
Isolation in Docker through Layer Encryption
Ioannis Giannakopoulos, Konstantinos Papazafeiropoulos, Katerina Doka, Nectarios Koziris

Computing Systems Laboratory,
National Technical University of Athens, Greece

{ggian, kpapazaf, katerina, nkoziris}@cslab.ece.ntua.gr

Abstract—Containers are constantly gaining ground in the
virtualization landscape as a lightweight and efficient alternative
to hypervisor-based Virtual Machines, with Docker being the
most successful representative. Docker relies on union-capable file
systems, where any action performed to a base image is captured
as a new file system layer. This strategy allows developers to easily
pack applications into Docker image layers and distribute them
via public registries. However, this image creation and distri-
bution strategy does not protect sensitive data from malicious
privileged users (e.g., registry administrator, cloud provider),
since encryption is not natively supported. We propose and
demonstrate a mechanism for secure Docker image manipulation
throughout its life cycle: The creation, storage and usage of a
Docker image is backed by a data-at-rest mechanism, which
maintains sensitive data encrypted on disk and encrypts/decrypts
them on-the-fly in order to preserve their confidentiality at all
times, while the distribution and migration of images is enhanced
with a mechanism that encrypts only specific layers of the file
system that need to remain confidential and ensures that only
legitimate key holders can decrypt them and reconstruct the
original image. Through a rich interaction with our system the
audience will experience first-hand how sensitive image data can
be safely distributed and remain encrypted at the storage device
throughout the container’s lifetime, bearing only a marginal
performance overhead.

I. INTRODUCTION

The advent of virtualization technologies has been a key
enabler of Cloud Computing, providing the necessary abstrac-
tion that allows multiple independent virtual systems to share
the same pool of physical resources [1]. In the last years,
containers have gained ground as a lightweight virtualization
solution which acts at the operating system level, where
multiple containers, i.e., isolated user-space processes, may
run on top of the kernel shared with the host machine.

By virtue of their design, containers incur significantly
less overhead than Virtual Machines (VMs) - the traditional
hypervisor-based counterparts - while enjoying better perfor-
mance, reaching that of native applications [2]. Thus, con-
tainers are ideal as application hosting environments in the
fields of Cloud Computing and Software Engineering, with
modern resource schedulers and Cloud-based IDEs currently
supporting them [3][4][5][6].

Docker [7] is one of the most prominent implementations of
Linux containers. Docker is designed on the principle that each
container should execute a single application component; If an
application consists of more than one components, different
Docker containers should be allocated.

Docker relies upon union-capable file systems. This means
that a container image, which is used to instantiate containers,

consists of a series of layers on top of a base OS image, so
that each layer contains only the updates to the previous one.
Thus, when making a change to a container (e.g., installing a
new software package, etc.), the additional content is written
on a new layer, created on top of the existing ones (which
remain read-only). This mechanism facilitates the creation of
new Docker images, since they can easily be built upon other
existing Docker images, available in online repositories. Thus,
an image and its derivatives share the same base layers (e.g.,
Ubuntu OS) and differ only in the topmost layers, which
represent the additional files stored (e.g., MySQL installation).

The aforementioned property has given birth to a delicate
and efficient distribution mechanism which reduces the sharing
of images to exclusively sharing the specific image layers
missing (e.g., the MySQL installation layer). This is partic-
ularly useful for Continuous Delivery and other DevOps tasks
that require automation, since Docker layers can be stored in
a central repository, i.e., the Docker Image Registry [8], and
pulled by different clients concurrently. Furthermore, since
each update can be formulated as a new layer, changing a
Docker container is straightforward and completely safe: An
unstable or faulty image layer can be easily removed, leaving
a completely functional container.

