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Abstract—Over the last years, cryptocurrencies have gained
popularity as a means of exchange, but mostly as an investment
asset that can yield important earnings. Accurate cryptocurrency
price prediction is the holy grail of investors, yet the task is ex-
tremely complex and tedious since cryptocurrencies exhibit high
volatility and steep fluctuations compared to fiat money, while
they depend on a plethora of factors related to the blockchain
network, market trends, social popularity and the prices of
other (crypto)currencies. Thus, simple statistical methods are
not able to capture the complexity of cryptocurrency exchange
rate, forcing researchers to turn to advanced machine learning
techniques. In this work, we present a methodology for building
deep learning models to forecast the price of cryptocurrencies
and apply it to the prediction of Ether price, resulting in short-
and long-term forecasts that achieve an accuracy of up to 84.2%.

I. INTRODUCTION

Cryptocurrencies have come a long way since their initial
appearance in 2008 [1], gaining ever-increasing popularity and
social acceptance. However, in recent years, in addition to their
use as a medium of exchange, cryptocurrencies have emerged
as an alternative investment asset, reaching a total market
capitalization of 528 billion USD in 2020 [2]. Researchers
from various scientific disciplines have extensively studied the
factors that influence cryptocurrency price and have leveraged
techniques from the fields of statistics, machine and deep
learning in order to predict it with high accuracy [3] [4] [5]
[6] [7]. However, most of these models operate as a black
box without considering the contribution of each feature to
the prediction accuracy.

The goal of this work is to overcome the limitations of
a black-box approach and present an efficient method for
selecting the features that influence cryptocurrency prices the
most. We propose a framework of feature selection techniques
to identify the best features for predicting the future price
of Ether and then develop a set of deep learning models
consisting of LSTM, GRU and TCN layers that predict both
the exact price of ether as well as its direction in the short
and long term (one and seven days respectively). We fo-
cused on Ether because it supports much more functionality
and has a more complex nature than Bitcoin due to the
way it is transferred. More specifically, Bitcoin transfers can
only be performed directly between user accounts. Contrarily,
Ethereum, by supporting smart contracts, allows the existence
of contract accounts that can cause Ether to be transferred
between them unpredictably [8].

II. DATA AND FEATURE ENGINEERING

We used the historical daily data of Ether price from
September 16, 2018 until April 16, 2020, from cryptodata-
download.com, along with a set of 13 additional features that
we considered important based on our domain knowledge and
their significance in previous research. The dataset consisted of
features related to the market trends, the Ethereum blockchain,
the social popularity of cryptocurrencies as well as technical
indicators. Volume ETH, Volume USD and Bitoin’s daily price
were used because they reflect market dynamics. The number
of daily transactions on the Ethereum network as well as
the amount corresponding to these transactions highlight the
degree of trust of users in the network, while Daily block
size and mining difficulty were used as two of the most
important characteristics of the Ethereum blockchain. We also
constructed three technical indicators: an SMA of 14 days,
an EMA of 14 days, and a MACD index. Finally, we added
the normalized popularity index from Google Trends for the
terms Ethereum, Coinbase and Exodus. To the best of our
knowledge, this is the first time the effect of crypto wallet’s
popularity in cryptocurrency price prediction is examined.

We then performed a set of feature selection methods to
reduce the dataset complexity and make our models more
robust and interpretable [9]. Unlike related work, we processed
the daily and weekly forecasts separately as the influence of
each feature might be different in these two time frames. First,
we addressed the multicollinearity problem, which lies in the
existence of linearly dependent features [10], by removing
the features with a Pearson correlation coefficient greater
than 0.8. The relative importance of each feature based on
the Mean Decrease Impurity (MDI) [11] was then calculated
using both the XGBoost and Random Forest algorithms, and
only features with a coefficient greater than 5% were kept.
Finally, the recursive feature elimination method was applied
with the Random Forest and Decision Tree algorithms [12]
as estimators. We maintained all features that proved to
be significant even in one of the previous feature selection
stages. However, the above methods provide an estimation
of feature importance [11]. The features that were found to
be important were tested in real forecasting conditions by
using the validation set. We concluded that both the daily and
weekly forecasts are influenced by the same factors that are
the technical indicators EMA and MACD, the price of Bitcoin,
and the search volume index of Ethereum in Google.978-0-7381-1420-0/21/$31.00 ©2021 IEEE



