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Abstract

Can we reach a stable matching that achieves high equity among the two sides
of a market in quadratic time? The Deferred Acceptance (DA) algorithm finds a
stable matching that is biased in favor of one side; optimizing apt equity measures
is strongly NP-hard. A proposed approximation algorithm offers a guarantee only
with respect to the DA solutions. Recent work introduced Deferred Acceptance
with Compensation Chains (DACC), a class of algorithms that can reach any stable
matching in O(n4) time, but did not propose a way to achieve good equity. In
this paper, we propose an alternative that is computationally simpler and achieves
high equity too. We introduce Monotonic Deferred Acceptance (MDA), a class of
algorithms that progresses monotonically towards a stable matching; we couple
MDA with a mechanism we call Strongly Deferred Acceptance (SDA), to build an
algorithm that reaches an equitable stable matching in quadratic time; we amend
this algorithm with a few low-cost local search steps to build Deferred Local Search
(DLS), which, as we demonstrate experimentally, outperforms previous solutions
in terms of equity measures and matches the most efficient ones in runtime.

1 Introduction

A matching process on a two-sided market can determine who gets which job [40, 31], school
place [44], or spouse. Gale and Shapley [16] proposed1 a model, in which each agent (e.g., woman
or man) ranks members of the other set by strict order of preference; then agents on the one side
issue proposals (i.e., offers) to those on the other side by that order; recipients hold the best proposal
they have received, without commitment, until nobody wishes to propose. This O(n2) algorithm,
called the Deferred Acceptance (DA) algorithm in contradistinction to immediate acceptance [41],
leads to a stable solution; that is, no pair of agents would rather be matched with each other than
with their assigned partners. The DA algorithm has had a profound influence on market design
and stands at the basis of a number of centralized labor market clearinghouses around the world,
allowing failed markets to be reorganized [41]. Roth and Shapley shared the Nobel Memorial Prize
in Economic Sciences for their work in “the theory of stable allocations and the practice of market
design”, reflecting also Roth’s application of these results to real-world markets [32].

The problem instance size may be large. In China, over 10 million students apply for admission to
higher education institutions annually through a centralized process [32]. Similar centralized schemes,
in which students apply for education programs and are ranked according to their scores [8], occur in
Germany [9], Greece, Hungary [7], Ireland, Spain [37], Turkey [6, 8, 4], and several school districts
in the USA [1, 3, 2]. Apart from the instance size, the set of possible stable matchings is large in
real-world markets [20], and exponentially growing in the worst case [29, 30]. Still, the DA algorithm
returns a solution optimal for proposers, as each proposer gets the best match possible in any stable

1The US resident matching program had used this algorithm since 1952 for junior doctor recruitment [40].
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matching, and, in reverse, pessimal for recipients [16, 34]; thus, it finds either the man-optimal or the
woman-optimal stable matching. Yet many real-world markets require stable matchings that are fair
to both sides [19, 43, 15]. For example, in a health care market, each surgeon may have preferences
for which anesthetist to work with, and vice versa; an impartial allocation that eschews any favoritism
would arguably lead to a sense of fairness and better performance [39]. There is then a practical
need to find stable matchings that do not favor any side. Unfortunately, minimizing apt measures
of equity or balance between the two sides is NP-hard [26, 15]. An approximation algorithm [25]
provides a guarantee only with respect to the biased DA solutions. Thus, there is a need for efficient
and effective algorithms that produce equitable stable matchings [21, 42].

In this paper, we provide the first, to our knowledge, quadratic-time algorithms that reach stable
matchings of good equity measures. We first introduce a class of algorithms called Monotonic
Deferred Acceptance (MDA), which exploit the growth of a monotonic state function; then, we
introduce a new proposal mechanism, Strongly Deferred Acceptance (SDA), by which an agent
cannot be in a pair and issue proposals at the same time. We devise an algorithm utilizing MDA and
SDA, POWERBALANCE, that terminates in O(n2) time, and enhance it with a few selective low-cost
local search steps to produce even more equitable solutions. We call the full operation Deferred Local
Search (DLS). Our experimental study with simulated markets shows that DLS outperforms the state
of the art in equity measures and matches the most efficient heuristics in runtime.

