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Abstract. In the Big Data era, the batch processing of large volumes
of data is simply not enough - data needs to be processed fast to support
continuous reactions to changing conditions in real-time. Distributed
stream processing systems have emerged as platforms of choice for appli-
cations that rely on real-time analytics, with Apache Storm [2] being
one of the most prevalent representatives. Whether deployed on physi-
cal or virtual infrastructures, distributed stream processing systems are
expected to make the most out of the available resources, i.e., achieve the
highest throughput or lowest latency with the minimum resource utilisa-
tion. However, for Storm - as for most such systems - this is a cumbersome
trial-and-error procedure, tied to the specific workload that needs to be
processed and requiring manual tweaking of resource-related topology
parameters. To this end, we propose ARiSTO, a system that automati-
cally decides on the appropriate amount of resources to be provisioned for
each node of the Storm workflow topology based on user-defined perfor-
mance and cost constraints. ARiSTO employs two mechanisms: a static,
model-based one, used at bootstrap time to predict the resource-related
parameters that better fit the user needs and a dynamic, rule-based one
that elastically auto-scales the allocated resources in order to maintain
the desired performance even under changes in load. The experimen-
tal evaluation of our prototype proves the ability of ARiSto to efficiently
decide on the resource-related configuration parameters, maintaining the
desired throughput at all times.

1 Introduction

In the Big Data era, data is being produced not only in large volumes, but also at
an astounding rate. Now more than ever, organizations and companies worldwide
heavily rely on the processing of the enormous amounts of data that continuously
stream into their businesses to extract significant value out of them: identify new
risks and opportunities, take educated decisions based on real-time facts, render
their operations faster and more cost efficient and keep customers satisfied [7].
The traditional batch processing model is simply not enough any more, since it
fails to cover one of Big Data’s most important Vs, that of Velocity. Indeed, data
needs to be processed fast, to support timely reaction to changing conditions in
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real time. This is of paramount importance in sectors such as trading, fraud
detection, system monitoring, healthcare and many others [6,11].

A plethora of distributed stream processing engines have emerged as a remedy
to the inability of batch processing systems to provide real-time, interactive
responses [1,2,9,17]. Such systems are designed to analyze data in motion, as
they stream through the server, contrarily to the traditional batch processing
model where data are first stored and then subsequently processed by queries.

Distributed stream processing systems are deployed either on bare-metal clus-
ters, or, most often, over Cloud infrastructures which provide virtual resources
in a pay-as-you-go manner. The Cloud Computing model offers the ability to
elastically allocate resources, i.e., expand and contract them to meet applica-
tion needs while keeping the resource budget to a minimum. Whether deployed
on physical or virtual infrastructures, distributed stream processing systems are
expected to make the most out of the available resources, i.e., achieve the highest
throughput or lowest latency with the minimum resource utilisation.

Resource provisioning is one of the most challenging tasks for streaming
applications, as it is closely related to the rate of data arrival, which can not
be controlled since data are generated by external sources. Over-provisioning
of resources will unnecessarily increase resource utilization, hence the cost of
running the application. Contrarily, under-provisioning may lead to the inability
of the application to keep pace with the velocity of the incoming data stream or
comply to the throughput or latency target desired by the user.

However, distributed stream processing engines lack mechanisms to assist the
application provider to carefully and correctly provision the required resources,
let alone provide on-the-fly adaptation to changing workload conditions [4]. Set-
ting the resource-related parameters for such systems is a cumbersome trial-and-
error procedure, tied to the specific workload that needs to be processed and
requiring manual tweaking. Moreover, sudden changes in the initial setup, e.g.,
in the data arrival rate or underlying hardware performance, can not be accom-
modated automatically, but require manual scaling of the allocated resources.

To this end, we propose methods for the automatic provisioning and on-
line scaling of distributed stream processing resources and design a system
that implements them on top of Apache Storm, one of the most prevalent dis-
tributed streaming engines. Our system, called ARiSto (Auto-Scaling Resources
in Storm), automatically and dynamically decides on the appropriate amount of
resources to be provisioned for each node of the Storm workflow topology based
on user-defined performance and cost/budget constraints. ARiSto employs two
mechanisms:

– A static mechanism that is used one-off, when first deploying the topology.
This mechanism relies on models of the cost and performance characteristics
of the required tasks of the topology graph to decide on the (near-)optimal
allocation of resources to each one of them.

