
Building Ad-Hoc Clouds with CloudAgora
Tasos Bakogiannis, Ioannis Mytilinis, Katerina Doka and Georgios Goumas

Computing Systems Laboratory,
National Technical University of Athens, Greece
{abk, gmytil, katerina, goumas}@cslab.ece.ntua.gr

Abstract—The public Cloud market has become a monopoly,
where a handful of providers - which are by default considered
as trusted entities - define the prices, accumulate knowledge from
users’ data and computations and strengthen their already priv-
ileged position. As a remedy we propose CloudAgora, a platform
that democratizes the Cloud market by allowing individuals and
companies alike to compete on equal terms as potential resource
providers, while enabling users to access low-cost storage and
computation without having to blindly trust any central authority.

During the demo, the attendees will be able to interact with
CloudAgora through an easy-to-use UI, which will allow them to
act both as users and as providers. As users, the attendees will
have the chance to request storage or compute resources, upload
data and outsource task processing over remote infrastructures.
As providers, they will be able to participate in auctions, serve
requests and offer validity proofs upon request. Moreover, the au-
dience will experience first hand how the underlying blockchain
technology is used to record commitment policies, publicly verify
off-chain services and trigger automatic micropayments.

Index Terms—Blockchain, Cloud Computing, Marketplace,
Verifiable Computation

I. INTRODUCTION

In the last decade, Cloud Computing has become an essen-
tial part of most businesses, offering them a seemingly infinite
pool of resources, from raw compute power to application
functionality, on-demand and on a pay-as-you-go manner, alle-
viating the burden of acquiring and maintaining new hardware
and software infrastructures.

Although Cloud Computing relies on fundamental prin-
ciples of distributed systems, it remains centralized in its
philosophy: Cloud services are mainly based on a handful
of large providers that act as trusted entities for the transfer,
storage and processing of user or company data. Thus, on
the one hand the Cloud Computing market has become a
monopoly, where a few big players determine price levels,
which are non-negotiable and can be prohibitively high for
deployments demanding specialized hardware. On the other
hand, large Cloud providers accumulate vast amounts of data,
getting a great head start in races like the ones of machine
learning and big data processing.

Blockchain technology seems to be the key to solving the
aforementioned issues, offering real decentralization, trans-
parency and strong security guarantees based on proof rather
than trust. Blockchain’s distributed ledger can store data
guaranteeing its validity and immutability, whereas smart
contracts can execute pieces of code in a credible manner.
However, Blockchains cannot be adopted as storage providers
or computing engines per se, due to their limited computing

and storage capacity, but rather as an enabling technology
which keeps track of and validates off-chain operations. The
challenge in this scenario is to find a secure way to guarantee
the correctness of the off-chain service through the use of
publicly verifiable proofs.

To that end we have proposed CloudAgora [1], a truly
decentralized cloud that allows for on-demand and low-cost
access to storage and computing infrastructures. The goal of
CloudAgora is to create a blockchain-based platform where
participants can act either as providers, offering idle CPUs
and available storage, or as consumers, renting the offered
resources and creating ad-hoc virtual cloud infrastructures.
Storage and processing capacities are monetized and their
prices are governed by the laws of supply and demand.

CloudAgora has been implemented as a dApp on top
of Ethereum. This demo showcases the use of CloudAgora
through an easy-to-use UI, which will allow attendees to act
both as users, being able to request storage or compute re-
sources, upload data and outsource computations over remote
infrastructures, and as providers, serving requests.

II. CLOUDAGORA OVERVIEW

CloudAgora is a platform that enables the ad-hoc creation
of truly decentralized cloud infrastructures. CloudAgora users
can act as both clients, requesting remote storage or compu-
tation, and providers, offering such resources. In a nutshell,
clients express a request for storage or computation and
potential providers, be it individuals, companies offering idle
or under-utilized resources or large datacenters, place bids in
an auction-style manner. The height of the potential providers’
bids in combination with their reputation defines the auction
winner(s). The agreement between providers and consumers is
encoded as a smart contract, which allows for traceability of
actions and automatic triggering of payments. While storage
and processing per se is performed off-chain, the integrity
and availability of stored data as well as the correctness of
the outsourced computation are safeguarded through proper
verification processes that take place on-chain.

The system is hierarchically structured in two layers:
The market layer, which comprises a set of algorithms
that define participants’ incentives and mechanisms for the
regulation of prices. The creation of a new cloud job, the
decision on price levels and the assignment to a specific
provider all belong to the market layer. The CloudAgora
market rules are enforced through a set of smart contracts
that work on-chain.