2 Background and Related Work

An instance I of the stable marriage problem (SMP) comprises of a setW = {w1, w2, . . . , wn} of n
women and a setM = {m1,m2, . . . ,mn} of n men, and for each person (or agent) a preference
list, i.e., a total order of the members of the opposite side from most to least preferable. Let `q be
the preference list of agent q; `q[k] = p means that q ranks p as its kth preference, with k = 0
denoting the highest preference; we also write prq(p) = k. If a woman w prefers m1 to m2, i.e.,
prw(m1) < prw(m2), we denote that as m1 �w m2; likewise for men’s preferences. A (perfect)
matching µ on I is a set of n disjoint man-woman pairs. If a woman w and a man m are matched in
µ, we write µ(w) = m and µ(m) = w. A woman w and a man m form a blocking pair for µ when:
(i) µ(m) 6= w; (ii) w �m µ(m); and (iii) m �w µ(w). A matching µ is stable if no blocking pair
exists for µ, otherwise it is unstable. The SMP calls for finding a stable matching.

The Deferred Acceptance Algorithm In the Deferred Acceptance (DA) algorithm [16], each man
m starts out from his first preference, with an index κm = 0, and proposes to the woman at entry
`m[κm], increasing κm in each iteration, as long as he remains unmatched. A woman w accepts a
proposal from a man m to form pair (w,m) if she is single or m is more preferable to her than the
current fiancé, µ(w). We express this acceptance condition by the following Boolean predicate:

accept(w,m) = single(w) ∨ m �w µ(w), (1)

where µ is the matching created so far. If the proposal is rejected, mmoves to preference κm+1. The
DA algorithm reaches a stable matching in O(n2) steps [19]; the number of pairs never decreases:
when a woman breaks one pair and creates another, her preference for her fiancé may only improve;
contrariwise, a man’s preference for his fiancée may only worsen.

Breakmarriage and Rotations The DA algorithm is biased: it returns, out of a set of stable
matchings that may grow exponentially in the worst case [22], one that is most preferable to each
proposing agent and least preferable to each recipient agent [16, 34]. For example, if men’s first
preferences do not conflict, each man may obtain his first choice, regardless of how satisfactory
that is to women. The complete set of stable matchings for a problem instance forms a distributive
lattice under a natural dominance relation2, in which the unique maximum and minimum elements
are the two gender-optimal matchings [29, 30]. This lattice can be traversed through breakmarriage
operations [34]: starting out from a stable matching µ, we break a pair (m,w); then man m proceeds
as per the DA algorithm, initiating a sequence of proposals that terminates either with a man being
rejected by all women (a dead-end) or to a new stable matching µ′. During this operation, there is
exactly one single man at any time, who makes the next proposal. The resulting stable matching is
dominated by the initial one, in the sense that all men who changed partners are worse off.

2A stable matching dominates another when it is strictly preferred by one gender.
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A breakmarriage operation [34] corresponds to one or more rotations, i.e., minimal operations
whereby a cyclically ordered sequence of pairs exchange partners, transforming one stable matching
to another [22]. A precedence relation defines a partial order by which rotations can be performed,
the rotation poset. Each stable matching corresponds to a closed subset of the rotation poset [22];
applying this subset of rotations from one lattice end, in any valid order, results to the same stable
matching. All rotations are found in O(n2) time via breakmarriage operations [18, 19].

Defining Fairness The bias of the DA algorithm calls for solutions that optimize some measure of
fairness. Knuth [29, 30] describes, with credit to Selkow, anO(n4) algorithm to find a stable matching
µ that minimizes the lowest preference assigned to any agent, or regret cost r(µ); others proposed an
O(n2) algorithm [18] and another O(n4) algorithm to the same effect [39]. Still, a minimum-regret
matching may coincide with one of the DA outputs, even when there are many stable matchings [21].
To consider the big picture, we define two quantities: the sums of women’s and men’s preferences for
their matches in a stable matching µ: ℘1 =

∑
(m,w)∈µ prm(w), ℘2 =

∑
(m,w)∈µ prw(m).