– A dynamic mechanism that is used on-line, as the application executes, to
elastically autoscale the allocated resources in order to maintain the desired
performance even under changes in load. This rule-based mechanism relies
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on the monitoring of each part of the topology to identify bottlenecks and
dynamically adjusts the amount of allocated resources to comply to the user-
defined performance and cost target.

There has been considerable work in the field of resource management in
distributed stream processing systems, however they either emphasize on mech-
anisms for handling overload without obtaining additional resources on-demand,
or focus more on addressing latency-related constraints. Contrarily, our work
aims to provide optimal resource allocation and utilization based on high-level
or low-level throughput guarantees. Moreover, our solution introduces a novel
perspective to the automatic-scaling of distributed stream processing engines
by providing re-usability, extensibility and faster initial decisions for the system
scaling.

The contribution of this paper is summarized in the following:

– A framework for modeling the cost and the performance characteristics of
streaming operators.

– A static, model-based mechanism for deciding on the right amount of
resources to be allocated to each operator of the stream processing workflow
according to the user-defined performance and cost constraints.

– A dynamic, rule-based mechanism for real-time auto-scaling of the allocated
resources according to the monitored cost and performance.

– An open source prototype of our system ARiSto1, which implements all the
above using Apache Storm as the underlying stream processing engine.

– An experimental evaluation that proves the applicability of our methods,
which are able to accurately predict the correct amount of resources required
for the initial deployment of the streaming workflow and maintain the desired
throughput even after sudden changes in load.

2 Preliminaries

Apache Storm [2] is the pedestal of our work. Thus, the understanding of its
basic concepts and architecture [3] is of utter importance. In the following we
present the basics of Storm and use the terminology introduced throughout the
paper.

The core abstraction in Storm is the stream, an unbounded sequence of
tuples that is created and processed in parallel in a distributed fashion. The
tuple is a structure that can contain any kind of data from integers, byte arrays,
etc. to custom objects.

A spout is a source of streams in a Storm application. Generally, spouts will
read tuples from an external source and emit them into the Storm application.
All processing in Storm applications is done in bolts. Bolts contain the processing
logic and can do anything from filtering, functions, aggregations, joins, talking to
databases, etc. A single bolt can perform simple stream transformations, while

1 https://github.com/vgolemis/aristo.

https://github.com/vgolemis/aristo
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more complex stream transformations often require multiple steps, i.e., multiple
bolts. Bolts can have multiple streams as input and respectively emit more than
one stream.

A topology is the logical graph representation of the streaming application.
More precisely, it is a DAG (Directed Acyclic Graph) with spouts and bolts
acting as graph vertices. Unlike a MapReduce job, which eventually finishes, a
topology runs continuously, until killed. Part of defining a topology is specifying
which streams feed each bolt. A stream grouping defines how these streams
should be partitioned among the bolt’s tasks.

Moving from the logical to the physical level, a subset of a topology is exe-
cuted by a worker process, which runs in its own JVM. A running topology
consists of many workers running on many machines within a Storm cluster.
Each worker, tied to a specific topology, may run one or more executors, i.e.,
threads. An executor thread is spawned by a worker process and runs within
the worker’s JVM. Respectively, an executor may run one or more tasks for the
same component (spout or bolt). A task performs the actual data processing.
The number of tasks for a component is always the same throughout the life-
time of a topology, but the number of executors for a component can change over
time. This means that the following condition holds true: #executors ≤ #tasks.

Another concept of Storm, related to the allocation of resources to each
topology component is that of parallelism [10]. The parallelism is specified by
modifying the following topology configuration parameters: (a) number of worker
processes for the topology across all machines in the cluster, (b) number of
executors per spout/bolt and (c) number of tasks per executor (the default is
one).

All these parameters compose a configuration of the topology. Of these
parameters, the number of workers and executors can be configured dynami-
cally (i.e., after the topology is submitted). Contrarily, the number of tasks is
static: additional tasks per executor do not increase the level of parallelism, since
an executor always consists of one thread that it used for all of its tasks, i.e.,
tasks run serially on an executor. So, the only reason for having multiple tasks
per executor thread is to give the flexibility to scale up the topology without
taking the topology offline.