The storage/compute layer, where actual cloud services are
provided. This layer contains algorithms that can work both
on- and off-chain and ensure the provably proper operation of
the whole system. The contracts of this layer audit clients and
providers and guarantee that none is making profit against the
rules of the market.

A. Market Layer

This layer initially allows clients to express new tasks,
storage or computational, defining information related to the
tasks’ duration and difficulty: For storage tasks the difficulty is
implied by the dataset size and for computational tasks by the
amount of required gas, when the code to be executed is con-
verted to Ethereum Virtual Machine code. Upon task creation,
a new auction for this task is launched and all interested parties
are informed through an event emitted on the blockchain. Any
potential provider can place bids until the auction expiration.
The auction winner is finally defined by the height of her bid
in combination with her reputation score. A reputation score
is maintained and taken into account in the matching of tasks
to providers, to protect clients from malicious providers who
offer services in extremely low prices.

B. Storage Layer

This layer implements the decentralized storage service. At
this point the client’s storage task has been assigned to one or
more storage providers, as a result of the auction, and a storage
contract that binds them is created. The contract contains
information about the involved parties, the duration of the
task and the payment, including a collateral by both parties to
discourage malicious behaviors. Moreover, the contract holds
the Merkle tree root hash of the client’s data, which is used as
a means to verify the integrity of the stored data. Optionally,
the client may decide to encrypt and/or erasure encode her
data to guarantee confidentiality and recovery of data even in
the event of failures.

The data is transferred in an off-chain manner from the
client to the provider(s), where it is stored. While the contract
is active, the client can request her data or check that her
data is available and intact at any point in time. The former is
performed off-chain, while the latter is performed either off-
chain or on-chain, with the client challenging the provider by
requesting a number of Merkle proofs [2] for specific data
blocks. In case the provider fails to provide the corresponding
proofs, she loses her collateral and her reputation.

After the contract expiration, the provider can automatically
claim her payment, under the condition that she still possesses
the data. This can be proven again by sending a number of
Merkle proofs to the storage contract.

C. Compute Layer

This layer implements the compute service in CloudAgora.
It is implemented as a truebit-like [3] game, where outsourced
algorithms are executed off-chain and the blockchain is only
used for correctness proofs. The outline of such a game is as
follows: A solver is selected for executing the task based on

Fig. 1. Screenshot of CloudAgora’s UI. The Figure illustrates the Tasks
Manager lists for a service provider.

the auction described in the Market Layer. The solver privately
performs computations off-chain and only after completion
reveals the solution on the blockchain. Simultaneously, any
other member of the system can also compute the same task
in private and act as a verifier. If a verifier agrees with the
solution provided by the solver, the solver gets paid and
the game stops. In case of a disagreement, the verifier can
challenge the solver and an interactive proof takes place
on-chain. If the solver proves to be malicious, the verifier
receives the solver’s reward and the solver loses the deposited
collateral. If the verifier has triggered a false alarm, she is
obliged to pay for the resources wasted due to game.

III. DEMONSTRATION DESCRIPTION

During the demonstration, attendees will have the chance to
interact with CloudAgora both as cloud clients and providers.
From a client’s perspective, a comprehensive and friendly UI
will allow them to upload real data and assign computational
tasks to peer-members of a decentralized infrastructure. Data
integrity and result validity control are supported in an any-
time fashion. As cloud providers, attendees will be able to
participate in auctions, serve requests and offer validity proofs
upon request. In both cases, an Ethereum wallet is going to
provide real-time billing information for the corresponding
CloudAgora account. In the following, we delve into the
details of each role and showcase all functionalities that our
system’s UI offers.

A. Cloud Provider

A user that has been registered as a provider can take on
both computational and/or storage tasks. As soon as she logs in
the system, an admin Dashboard becomes available. Through
this Dashboard, the user has access to: (i) the Tasks Manager,
(ii) the Auctions, (iii) the Notifications and (iv) the Wallet.
These components are visible to the left side-bar of our UI as
illustrated in Figure 1.



The Tasks Manager. Figure 1 shows a view of the Tasks
Manager screen. The tasks a provider is assigned are organized
in two distinct lists: one for the storage tasks and another one
for the computational ones. For each task, we can see the
identity of the client, the deadline of the task as well as the
amount of money the provider will earn upon delivery.

The Auctions. This component provides an explicit view
of all auctions a provider currently participates.