Docker Image Registries support public as well as private
images: The former are accessible by any user whereas the
latter are only accessible by users with specific privileges.
In both cases though, privileged users, such as the registry’s
administrator or people with physical access to the registry
host, can obtain access to the images, since they are not
encrypted by the client. Therefore, users distributing images
with sensitive data do not rely on the registry: They either
(a) commit and push to the registry new images without the
sensitive data, which they add manually when the destination
container is launched, or they (b) extract and encrypt the
entire image, forfeiting the layered image philosophy and
failing to fully exploit its advantages. Indeed, although the
latter solution guarantees that all image layers are retrievable
when the decrypted image is inserted into a new Docker host,
decryption is a cumbersome process, and thus the overhead
of decrypting the whole image for just a handful of sensitive
files is prohibitively high.

Furthermore, since Docker stores the container’s data in
plain text format in the host file system, data confidentiality
may be compromised by a malicious storage provider who has
physical access to the storage medium or privileged (e.g., root
equivalent) access to the host machine.

To overcome these limitations, in this work we propose
and demonstrate IDLE (Isolation in Docker through Layer
Encryption), a tool that runs on top of Docker and allows the
user to extract and encrypt a specific image layer, transfer it
to the destination host and decrypt in a secure way, ensuring
that even if the protected layer becomes publicly available,
only the key-holder can obtain access to it. Furthermore, to
protect the confidentiality of already shared and deployed
Docker images against a malicious storage provider and ensure
that sensitive data remain encrypted at the storage device they
belong to throughout the container’s lifetime, we enhance the
Docker storage engine with a mechanism that allows access to
stored container data an “encryption/decryption” mapping that
translates the operations performed over the original data into
operations over encrypted data. The experimental evaluation
of our system’s prototype demonstrates that our mechanism
causes marginal overhead to the container’s performance.

Our demonstration of the IDLE system will showcase its
ability to i) securely distribute/migrate Docker images that
contain sensitive data (via our IDLE-on-the-move mechanism)
and ii) preserve the confidentiality of sensitive data stored
on disk even during container usage (via our IDLE-at-rest
mechanism). The demonstration platform will showcase both
IDLE mechanisms for Docker containers hosted in a private
Openstack IaaS cluster. The participants will have the oppor-
tunity to interact with IDLE through an enhanced Docker
Web Management UI, controlling the amount and type of
data that will be securely transferred between Docker hosts
and enforcing the IDLE mechanisms on top of dynamically
allocated Openstack volumes.

II. IDLE SYSTEM ARCHITECTURE

The IDLE system architecture consists of two modules,
the IDLE-on-the-move and the IDLE-at-rest modules. The
former implements the mechanisms that handle the secure
distribution/migration of container images with sensitive data
among hosts, while the latter is responsible for ensuring
the confidentiality of stored data throughout the container’s
lifetime. Both modules rely on the capabilities offered by the
underlying union file system - OverlayFS [9] in our case -
which supports the Docker layered image architecture.

Layered images allow the user to build her images in
an incremental manner, with each extra layer adding a new
feature to the existing ones. Assuming a single-layer base
image (e.g., Ubuntu 14.04), a user can boot it, execute a
set of commands (e.g., install java) and finally commit her
updates. This is performed by creating a new image layer that
contains exclusively the newly appended/updated files and lies
on top of the base image. Upon further updates (e.g., tomcat
installation), additional new layers are created and placed on
top of the previous ones following the same process. The final
image will be of the form depicted in Fig. 1(a). We should note
at this point that upon instantiation of a container, Docker by
default creates a new layer on top of the existing image layers
so as to store any future changes. This top layer is mounted

Ubuntu 14.04

+java

+tomcat
Ubuntu 14.04

+java +mysql

+tomcat +hadoop

Fig. 1. Docker (a) image example and (b) layer tree for different images

with read/write permissions, unlike the rest of the image layers
which remain read-only.