Apache Storm does not offer any mechanism to provide the optimal con-
figuration (parallelism parameters) for user-defined topologies in an automatic
manner [4]. There exist some rule-of-thumb guidelines for the parallelism of a
topology, drawn from the experience of users:
– If a small number of executors per worker is defined, the cluster resources

may not be fully utilized.
– If a large number of executors per worker is defined, resource contention and

context switching issues may arise.
– Large number of streams create complexity in the network level.
– Performance is improved if neighbouring components are executed in the same

worker because of data locality and reduced network time.
– Multiple workers per machine do not provide additional gains, only flexibility

in case of worker failure.
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However, these rules are quite vague and can not be used as-is for auto-
matically defining the configuration parameters of a certain topology accord-
ing to a user-defined optimization metric (e.g., throughput, latency). The user
must still define the configuration herself. This can lead to a time-consuming
iterative trial-and-error process in which the user runs the topology, manually
monitors performance during runtime and evaluates if the configuration satisfies
her expectations. Even after multiple iterations, the user may end up in a sub-
optimal configuration, which additionally fails to adapt to changing workload
conditions due to its static nature.

3 Architecture

ARiSto is a system implemented on top of Apache Storm, that provides auto-
matic configuration of the parallelism parameters of a topology as well as auto-
scaling of the provisioned resources in order to continuously comply to the user-
defined throughput constraints, even after changes in load.

To this end, ARiSto employs two mechanisms: (a) a dynamic, on-line mech-
anism, that runs alongside the topology and reactively finds the optimal config-
uration according to the current conditions and (b) a static, off-line mechanism,
that combines machine learning techniques with genetic algorithms to exploit
knowledge from previous runs of the topology to predict the near-optimal con-
figuration.

The common base for both mechanisms is the usage of information about the
performance of each component of the topology. This information is retrieved
by monitoring topology metrics. Low level component metrics (e.g., #executed
tuples, #emitted tuples, latency, component capacity2 etc.) for a given topology
are periodically retrieved and converted to higher level combined metrics (e.g.,
execution rate, weighted average latencies, topology capacity, etc.) which can
either train machine learning models or used in real-time.

The dynamic mechanism, given a user-defined target throughput for a topol-
ogy, keeps track of its monitoring metrics and decides in real-time to adjust one
or more parallelism parameters, if necessary. If it reaches the given target, it
continues to periodically check to identify possible deviations from the target,
due to changes in load or incoming data rate. In order to reach the given target,
the mechanism needs to find the best configuration for the topology by resolving
the bottlenecks. A bottleneck in a topology is a component that cannot reach
the required execution rates, i.e., it cannot process the data at the rate at which
they arrive from the previous processing stage. This can happen because the
component uses all of its available resources and the only solution is additional
parallelism to the specific component. The dynamic mechanism follows rules to

2 The capacity metric, which is measured for each topology bolt and takes values
between (0,1), represents the percentage of time that a bolt is active (i.e., processing
tuples). If this metric approaches 1 the bolt works near its maximum capacity and
needs additional parallelism.



162 E. Gkolemis et al.

Topology

 Spout  Bolt  Bolt

Monitoring 
Module 

Automatic Scaling Mechanism

FlowCheck 

Rebalance 

TopologyParser

Fig. 1. The architecture of the dynamic component of ARiSto

decide how to modify the parallelism parameters of the topology and can be
summarized as follows:

– If a component capacity exceeds a threshold thcc then an executor is added
for the component.

– If the number of executors per worker exceeds a threshold the then we increase
the workers of the topology.

– If the capacity of individual components is normal but the total capacity of
the topology exceeds a threshold thhigh then we increase the workers of the
topology.

– If the capacity of individual components is normal and the total capacity of
the topology is below a threshold thlow then we decrease the workers of the
topology.

After any change performed in the topology’s parallelism parameters we grant
a time window for the topology to stabilize (warm up phase). During this window
we observe the throughput of the topology and proceed with further changes if
required.

The architecture of the dynamic module of ARiSto is depicted in Fig. 1. The
TopologyParser manages the high-level functionalities like invoking the Monitor-
ing Module, reading the user configuration and initializing the data structures.
After the initialization it is responsible for calling the FlowCheck periodically.
The Flowcheck manages the low-level functionality of the mechanism like check-
ing if the target is reached and changing the parallelism parameters if needed.