Given a pair (m,w)∈µ, m envies the partners of all women w′ such that w′ �m w; the egalitarian
cost [19] is a measure of fairness that counts the number of envy situations in the market [38].
Eg(µ) = ℘1 + ℘2. A stable matching of minimum egalitarian cost is found in O(n3) [23, 14]. Still,
by such a matching, one side may fare much better than the other. The sex equality cost [19] measures
the gap between the two sides’ sums of preferences for their matches: SEq(µ) = |℘1 − ℘2|.
Still, sex-equality may compromise overall happiness: by this measure, a stable matching in which the
two sides are closer to each other is preferred over another matching in which both sides fare better,
but at an increased gap. The balance cost [15] provides an alternative: Bal(µ) = max{℘1, ℘2},
minimizing the unhappiness of the most unhappy side [33]. Our goal is to find stable matchings
of low sex equality and balance cost. Unfortunately, minimizing the sex equality cost is strongly
NP-hard [26, 33]. Iwama et al. [25] gave an O

(
n3+

1
ε

)
algorithm, which for some fixed ε > 0,

returns a matching µ such that SEq(µ) ≤ ε∆, where ∆ is the least sex-equality cost among the two
DA outputs, or reports that no such matching exists. We revisit this algorithm in our experimental
study. Minimizing balance is also NP-hard [15]. Manlove [32] constructs an instance, credited to
McDermid, in which no balanced stable matching is a sex-equal stable matching, and vice versa.

DA-Extending Procedures Past research [13, 35, 17, 11] has proposed procedures that aim to
find a fair stable marriage by extending the DA algorithm; they allow agents on both sides to issue
proposals, one after another, each agent following the order of its preference list. At any time, κa
denotes the position on the preference list of agent awhere a issues a proposal when its turn comes; κa
increases with every rejection. When a accepts a proposal from b, such that b �a `a[κa], then it sets
κa = pra(b), i.e., it upgrades κa to the position of b in its preference list, so that it resumes proposals
in case of a divorce. Yet an agent a may not skip forward positions in its preference list. We call this
class of algorithms [13, 35, 17, 11] DA-extending procedures; all DA-extending procedures arrive
at a stable matching µ iff each agent a is in a couple with its preference at κa, i.e., µ(a) = `a[κa].
However, they may enter endless loops. Dworczak [11] suggests a variant, Deferred Acceptance with
Compensation Chains (DACC), that immediately compensates any agent a abandoned by a partner
that had proposed to a, letting a issue proposals until it finds a new partner. Dworczak [11] does not
prove termination in the case in which two divorcees need to be compensated in the same round of the
algorithm, and gives no polynomial runtime bound for DACC; after communication with the author,
we have ascertained that DACC terminates in O(n4) [12]. Still, there is no suggestion in [11] on how
to generate operations that quickly converge to a solution achieving high fairness. The main idea of
DACC is reminiscent of EROM [39, 27], a regret-minimizing O(n4) procedure that lets all agents
propose with progressive receptiveness: in round k, only preferences ranked up to k may be proposed
to and accepted. EROM compensates every agent abandoned by its partner; at its final stage, when
k = n, it enacts compensation chains that go on until a single agent accepts a proposal. Yet, contrary
to DACC, EROM only accesses a regret-minimizing sublattice of the stable marriage lattice. In this
restrictive nature, EROM is akin to LOTTO [5], a random serial dictatorship mechanism that reduces
the space of attainable stable matchings in favor of a randomly chosen agent in each iteration.

In another direction, a local search algorithm, BILS [45], starts out from the two DA solutions and
bidirectionally traverses the lattice of stable marriages via breakmarriage operations, guided by a cost
measure. When the two operations meet each other in terms of cost, it outputs the one of best cost.
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3 Enforcing Monotonicity

We aim to provide a procedurally fair [28] DA-extending procedure that converges to a stable
matching of high equity in quadratic time. We first introduce some basic concepts.

Definition 3.1 (Proposal index). Given a set of agents A = {ai} in a two-sided market, the proposal
index κa of an agent a is the index of the position in a’s preference list, such that a intends to make its
next proposal (offer) to the agent `a[κa] (or to none, if κa = n); κa advances to the next position with
each rejection, yet backtracks to the position pra(b) of an agent b who proposes to a, if b �a `a[κa].

Definition 3.2 (State). Given a set of agents A = {ai} in a two-sided market the state of A at a
given time is the set {κai}, where κai is ai’s current proposal index value.

