least desirable agents. In the Gaussian case,
noise is multiplied by a skewness factor S ≤ n. As S grows,
the produced distribution becomes more like the uniform one.
We use four datasets with S equal to 20%, 40%, 60% and 80%
of n. Factor S is reversely proportional to the data polarity: the
higher S is, the less polarized the data become. In the Discrete
Regions case the agents of the same group are uniformly
distributed in the preference lists of the opposing groups. We
create four datasets in which the Hot Region consists of the
20%, 40%, 60% and 80% of n. We produced data of 20
different sizes, from 100 to 2000 agents per group, with 5
variants per size, while dropping data on which Swing could
not terminate. The results we present for each data size are
the averages of those runs.

A. Performance Evaluation

Figure 2 presents our results for the Uniform case. In terms
of solution quality, Swing and ESMA perform similarly, as
indicated both by Egalitarian and Sex Equality costs. SMA,
on the other hand, achieves far worse quality in both metrics.
Both Swing and ESMA perform up to 3 times better than
SMA in terms of Egalitarian cost and up to 100 times better
performance in terms of Sex Equality cost. However, ESMA
outperforms Swing in terms of execution time; ESMA runs in
approximately the same time as SMA, whereas Swing needs
two orders of magnitude more time to complete. This result
is due to two factors: (i) each iteration of Swing is much
slower, as each agent reiterates proposals to all its preferences
from the first to the current one (or until it finds a match),
and (ii) the number of iterations Swing goes through is larger,
even when it terminates, as the requirement that each agent
aggressively reiterates proposals at each iteration leads to
repetitive rounds of matchings. ESMA, on the other hand,
does only one proposal per agent per iteration. To quantify this

1At https://github.com/equitable-stable-matching/esma/
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Fig. 2. Performance vs. data size, Uniform distribution
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Fig. 3. Performance vs. data size, Gauss distribution
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Fig. 4. Performance vs. data size, Discrete Regions distribution

difference, we measured that on 2000 agents, Swing needed
approximately 23000 iterations, whereas SMA and ESMA
completed in about 3000 steps. Figures are omitted due to
space constraints. Interestingly, ESMA is faster than SMA in
some cases (e.g. n = 1900). This can be attributed to the
reason that, by allowing both sides to propose, a stable solution
is reached in fewer iterations.

Figure 3 presents the performance of the three algorithms
on the Gaussian dataset. The depicted experiments refer to the
least polarized case (where S = 80%). We again notice that the
algorithms follow the same behavior, both in terms of equality
and in terms of the execution time, as in the Uniform case
(Figure 2). However, comparing Figures 2 and 3, we note that
SMA lowers its difference from Swing and ESMA for both
Egalitarian and Sex Equality cost. Furthermore, in Figure 4 we
provide the respective results for the Discrete Regions dataset,
in the case where the Hot Region covers 20% of n. We notice
that the behavior of the three algorithms is equivalent to the
Gaussian case. However, the difference of the equal algorithms
and SMA in terms of Egalitarian cost is further decreased in
this case, whereas in terms of Sex Equality cost both Swing
and ESMA achieve “fair” results.

Taking the above observation further, we evaluate the per-
formance of the algorithms on 2000 agents as the polarity of
the data increases (S decreases). Figure 5 shows our findings.
In terms of runtime, Swing is again the worst performer, while,
surprisingly, ESMA gains an advantage over SMA; this is
attributable to the fact that SMA may encounter difficulties
with highly skewed preference lists, as it gives the initiative
to one side only. Polarity affects the Egalitarian cost, with
all algorithm’s performance dropping as polarity grows. We
attribute this effect to the fact that, due to the skewness of
preference lists, some agents are universally more desirable,
and less desirable ones tend to get matched to each other;
thus global happiness worsens as skewness grows; on the other
hand, sex equality improves for SMA, as polarity allows for
more equity in a one-side-optimal matching, while it slightly
worsens for others, as more polarized data lead to less equity
compared to less polarized ones in a balanced matching.

V. CONCLUSION

This work revisited the NP-hard Equitable Stable Marriage
Problem. We devised a novel solution, granting both sides
the opportunity to propose in a minimalist and controlled
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manner, governed by an aperiodic, non-state-dependent func-
tion, so as to ensure repeatability in a machine-independent
way. Our experimental study demonstrates that ours is, to
our knowledge, the first practical algorithm that yields high-
quality equitable stable matchings and terminates on all tested
problem instances; it achieves performance similar to or better
than that of Swing, the only existing practical algorithm for
the problem, in terms of Sex Equality, whereas its execution
time is similar to that of the classical Gale-Shapley algorithm
that finds a solution biased in favor of one side.
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