The static mechanism can be given user level constraints (money, time, etc.)
and finds the near-optimal configuration(s) that comply to the user-defined con-
straints. To be able to predict the best configuration for any given topology the
mechanism should be able to predict the performance for every possible config-
uration. To this end it relies on machine learning and heuristic techniques. The
basis of the particular mechanism is machine learning models for the compo-
nents of the topology. In order to create the models for every component of a
topology, each component goes through offline profiling which aims to train the
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Fig. 2. The architecture of the static components of ARiSto

models. More extensive and focused training leads to more accurate models. The
choice to create the models at the component level and not the topology level
was made to render the mechanism flexible and expandable: Multiple topologies
may use the same components, thus, the component models can be used by mul-
tiple topologies and enriched. In that manner, we create libraries of component
models which are reusable and extendible. After the required models are cre-
ated, they are used to predict the performance for any given configuration of a
topology containing the specific components. In particular, a prediction is given
by each model for its corresponding component and all of them are combined to
produce the final performance prediction for the configuration of the topology.
Subsequently, a heuristic algorithm based on genetic algorithms (NSGA-II in
our case) that searches the space of all possible configurations is executed to
find the near-optimal one.

Figure 2 presents the architecture of the static mechanism of ARiSto. The
Models are created per component (using the WEKA [12] framework), initially
through offline profiling by the Profiler. The Predictor relies on the Models to
predict the throughput of individual topology components. The Throughput Cal-
culator module calculates the total topology throughput by combining the pre-
dictions of individual components, given a specific topology configuration.

The Evaluators are those who build the high level constrained problem based
on the user level constraints. The Front-end is the API we expose. The user
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defines her configurations and constraints and the system returns the list of
optimal configurations. The SolutionFinder is the module that creates the cor-
rect evaluator and performs the search in the configuration space.

4 Experimental Evaluation

ARiSto has been implemented in Java and is available under an open-source
license. The experimental environment consists of 8 VMs (2 cores/4 GB RAM)
in order to create a uniform cluster (1 master, 7 slaves). For the evaluation of our
system we assembled 4 topologies with unique characteristics and structure. Our
target is to cover a wide variety of different components and flows and observe the
behavior of our mechanisms in these different workflows. These include custom
made as well as scientific topologies (see Fig. 3):

Fig. 3. The topologies of the experimental evaluation

– WordCount, one of the fundamental examples in distributed environments.
(CPU intensive, Network intensive workflow)

– CyberShake, a scientific workflow used by the Southern California Earth-
quake Center to characterize earthquake hazards in a region. (Network inten-
sive workflow)

– Montage, a scientific workflow created by NASA/IPAC stitches together
multiple input images to create custom mosaics of the sky. (CPU intensive,
Network intensive, Memory intensive workflow)

– Matrix, a custom-made workflow that performs matrix operations. It is cus-
tomizable and easily expandable. (CPU intensive, memory intensive work-
flow)
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Fig. 4. Evaluating the total topology throughput when varying the #workers, #execu-
tors and both (vertically) for the Wordcount and the Montage Topologies (horizontally)

We evaluate ARiSto in terms of sensitivity to the parallelism-related con-
figuration parameters, efficacy of the static mechanism and the accuracy of its
predictor module.

Performance impact when varying the parallelism parameters. In the
first set of experiments (first row of Fig. 4), we gradually increase the workers
without changing anything else in the configuration. For the WordCount Topol-
ogy we can see that by adding a worker to the initial configuration we lose
in terms of performance. This happens because we lose the data locality (if all
the components are executed in the same worker we avoid over-the-network data
transfer). From that point on, additional workers do not improve the performance
because it is bound by the main performance bottleneck i.e., the SplitSentence
bolt. For the Montage Topology, as we provide more workers we can see a slight
performance increase. This is due to the fact that the workflow is more cpu-
than network-intensive.

In the second set (second row of Fig. 4), we gradually increase the number
of executors for one of the components alongside the worker increase. For the
WordCount Topology we increase the WordCount component executors which
is not the bottleneck component. We can see that the topology performance
immediately deteriorates. This happens because we increase the executors of
a component which was not overloaded and we thus create additional network
complexity for the SplitSentence component, which is the actual bottleneck. For
the Montage Topology we increase the Aggregator component executors, which is
one of the initial bottlenecks. We can see a gradual improvement in the topology
performance but after several steps the performance starts to fall. This happens
because we initially solved the cpu bottleneck (Aggregator), but by adding more
executors of the Aggregator component we created a network bottleneck in the
previous processing stage.
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Fig. 5. The time-cost plot for all possible configurations for the Wordcount and the
Montage Topologies (Color figure online)

In the third set (third row of Fig. 4), we gradually move to better configu-
rations that simultaneously solve all the major bottlenecks that the topology is
facing. For the WordCount we add executors for the SplitSentence component,
which solve the cpu bottleneck and at the same time we add executors for the
WordCount component, which improve the data locality and network complex-
ity. For the Montage Topology we add executors for the Aggregator component,
which solve the cpu bottleneck and at the same time we add executors for the
General1 component which solve the network bottleneck and provides better
data locality.