This layered structure results in the creation of a tree-
hierarchy among different image layers, as depicted in Fig.
1(b). In this example, existing image layers (e.g., Ubuntu
14.04, +java) can serve as a basis for the generation of
new container images (e.g., Ubuntu 14.04, +java, +hadoop).
This scheme encourages the re-usability of the various layers
and enables Docker’s lightweight images, since only layer
updates need to be propagated. Docker layers can be stored in
central image registries and made available for downloading
by different clients. Thus, a user in possession of a base image
(e.g., Ubuntu 14.04) that wants to add an extra application
(e.g., MySQL) does not need to pull a whole new image
from the registry, but rather download the desired, application-
specific layer, as opposed to the monolithic VM images, which
need to contain the whole underlying software stack even for
a minor update.
IDLE-on-the-move module: This module encrypts and dis-
tributes the sensitive layers of a Docker image. Figure 2 depicts
the proposed secure image distribution mechanism. We assume
a container that consists of multiple layers (e.g., 7 layers,
according to the figure) with the topmost layer (Layer 6)
containing the confidential data.

Host BHost A

Layer 6
Layer 5
Layer 4
Layer 3
Layer 2
Layer 1
Layer 0

Source container

Layer 6
Layer 5
Layer 4
Layer 3
Layer 2
Layer 1
Layer 0

Target container

AES-256 AES-256Untrusted channel

Image Registry

Fig. 2. Container migration scheme

As depicted in the figure, we decompose the container’s
image in two parts: The public part – formed by Layers 0-5 –
and the private part that consists of Layer 6. The public part
of the image is pushed to the Docker image registry as usual.
The private part is not shared via the image registry, but the
user can distribute it with a tool of their choice (e.g., through a
public Web Server). The private image layer is encrypted using
AES-256 and additionally signed with the ECDSA algorithm.
The encrypted layer is transferred to the destination host. Our
mechanism pulls the public part of the image and instantiates
a new container; The private part is, in turn, decrypted and
installed as the top layer of the newly allocated container.

To enforce the per-layer encryption, we have implemented
a tool which orchestrates the previously described procedure.
First, the user provides the container id she wishes to encrypt.
For simplicity, we assume that only the topmost layer is to be
encrypted. To identify which is the topmost layer for the spec-
ified container, we first parse the configuration file located in

$DOCKER_PATH/image/overlay/layerdb/mounts/
<container id>/init-id, in which the ID of the
topmost layer is stored. Then, the layer_id value is
retrieved and the final layer path is identified, which is
$DOCKER_PATH/overlay/<layer id>/upper. After-
wards, we create an archive with the data of the topmost
layer and remove it from the container image. The archive
contains the private layer’s files and meta-files used internally
by overlay, denoting file deletions, versioning, etc. The public
part of the image is then pushed into the image registry. After
being encrypted and signed, the encrypted layer is transferred
to the destination host.

At the destination, the reverse procedure is followed: Upon
successful validation of its signature, the private image layer
is extracted from its archive. The public part of the image that
must be pulled from the registry is designated by the id stored
in the metadata file, included in the private part’s archive. After
downloading the public image, a new container is instantiated
and the extracted private layer is placed in the topmost
layer. At the end, the image is securely transferred from the
source to the destination host, maintaining the confidential
data encrypted throughout the migration procedure. Finally, we
should note that during the aforementioned procedure, Docker
remains agnostic of the described operations. This modularity
means that our approach does not need sophisticated setups.
On the contrary, it can operate in any Docker installation,
assuming that it supports Overlay. One of our future targets is
to port our methodology to different file systems.
IDLE-at-rest module: We now discuss the utilization of a
data-at-rest encryption mechanism in order to save the image
layer with the confidential data in an encrypted manner to the
disk, through dm-crypt [10]. The main idea behind dm-crypt is
that the data always remain encrypted on the disk, e.g., in the
directory /tmp/encrypted, while a file system mapping
allows on-the-fly data decryption. This mapping is accessible
by the users as a directory in the filesystem, e.g., the directory
/tmp/unencrypted. Every time a new file operation is
issued on a file under the unencrypted directory, dm-crypt
translates it into an operation on the encrypted directory and
the encryption/decryption operations are executed on the fly.
Obviously, a root user is able to access the data when the
mapping is enabled, i.e., when the encrypted directory is
mounted. However, when the directory is not mounted the
encrypted data remain inaccessible even for privileged users.