Definition 3.3 (Frontier index). Given a set of agents A = {ai} in a two-sided market the frontier
index λa of each agent a is the largest value that a’s proposal index κa has assumed so far, i.e., the
farthest position in a’s preference list to which a has ever made an offer.

Definition 3.4 (Idle agent). An agent a is idle when it has proposed to all its preferences up to its
current match or the end of its preference list, i.e., κa = pra(µ(a)) or κa = n.

Definition 3.5 (Idle couple). A couple {a, b} ∈ µ is idle when both of its members are idle, i.e.,
κa = pra(b) and κb = prb(a), hence a = `b[κb] and b = `a[κa]; in other words, a and b have both
proposed to each other and none of them is still making offers to other options.

Monotonic Events A procedure of proposals issued by both sides that does not terminate must
eventually bring A back to a state where it has already been. In reverse, as long as a procedure
brings A to states where it has never been before, it is not in a loop. Thus, if we reach a state never
encountered before, then an algorithm is not looping. We can determine that we reach a state never
encountered before when a monotonically non-decreasing function of state grows to a value never
reached before. By enforcing the growth of such functions, we ensure that the algorithm in question
does not loop. We call an event of growth of such a function a monotonic event.

Definition 3.6 (Monotonic event). Given a set of agents A = {ai} in a two-sided market and an
algorithm operating on it, a monotonic event is the increase of a function that is monotonically
non-decreasing during the algorithm’s operation and upper-bounded by a maximum value.

We now define two such functions. Each frontier index λa is monotonically non-decreasing, as by
definition it cannot be decreased during an algorithm’s operation, and is upper-bounded by n. Thus:

Corollary 3.1. The increase of a frontier index λa is a monotonic event.

The number of idle couples C is also monotonically non-decreasing: if such a couple is broken by one
partner a, then a accepts a proposal from a more preferable option b, and thereby remains idle with
µ(a) = b = `a[κa], while the proposing agent b becomes idle, as it has just proposed to a = `b[κb].

Corollary 3.2. The increase of C = |{{a, b} ∈M |a = `b[κb] ∧ b = `a[κa]}| is a monotonic event.

We call the class of algorithms that enforce monotonic events Monotonic Deferred Acceptance
(MDA). The following theorem defines an example of an MDA procedure.

Theorem 3.1. Assume an algorithm operates on a set of agents A = {ai} in a two-sided market,
starting from any state. Then continuous proposals by agents on the same side will lead, in at most
O(n2) steps, to one of the following events: (i) a frontier index λa increases, or (ii) a new, additional
idle couple is formed, hence C increases, or (iii) all agents on the proposing side become idle.

Proof. As proposing-side agents do not receive offers, none of them rises to a more preferable
position in its preference list. Thus, each proposing-side agent a increases κa. Eventually, one of
them may reach and exceed λa, a monotonic event. Alternatively, an agent a, may issue a proposal
and form a new idle couple (either by proposing to its current match µ(a) or to a single agent) before
it reaches λa, also a monotonic event. If no such event occurs, then each proposing agent a either
(i) is already idle, or (ii) has a proposal accepted at κa ≤ λa and becomes idle without forming
an additional idle couple, or, (iii) has λa = n and κa reaches that terminal position, hence again a
becomes idle. Therefore, eventually either a monotonic event occurs, or all agents on the proposing
side are rendered idle; that happens in at most O(n2) steps, the amount of all possible proposals.
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Cases (i) and (ii) in Theorem 3.1 constitute monotonic events. If such an event occurs, the algorithm
is not in a loop; we can then switch from the one side, A, to the other side, B, so as to give to agents
on both sides the opportunity to receive and issue proposals, and insist on side B until a monotonic
even occurs; the sooner a monotonic event occurs and we switch side, the more evenly we treat
the two sides. However, no monotonic event occurs in Case (iii), when all agents on side A are
rendered idle. It is tempting to think that, with all agents on side A already idle, the termination of
the algorithm is imminent, after a few proposals from side B. Unfortunately, this is not the case, as
there may exist a couple {a, b} with an idle agent a on side A and a non-idle partner b on side B, i.e.,
with `a[κa] = b but `b[κb] �b a; after switching to side B, b may propose to others on side A and
hence abandon a; thereby, a is rendered non-idle, and hence we will still need to return to proposing
with side A. In other words, the allowance for couples in which one partner is non-idle3 renders the
termination of the algorithm problematic and calls for measures like those in [11], which incur a high
computational overhead. In the following, we introduce our proposal that overcomes this problem.

