
Brown Dwarf: A P2P Data-Warehousing System

Katerina Doka
katerina@cslab.ntua.gr

Dimitrios Tsoumakos
dtsouma@cslab.ntua.gr

Nectarios Koziris
nkoziris@cslab.ntua.gr

School of Electrical and Computer Engineering
National Technical University of Athens, Greece

ABSTRACT
In this demonstration we present the Brown Dwarf, a distributed
system designed to efficiently store, query and update multidimen-
sional data. Deployed on any number of commodity nodes, our
system manages to distribute large volumes of data over network
peers on-the-fly and process queries and updates on-line through
cooperating nodes that hold parts of a materialized cube. Moreover,
it adapts its resources according to demand and hardware failures
and is cost-effective both over the required hardware and software
components. All the aforementioned functionality will be tested
using various datasets and query loads.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; H.2.4 [Database Management]: Systems

General Terms
Management, Performance

Keywords
Data Warehousing, Data Cube, Distributed Computing, Peer-to-
Peer

1. INTRODUCTION
Data warehousing has become a vital component of organiza-

tions and companies, which heavily rely on data analysis in order
to identify behavioral patterns. Moreover, constant data analysis is
needed to immediately detect real-time changes in trends. Yet, data
warehouses present a strictly centralized and off-line approach in
terms of data location and processing ([5, 6]). Even some works
proposing distributed warehousing systems ([1, 2]) just intercon-
nect a number of warehouses, maintaining their centralized func-
tionality.

We have created an always-on, distributed data warehousing sys-
tem, the Brown Dwarf (BD) [3], where geographically spanned
users, without the use of any proprietary tool, can share and query
information. Our system employs a robust and efficient adaptive
replication scheme, perceptive both to workload skew and node
churn using only local load measurements and overlay knowledge.

2. SYSTEM DESIGN
The essence of BD is the distribution of a highly effective, cen-

tralized structure, the Dwarf [5], over the nodes of an unstructured
P2P overlay on-the-fly. Each vertex of the dwarf graph (dwarf
node) is designated with a unique ID and assigned to a network

Copyright is held by the author/owner(s).
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
ACM 978-1-4503-0099-5/10/10.

Table 1: A sample fact table
DIM1 DIM2 DIM3 Measure

S1 C2 P2 $70
S1 C3 P1 $40
S2 C1 P1 $90
S2 C1 P2 $50

Figure 1: Centralized dwarf structure over the data of Table 1

node. Adjacent dwarf nodes are stored in adjacent network nodes
in the P2P layer by adding overlay links, which represent the edges
of the centralized structure. Each peer maintains a hint table, nec-
essary to guide a query from one network node to another until the
answer is reached. The hint table is of the form (currAttr, child),
where currAttr is the attribute of the query to be resolved and child
is the ID of the dwarf node it leads to. In the case of a leaf node,
child is the aggregate value.

Pictorially, Fig. 2 shows that nodes (1)–(9) are selected in this
order to store the corresponding dwarf nodes of Fig. 1, forming
an unstructured P2P overlay. Queries and updates are then handled
using the same path that would be utilized in Dwarf, with overlay
links now being followed: An incoming query about S1 will be
forwarded to node (2). From there, depending on the requested
group-by (ALL, C2 or C3), nodes (3), (4) or (5) can be visited.

Insertion The creation of the data cube is undertaken by a spe-
cific node (creator), that has access to the fact table. The creator
follows the algorithm of the original dwarf construction, distribut-
ing the dwarf nodes on-the-fly during the tuple-by-tuple process-
ing, instead of keeping them in secondary storage. The creation of
a cell corresponds to the insertion of a value under currAttr and the
creation of a dwarf node corresponds to the registration of a child.

Incremental Updates The procedure of incremental updates is
similar to the insertion process, only now the longest common pre-
fix between the new tuple and the existing ones must be discovered
following overlay links. Once the last common attribute is discov-
ered, underlying dwarf nodes are recursively updated. This means
that dwarf nodes are expanded to accommodate new cells for new
attribute values and that new ones are allocated when necessary.

Query Resolution Queries are resolved by following their path
along the overlay attribute by attribute. Each query attribute be-
longs to a dwarf node which, through its hint table, leads to the net-
work node responsible for the next one. Since adjacent dwarf nodes

currAttr child
C2
C3

ALL

3
4
5

currAttr child
S1
S2

ALL

2
6
8

currAttr child
C1
C2
C3

ALL

7
3
4
9

currAttr child
P1

ALL
$40
$40

currAttr child
P2

ALL
$70
$70

currAttr child
C1

ALL
7
7

currAttr child
P1
P2

ALL

$90
$50
$140

currAttr child
P1
P2

ALL

$40
$70
$110

currAttr child
P1
P2

ALL

$130
$120
$250

Figure 2: The dwarf distribution over the overlay nodes
User Interface

BD
operations

BD node

P2P layer

File System

N
e
tw

o
rk

la

y
e
r

Overlay
operations

Create
Update
Query

Disk I/O

TC
P

S
o
ck

e
ts

BD node

BD node

N
e
tw

o
rk

la

y
e
r

N
e
tw

o
rk

la

y
e
r

N
e
tw

o
rk

la

y
e
r

Figure 3: Architecture of a BD network node
belong to overlay neighbors, the answer to any point or group-by
query is discovered within at most d hops, where d is the number
of dimensions.