As mentioned above, this mechanism acts as an extra pre-
caution measure to enhance the protection of confidential data
against an adversary that has access to the storage service over
which the container is executed. Taking into consideration that
nowadays a common practice is to deploy Docker containers
over a cloud infrastructure, it becomes apparent that the
confidential container data could be stored over a cloud storage
stack that consists of multiple layers and, possibly, non-trusted
parties. The ability to maintain data confidentiality in such
cases becomes a highly desirable feature which resembles
the ability to boot a VM from an encrypted disk. Our tool
manages at-rest Docker layer encryption through dm-crypt

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
 (

s
e
c
)

File Size (MB)

Time (sec) vs File Size (MB)

encrypt
transfer
decrypt

Fig. 3. Experimental Evaluation

transparently for the user. In order to facilitate the cloud
deployment, we provide a component able to leverage inherent
mechanisms of different Cloud Computing platforms. Using
an easily extensible implementation, IDLE-at-rest currently
supports dm-crypt mappings based on: a) a file on the local
filesystem or b) an Openstack Volume, the lifetime of which
is managed by our module in an automated way.
IDLE overhead: We now evaluate the overhead inserted by
the utilization of the IDLE on-the-move system, in order
to securely transfer a container layer from a source to a
destination Docker host. The key parameter that affects the
execution time of our approach is the size of the data to be
encrypted; To this end, we created a Docker container based on
a vanilla Debian image, and populated the topmost layer with
files of different sizes, varying from 1 to 20MB. For each size,
we encrypted the topmost layer, transferred it to a destination
Docker host and installed it into a new Debian-based container,
measuring the time for each phase separately. In Fig. 3 we
depict our findings. The experiments were conducted in a
private Openstack installation and the Docker hosts (the source
and the destination) run Ubuntu 16.04 with 1-core CPU and
1GB of RAM each. Each experiment was repeated 5 times
and the presented times correspond to the average of those
runs. The figure indicates that the time needed to encrypt
and decrypt the image layer increases linearly with the size
of the layer, a reasonable finding since the execution time is
dominated by the encryption algorithm. Moreover, it is obvious
that for a layer size of 10MB, the overhead inserted by our
approach does not surpass 4 seconds; A time which is marginal
when compared to the time needed to fetch the public part of
an image from a Docker Image registry, that, according to the
image size, may require several minutes.

III. DEMONSTRATION DESCRIPTION

Our system is controlled by a comprehensive web-based
GUI that attendees will utilize. The basic interaction dimen-
sions include container selection, authentication token input,
inspection of container’s status and verification of container’s
confidentiality. The GUI allows the user to manage the Docker
hosts as well as the two IDLE mechanisms.

Use case scenarios We consider two pre-defined, common
real world use cases that showcase the benefits of the proposed
approach. Apart from those, the user will have the opportunity

to construct her own scenario, selecting among a plethora of
pre-deployed Docker containers. More precisely:
ICredential protection: We assume a three tier application
that consists of a Web Server that renders and serves web
pages, an Application Server that implements the business
logic of the application and a Database Server, each of which
is deployed in a dedicated container, according to Docker’s
philosophy. The three containers communicate with each other
through a user-management protocol. A common practice for
the deployment of those components is to add authorization in-
formation inside the configuration file of each of them, which
will later be used by the servers to establish connections with
each other. For example, to the Application Server container
one would append a few lines to the appropriate configuration
file regarding the host, port and a username/password pair
pointing to the Database Server. This file is confidential since
the information it contains should not be publicized. The
same applies to various other sensitive information: Secret API
tokens, passwords, private SSH keys, etc. must be included
in a container’s image in order to be able to reach external
services. This information is, of course, not publishable.
ILog protection: The second use case is that of a service
that produces logs which imply user activity. Assuming the
three tier application as above, the Web Server generates logs
that relate the IP address of a client, the timestamp of her
visit, the pages that she visited etc. This information should be
considered confidential and thus not be made freely available.
IUser-defined: The user will be able to create her own
custom use-case scenario, by selecting from a list of available
container images and incorporating sensitive information of
her choice.