4 Strongly Deferred Acceptance

Since termination is rendered problematic by couples that contain a non-idle agent, we reason that
we should disallow the creation of such couples in the first place; in other words, every couple should
be an idle couple. By that precaution, once all agents on one side, A, are rendered idle, no agent a
on side A can be abandoned by its partner: if such partner b exists, it is necessarily idle, and every
agent on side A that could propose to b is idle too. Then, as we will show, after all agents on side A
are rendered idle, the algorithm can securely terminate by letting agents on side B propose. Yet, to
disallow the creation of couples with a non-idle agent, we should modify the proposal acceptance
criterion in Equation (1), employed by the DA and DA-extending algorithms [16, 17, 11]. By this
criterion, as discussed in Section 2, an unmatched agent a accepts a proposal from any agent b on
the other side; thereafter, it may continue issuing proposals of its own, as long as κa < pra(b), i.e.,
`a[κa] �a b. We propose a simpler acceptance criterion that eschews this duplicity: an agent q
accepts a proposal from another agent p if and only if p is preferable to q over its next proposal target:

accept(q, p) = p �q `q[κq] (2)

In case of acceptance, q sets κq = prq(p), otherwise p moves on to preference κp + 1. We call this
mechanism Strongly Deferred Acceptance (SDA).

Properties We now study the capacity of an SDA procedure using an arbitrary order of proposals
to terminate to stable solutions from a given starting state, i.e., its stability and reachability properties.
Definition 4.1. An SDA proposal procedure terminates when it brings all agents to an idle state.

Definition 4.2. Given a stable matching µ, we characterize the position of agent p with respect to
µ in terms of its κp as follows: (i) if κp < prp(µ(p)), p is µ-overrated, i.e., proposing above its
match in µ; (ii) if κp = prp(µ(p)), p is µ-pivotal, i.e., ready to propose to its assignee in µ; (iii) if
κp > prp(µ(p)), p is µ-underrated, i.e., has been already rejected by its match in µ.

Lemma 4.1. Given two agents p and q, during the operation of an algorithm issuing proposals
by both sides, starting with κa = 0 ∀a ∈ A, there can be no state in which κp > prp(q) and
κq > prq(p).

Proof. Assume p and q find themselves in such a position. Then one of the two, say p, must have
exceeded its preference for the other, q, while q was already in such a position. Then q must have
rejected a proposal from p while κq > prq[p], i.e., p �q `q[κq]; that cannot happen: q should have
accepted the proposal from p, since p �q `q[κq].

Theorem 4.1 (Stability). When a procedure by SDA terminates, the outcome is a stable matching.

Proof. Suppose the resulting matching contains a blocking pair (x, y), i.e., κx > prx[y] and κy >
pry[x]; that is a violation of Lemma 4.1. Hence the theorem follows.

Lemma 4.2. By SDA, an µ-overrated agent p may only form a couple with an µ-underrated agent.
3Note that at least one partner is always idle, as one must have proposed for the couple to be created.
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Proof. Let p be an µ-overrated agent that forms a couple with q. If q is µ-overrated, then (p, q) would
be a blocking pair in µ, hence µ would not be stable. If q is pivotal, then p = µ(q), hence q = µ(p),
thus p cannot be overrated. Hence the lemma follows.

Theorem 4.2 (Universality). Starting from the state {κi = 0,∀ai ∈ A}, any stable matching µ is
reachable by SDA proposals.

Proof. Let µ be any stable matching. Initially, all agents are µ-overrated. Let each agent a propose
to all preferences up to κa = pra(µ(a)); by Lemma 4.2, these proposals cannot be accepted, as they
would form pairs among µ-overrated agents; then all agents are µ-pivotal, hence produce µ.

Exploiting SDA The following theorem shows how we can achieve termination by SDA.

Theorem 4.3. Assume an algorithm operates on a set of agents A = {ai} in a two-sided market
under SDA, starting from a state in which all agents on one side, A, are idle. Then continuous
proposals issued from the other side, B, lead, in O(n2) steps, to a stable matching µ.