TABLE I: Results of daily and weekly forecasts

Model Regression Classification
RMSE MAPE (%) Accuracy Precision Recall

1 day 1 week 1 day 1 week 1 day 1 week 1 day 1 week 1 day 1 week

LSTM 10.6 51.2 4.4 24.7 78.9 71.9 71.1 61.3 96.4 82.6
GRU 9.6 44.2 4.2 19.6 77.2 68.4 85.7 60.0 64.3 65.2
TCN 10.5 36.9 4.3 17.3 77.1 70.2 71.4 66.7 89.3 52.2
Hybrid LSTM-GRU 8.6 39.5 3.6 20.1 80.7 70.1 77.4 63.6 85.7 60.1
Hybrid LSTM-TCN 11.2 45.7 4.8 20.1 80.6 70.2 75.8 60.0 89.3 78.3
Hybrid GRU-TCN 10.1 40.6 4.6 18.6 78.9 73.7 90.0 63.3 64.3 82.6
Ensemble 9.1 39.6 3.7 17.4 84.2 78.9 85.2 70.4 82.1 82.6

Fig. 1: Total daily predictions in the test set

Afterwards, we preprocessed the data to allow for easier
pattern recognition [13], [14]. Noise reduction in a time series
preserves all the important information while at the same time
simplifies its form [15], so we first denoised the data using the
Savitzky-Golay filter [16]. We then set the timesteps parameter
which determines the amount of past information that our
models rely upon to make the predictions by calculating the
autocorrelation of the Ether time series [17]. The optimal
number of timesteps was proved to be 30 days. The dataset was
then split into train, validation and test set in proportion 80%,
10%, 10% respectively, preserving the chronological order of
the data. Finally, the data were normalized between 0 and 1
by using the Min-Max scaler [18].

III. MODELING METHODOLOGY AND RESULTS

LSTM and GRU architectures are considered to be state-of-
the-art in problems related to sequential data because of their
ability to effectively manage past information [19]. Recently,
research has shown that variations of Convolutional neural
networks, like Temporal Convolutional Networks (TCN), are
also very effective in sequence modeling tasks [20], achieving
even better results than the LSTM and GRU architectures. To
our knowledge, this is the first time that TCN models are used
in time-series prediction.

We developed LSTM, GRU, and TCN models as well as
hybrid models made of the above layers to make the most of
the benefits that the above architectures offer. The output of
each model is passed through a dense layer with one unit to
produce the final output. Hybrid models consist of 2 separate
models (LSTM, GRU or TCN) that have a common input
and their output is concatenated before passed through the
dense layer. For each model, we optimized a set of important

parameters including the batch size, the learning rate, the
number of layers, the size of each layer and the dropout rate at
each layer using the grid search method. We also searched for
the optimal optimizer considering Rmsprop and Adam and the
number of epochs that we should train our models. In the case
of models with TCN layers we also considered the number of
filters in the convolutional layers as well as the size of the
filters and the dilation values.

We evaluated the performance of the models by using
the Root Mean Square Error (RMSE) and Mean Absolute
Performance Error (MAPE) for the regression problem and
mostly the Accuracy for the classification one. Further to the
ones described above, we combined the predictions of our
models creating Ensemble models. A synopsis of the results
is shown in Table I and Figure 1. All models performed very
well in both the regression and the classification problems. As
for the daily forecasts, Hybrid LSTM-GRU model exhibited
the best performance in regression making predictions with an
RMSE of 8.6 and a MAPE of 3.6%. The best performance in
the classification task was achieved by the Ensemble model
which had an Accuracy of 84.2%. The best Ensemble model
in this case was the one that combined the predictions of the
LSTM, Hybrid LSTM-GRU and Hybrid LSTM-TCN models.
Generally, hybrid models outperformed the individual ones
and the ensemble technique led to improved results. As for
the weekly forecasts, results in the regression problem were
good but significantly worse than the daily ones highlighting
the fact that predicting the exact price of Ether in a longer
term is a very difficult problem. TCN was the best model
with an RMSE of 36.9 and a MAPE of 17.3%. However, the
classification results were very good, nearly as good as before.
The Ensemble model had again the best performance with an
Accuracy of 78.9%. This time the best Ensemble model was
a combination of LSTM, GRU and Hybrid GRU-TCN.