Actions During the demonstration, the users will be able
to interact with IDLE through an intuitive user interface and
perform the following actions: (a) secure container migration
between two Docker hosts and (b) encryption enforcement of
existing Docker containers, utilizing storage volumes dynam-
ically allocated from an Opestack IaaS Cluster.

Regarding the former action, which demonstrates the func-
tionality of the IDLE-on-the-move component, the user will
be able to select a specific container based on a list of
pre-deployed containers running in an existing Docker host.
Upon selection, the user will be able to extract the topmost
layer, according to the discussed methodology, entering her
passphrase for the symmetric key encryption and optionally
providing an ECDSA key, utilized for signing the encrypted
layer. The encrypted layer will be, then, downloaded to the
client machine. With the reverse procedure, the user will be
able to upload the encrypted layer into a separate Docker host,
trough the same UI; After uploading it, the system will ask for
a verification key and the secret key which was utilized for the
encryption. Finally, upon successful decryption, the thin layer
of the target container will be populated with the data from the
source host, and the container will launch. The user will be
able to verify the entire process through IDLE’s UI, in which
she will be able to attach a console for both the source and the
destination containers. A screenshot of IDLE’s UI is depicted

in Figure 4. We should note that IDLE’s functionalities are
exposed through a UI based on the open source Weave Scope
project [11], which is one of the most prominent tools used
for the management of Docker containers. Through it, the user
can easily monitor and manage her containers.

Fig. 4. IDLE’s UI

The latter action, which demonstrates the IDLE-at-rest mod-
ule functionality, will be showcased in a similar manner. The
user will be able to initiate the at-rest encryption enforcement
through the User Interface, providing the necessary passphrase
for the encryption. In our demonstration, the encrypted data
will lie on top of dedicated Openstack volumes, generated
when the at-rest encryption process initiates. The user is re-
sponsible to provide the necessary user authentication tokens,
such as usernames, passwords, endpoints, etc., in order to be
authenticated with the cloud platform of their choice. After the
authentication, the user will be able to inspect the encrypted
layer which will be detached from the Docker host when the
container is in stopped state and it will be re-attached when
the container runs. Again, all the procedure will be verifiable
through the container console, launched through IDLE’s UI as
indicated in Figure 4.

ACKNOWLEDGMENT

This work was supported by the TREDISEC project (G.A.
no 644412), funded by the European Union (EU) under the
Information and Communication Technologies (ICT) theme
of the Horizon 2020 (H2020) research and innovation pro-
gramme.

REFERENCES

[1] L. M. Vaquero et al., “A break in the clouds: towards a cloud definition,”
ACM Computer Communication Review, vol. 39, no. 1, pp. 50–55, 2008.

[2] W. Felter et al., “An updated performance comparison of virtual ma-
chines and linux containers,” in ISPASS. IEEE, 2015, pp. 171–172.

[3] V. K. Vavilapalli et al., “Apache hadoop yarn: Yet another resource
negotiator,” in Proceedings of SoCC. ACM, 2013, p. 5.

[4] B. Hindman et al., “Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center.” in NSDI, vol. 11, 2011, pp. 22–22.

[5] A. Verma et al., “Large-scale cluster management at Google with Borg,”
in Proceedings of Eurosys. ACM, 2015, p. 18.

[6] “Eclipse Che,” https://www.eclipse.org/che/.
[7] D. Merkel, “Docker: lightweight linux containers for consistent devel-

opment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.
[8] “Docker Hub,” https://hub.docker.com/.
[9] “OverlayFS,” https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt.

[10] “dm-crypt,” https://www.kernel.org/doc/Documentation/device-
mapper/dm-crypt.txt.

[11] “Weave,” https://www.weave.works/products/weave-scope/.