Adaptive Mirroring BD adopts a replication scheme adaptive
to both node churn and data skew. Initially, a global replication
parameter k defines the degree of data redundancy: During the in-
sertion phase, k+1 instances (mirrors) of each dwarf node are being
stored. Monitoring its load on a per dwarf node basis, a network
node hosting an overloaded dwarf node can create additional mir-
rors through the expansion process. The newly created mirror will
be used by the parent node(s) in order to receive some of the re-
quests. In the opposite case, an underloaded dwarf node can be
deleted from the system through the shrink process, as long as the
total number of its mirrors remains over k+1. The combination of
expansion and shrink enables BD to obtain increased resources to
handle spikes in load and release them once the spike has subsided.

3. DEMONSTRATION SCENARIO
The BD system has been entirely developed in Java and deployed

on an actual testbed of 16 LAN commodity nodes (dual core, 2.0
GHz, 2GB of main memory). Fig. 3 depicts the architecture of
a system node. BD is accessible through a Java GUI that exposes
its functionality to the user and allows her to perform insertions,
updates and queries over a data cube. The P2P layer consists of
the BD Operations and the Overlay Operations components. The
former is responsible for manipulating system-specific messages,
orchestrating the mirroring process and interacting with the local
filesystem in order to store and retrieve dwarf nodes. The latter
handles the translation of system operations to overlay messages
and backwards. These messages pass through the network layer,
where they are transmitted or received through TCP sockets.

Creating a Cube The user will be able to choose from a se-
ries of datasets to create the corresponding distributed cube. The
datasets will be of various dimensions and densities, both real (e.g.,
weather data) and synthetically generated (APB Benchmark gener-
ator). Their sizes will be up to 1M tuples, to keep insertion times

Figure 4: Screen capture from the cube creation tab
reasonable for a live demonstration. Upon dataset choice, its char-
acteristics are shown on screen. The user can also set the replica-
tion factor k and the number of network nodes that will participate
in the P2P overlay. After the cube creation, important statistics and
performance metrics will be presented: The creation cost in terms
of time and network messages and the total storage consumed by
the created cube. Finally, users will be able to have a graphical
overview of the storage distribution per network node, as the corre-
sponding graph can be displayed on demand. The initial GUI form
for the creation process can be seen in Fig. 4.

Querying the Cube Navigating to the QUERY tab, the user will
be able to choose one of the predefined workloads in order to query
the system. The available workloads will be of various sizes and
levels of skew. Similarly to the creation tab, their individual char-
acteristics are displayed on screen. The rate at which queries will
be sent to the system is user-defined. After pressing on the Send
button, the workload is being processed and statistics are gathered.
Besides confirming the accuracy of our system, we will demon-
strate the response time and average load per node for the processed
query-load.

Updating the Cube This third part of the demonstration relates
to applying incremental updates to the system on-line (UPDATE
tab). Users will be given the chance to initiate updates one by one,
or in bulk, by selecting one of the predefined update sets. As before,
the application will present the appropriate performance metrics
to the user, showcasing performance (in time elapsed versus the
number of updates).

Performance Insight Our initial evaluation on an actual testbed
of 16 LAN nodes has proven that Brown Dwarf manages to dis-
tribute the structure across the overlay nodes incurring only a small
storage overhead compared to the centralized algorithm. Moreover,
it accelerates cube creation up to 5 times and querying up to several
tens of times by exploiting the capabilities of the available network
nodes working in parallel. More details can be found the project’s
web page [4].

4. REFERENCES
[1] S. Abiteboul, T. Allard, P. Chatalic, et al. WebContent: Efficient P2P

Warehousing of Web Data. VLDB’08.
[2] M. Akinde et al. Efficient OLAP Query Processing in Distributed Data

Warehouses. Information Systems, 28(1-2):111–135, 2003.
[3] K. Doka, D. Tsoumakos, and N. Koziris. Brown Dwarf: Distributing the

Power of OLAP. In HPDC’10.
[4] The Brown Dwarf Project. http://cslab.ece.ntua.gr/BrownDwarf
[5] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis. Dwarf:

Shrinking the PetaCube. In SIGMOD’02.
[6] W. Wang, H. Lu, J. Feng, and J. X. Yu. Condensed Cube: An Effective

Approach to Reducing Data Cube Size. In ICDE’02.