IV. CONCLUSIONS

In this work, we describe a methodology for building accu-
rate models to predict the exchange rate of cryptocurrencies.
To that end, we propose a systematic way to identify the
most appropriate data features for a specific cryptocurrency
and then develop a set of state-of-the-art deep learning models
for sequence prediction, including LSTM, GRU, TCN as well
as model ensembles. We apply the proposed methodology to
the use case of Ether: Short- and long-term forecast models
predict both the exact price and the direction of Ether price,
achieving an accuracy of up to 84.2%.



REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Manubot, Tech. Rep., 2019.

[2] “Tradingview,” https://www.tradingview.com/markets/cryptocurrencies/
global-charts/, accessed: 2020-11-16.

[3] A. Greaves and B. Au, “Using the bitcoin transaction graph to predict
the price of bitcoin,” No Data, 2015.

[4] Z. Chen, C. Li, and W. Sun, “Bitcoin price prediction using machine
learning: An approach to sample dimension engineering,” Journal of
Computational and Applied Mathematics, vol. 365, p. 112395, 2020.

[5] I. E. Livieris, E. Pintelas, S. Stavroyiannis, and P. Pintelas, “Ensemble
deep learning models for forecasting cryptocurrency time-series,” Algo-
rithms, vol. 13, no. 5, p. 121, 2020.

[6] N. Smuts, “What drives cryptocurrency prices? an investigation of
google trends and telegram sentiment,” ACM SIGMETRICS Performance
Evaluation Review, vol. 46, no. 3, pp. 131–134, 2019.

[7] M. Glenski, T. Weninger, and S. Volkova, “Improved forecasting of cryp-
tocurrency price using social signals,” arXiv preprint arXiv:1907.00558,
2019.

[8] M. Chen, N. Narwal, and M. Schultz, “Predicting price changes in
ethereum,” International Journal on Computer Science and Engineering
(IJCSE) ISSN, pp. 0975–3397, 2019.

[9] “Analytics vidhya,” https://www.analyticsvidhya.com/blog/2016/12/
introduction-to-feature-selection-methods-with-an-example-or-how-to-
select-the-right-variables/, accessed: 2020-11-16.

[10] A. Katrutsa and V. Strijov, “Comprehensive study of feature selection
methods to solve multicollinearity problem according to evaluation
criteria,” Expert Systems with Applications, vol. 76, pp. 1–11, 2017.

[11] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[12] P. M. Granitto, C. Furlanello, F. Biasioli, and F. Gasperi, “Recursive fea-
ture elimination with random forest for ptr-ms analysis of agroindustrial
products,” Chemometrics and Intelligent Laboratory Systems, vol. 83,
no. 2, pp. 83–90, 2006.

[13] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Data preprocessing for
supervised leaning,” International Journal of Computer Science, vol. 1,
no. 2, pp. 111–117, 2006.

[14] S. Garcı́a, J. Luengo, and F. Herrera, Data preprocessing in data mining.
Springer, 2015.

[15] E. J. Kostelich and T. Schreiber, “Noise reduction in chaotic time-series
data: A survey of common methods,” Physical Review E, vol. 48, no. 3,
p. 1752, 1993.

[16] W. H. Press and S. A. Teukolsky, “Savitzky-golay smoothing filters,”
Computers in Physics, vol. 4, no. 6, pp. 669–672, 1990.

[17] “Investopedia,” https://www.investopedia.com/terms/a/autocorrelation.asp,
accessed: 2020-11-16.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[19] Z. Han, J. Zhao, H. Leung, K. F. Ma, and W. Wang, “A review of deep
learning models for time series prediction,” IEEE Sensors Journal, 2019.

[20] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.