The Notifications. In CloudAgora, the actions a provider
needs to take are mainly triggered asynchronously through an
event-based notification system. Actions can be distinguished
into three categories: (i) auction actions, (ii) service actions
and (iii) proof actions. Whenever a provider needs to take an
action of any kind, an event is emitted. The NodeJS client of
our application captures this event and adds a new notification
in the UI (top right corner of Figure 1). Received notifications
can also be inspected in the corresponding component of the
left side-bar.

We further analyze the distinct notification types. Whenever
a new bid is placed in an auction where a provider participates,
a notification arrives. By checking the newly arrived notifica-
tions, the provider can inspect the auction’s details and decides
whether to place a new bid or not.

Notifications about service actions are received upon win-
ning an auction. These notifications inform the provider that
she needs to receive the data/code as required per task.

Finally, a provider may also receive a message in case a
cloud client desires to control the integrity of its data. Upon
receiving such a request, the provider goes to the page with
the details of the specific task and clicks on the “Validate”
button. An on-chain Merkle proof is then instantly created
and a blockchain event is emitted to inform the user on the
results of the validation process.

The Wallet. By clicking on this component of the left side-
bar, details about the Ethereum wallet of the provider appear
on the screen. In this page, the user can inspect the balance
of her account as well as her recent blockchain transactions.

B. Cloud Client

When a user logs in as a cloud client, she faces a UI very
similar to the one we discussed for service providers. A client
can create new computational and/or storage tasks and assign
them to one or more providers. The task assignment is carried
out through the auction mechanism of CloudAgora. Apart from
creating new tasks, our UI also enables the management of
existing ones: operations such as asking for validity proofs or
canceling tasks are just a few clicks away.

In a typical scenario, a client launches the application and
navigates to the Tasks Manager similarly to the provider’s
case. For creating a new task, the client has to specify its
type (i.e., storage or computation), and the deadline for the
auction to take place. Depending on the task’s type, some
additional information may be required. For storage tasks the
client also has to specify the size of the file to be stored
remotely, the duration of the storage contract, as well as the
number of providers that are going to store parts of the file. In

the case of a computational task, the extra information needed
to be specified is the amount of gas required to execute the
computation. Once the task is created an auction managed by
an Ethereum contract is initiated. The progress of the auction
is tracked in real-time and the client can monitor it in the
corresponding tab of our user interface.

When the auction is successfully finalized, the auction con-
tract creates a storage/compute contract that binds the client
with the winning providers. As soon as the storage/compute
contract is created, a new item appears in the corresponding list
in the Tasks Manager interface. By clicking on that item, the
client can view and manage the details of the corresponding
contract. In general, the management of a task involves (i)
uploading data/code, (ii) tracking its progress, (iii) requesting
validity proofs and (iv) ordering for its termination. In the next
two paragraphs, we describe in more detail these operations
for the cases of both storage and computational tasks.

In the case of storage, from the contract’s page the client
has the ability to serve the file to the providers. Specifically,
by selecting the file to be served, the application performs
erasure encoding and splits the file in equal parts, one for each
provider. The client can inspect the status of a contract at any
time. Moreover, she can challenge a provider on the validity
of a specific block. The provider under challenge has to prove
she still has the file at her possession and that data has not
been tampered. Finally, at any time, the client can download
the file and conclude the task by finalizing the contract.

In the case of a computational task, the same interface
provides to the client the means to serve the executable
to the provider and monitor the stages of the computation.
Nevertheless, in the case of such a task, the client cannot
directly challenge the provider but the verification process is
based on a truebit-like game.

ACKNOWLEDGMENTS

This research is co-financed by Greece and the European
Union (European Social Fund- ESF) through the Opera-
tional Programme “Human Resources Development, Educa-
tion and Lifelong Learning 2014-2020” in the context of the
project “Data Sovereignty through the use of Blockchain”(MIS
5004883).

REFERENCES

[1] K. Doka, T. Bakogiannis, I. Mytilinis, and G. Goumas, “Cloudagora:
Democratizing the cloud,” in International Conference on Blockchain.
Springer, 2019, pp. 142–156.

[2] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Advances in Cryptology - CRYPTO ’87. Springer Berlin
Heidelberg, 1987, pp. 369–378.

[3] J. Teutsch and C. Reitwießner, “A scalable verification
solution for blockchains,” URL: https://people. cs. uchicago.
edu/teutsch/papers/truebit pdf, 2017.