Efficacy of the static mechanism. For the 2 topologies presented above, all
possible configurations are plotted in a time-cost plot (time and cost are two of
the most important user constraints) in Fig. 5:

The orange dots are the configurations selected by ARiSto and they coincide
with the pareto optimal configurations. Pareto optimal is a configuration that
offers the best trade-off between time and cost.

The static mechanism is also evaluated based on its prediction accuracy.
The accuracy is calculated as the difference between the predicted and actual
performance for a given topology and configuration. The accuracy evaluations
of Fig. 6 concern the CyberShake and Montage Topologies respectively. We can
see that the mechanism has a discrepancy below 10% in approximately 60% of
its predictions and below 20% in approximately 90% of its predictions.

The desirable behavior of the mechanism is to be very accurate in regions of
global performance maxima. The regions of local/global minima as well as the
majority of local maxima are not of such importance. The predictor we imple-
mented generates very accurate predictions for the global maxima and the transi-
tional regions, is less accurate for local maxima and purposefully underestimates
the global minima and part of the local minima. This is the reason that we have
a percentage of prediction with high discrepancy. The decision to underestimate
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Fig. 6. The accuracy of the static mechanism for the CyberShake and Montage
topologies

the local/global minima was made in order to have a faster search in the config-
uration space by the SolutionFinder module. When it searches a region that is
dramatically below the performance the heuristic algorithm will not search again
in the particular region. Additionally, solid and accurate transitional regions will
help the algorithm find the local and global maxima.

5 Related Work

Distributed stream processing has been an active area of research over the last
decade, when the need for real-time analytics over vast amounts of data became
more prominent and called for scalable streaming engines that could handle
them. Several such engines emerged, either proprietary such as S4 [8], MillWheel
[13] and DataTorrent [5] or open source, such as Storm [2], Heron [17], Spark
Streaming [9] and Flink [1]. None of these engined inherently provide auto-scaling
capabilities to meet user-defined performance constraints with minimum amount
of provisioned resources.

Works related to resource management in distributed stream processing sys-
tems mostly emphasize on mechanisms for handling overload: load-shedding [20],
admission control [21], adaptive query planning [19], load balancing [22] and
efficient initial operator placement [16] do not address overload by obtaining
additional resources on-demand.

The concept of elastic scaling of distributed stream processing systems has
been studied in recent works. However, they focus on the latency aspect of the
system following different directions like optimizing operator movement dur-
ing scale-in/out of the system to eliminate latency spikes [15] or using reactive
strategies to enforce latency guarantees in scalable stream processing systems
[18]. ARiSto aims to provide optimal resource allocation and utilization based
on throughput guarantees. Moreover, our solution follows a novel, model-based
approach which provides reusability, extensibility and faster initial decisions for
the configuration of the resource-related parameters.

The work closest to ours is the very recently published Dhalion [14], a system
deployed on top of Heron [17], which provides with self-regulating capabilities
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through the execution of various Dhalion policies. One of them is to automati-
cally scale up and down resources based on the input data and another to auto-
tunes the topology by provisioning the necessary resources to meet a through-
put SLO. Dhalion employs only rule-based methods, while ARiSto also follows
a model-based approach, which can be used when first deploying a topology to
speed up the process of auto-scaling.

6 Conclusions

In this paper we presented ARiSto, a system that provides automatic scaling of
resources in Apache Storm in order to comply to the user-defined performance
and cost constraints, by virtue of two mechanisms, a static and a dynamic one.
The static mechanism relies on performance an cost models of the streaming
operators that are involved in the workflow topology and based on genetic algo-
rithms it decides on the exact amount of resources to be allocated to each one
of them. The dynamic mechanism is able to adjust to current load conditions,
maintaining the desired throughput/latency with minimum cost (i.e., resources).
This is achieved by monitoring all topology entities, identifying the bottlenecks
and adding/subtracting resources according to a set of rules. The evaluation of
our prototype implementation showcases the ability of our system to efficiently
decide on the resource-related configuration parameters, maintaining the desired
throughput at all times.
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