Proof. By Theorem 4.1, to show that the outcome is a stable matching, it suffices to show the
procedure terminates with all agents rendered idle. Each agent a on side A remains idle during
proposals from side B, since it has either reached κa = n as a single, or is matched to an idle
partner b, and remains idle in case it accepts a proposal from another agent b′ on side B. As only
agents on side B propose, eventually they all are rendered idle too. The process requires proposals at
most equal to the the length of the preference lists of side B, hence O(n2) proposals.

We call the total two-round process COMPROMISE. The critical point is that, by SDA, once all agents
on one side are idle, none of them can lose its partner, who is also idle. Contrariwise, by DA, an idle
agent may be abandoned by a non-idle partner, hence termination does not come forth in two rounds.

We now develop an algorithm that terminates efficiently and caters to fairness too. We propose
an initial phase in which the two sides both propose in turns, followed by a COMPROMISE phase.
If COMPROMISE is applied on the initial state with side A proposing first, it produces the B-side-
optimal stable marriage. This may sound counterintuitive, given that the DA algorithm obtains a
proposer-optimal matching [16]. Yet, in DA, the other side never proposes. When both sides propose
in turns, the advantage is with the one that receives proposals first. Thus, it is fair to assign the role of
proposers in each round to the side deemed to be better off, as measured by their κ index values.

Algorithm 1 PowerBalance
Input: A =M∪W (men and women), limit, cost
Output: stable matching µ

n = |M| = |W|; µ = ∅;Rounds = 0
for all x ∈ A do κx = 0

while (|µ| < n) do
Rounds++; P = STRONGSIDE(M,W)
for all p ∈ P do PROPOSE(p,µ)
if (Rounds > limit) then . Enforce termination after limit rounds
µ1 = COMPROMISE(M, µ); µ2 = COMPROMISE(W , µ)
if (cost(µ1) ≤ cost(µ2)) then µ = µ1 else µ = µ2

return µ
function STRONGSIDE(M,W)

if (
∑
m∈M κm ≤

∑
w∈W κw) then returnM else returnW

function COMPROMISE(C, µ) . side C, matching µ
if (C ==M) then F =W else F =M
while (∃x ∈ C : µ(x) = ∅ ∧ κx < n) do . Render side C idle

for all x ∈ C do PROPOSE(x,µ)
while (∃x ∈ F : µ(x) = ∅ ∧ κx < n) do . Side F completes the matching

for all x ∈ F do PROPOSE(x,µ)
return µ

procedure PROPOSE(p, µ) . proposer p, matching µ
if (µ(p) = ∅ ∧ κp < n) then
q = `p[κp] . p wants to propose to q
if accept(q, p) then

if µ(q) 6= ∅ then . break up q if married
r = µ(q); µ = µ \ {〈q, r〉}

µ = µ ∪ {〈p, q〉}; κq = prq(p) . match p and q
else κp = κp + 1 . q rejects p
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Algorithm 1, POWERBALANCE, applies this principle: it goes through a series of SDA proposal
iterations, in each of which the strongest side proposes; if the number of such matchmaking rounds
exceeds a limit without termination, then POWERBALANCE enforces termination: it tries the
COMPROMISE procedure on both sides and chooses the solution that best fits its goal, yielding a
stable matching; as cost measure we use either the sex equality cost or the balance cost, introduced in
Section 2. Moreover, we can control how fast we reach such a matching by tuning the limit of O(n)
proposal rounds that it performs before enforcing the O(n2) termination procedure. We contend
that a few rounds can bring the two sides at a position of good balance, from which we can enforce
termination, with O(n2) overall runtime.

5 Deferred Local Search

The algorithms discussed in Section 2 can be classified into two types: (i) those that progressively
transform an unstable condition to a stable one; and (ii) those that move from one stable matching to a
more favorable one by local search. The former are more efficient, while the latter may achieve higher
quality in terms of an equity measure, at the price of high worst-case complexity. We propose Deferred
Local Search (DLS), which first quickly converges to a fair stable matching by POWERBALANCE,
and then improves upon this outcome with a few steps of local search in the lattice of all stable
matchings. This way, it achieves both efficiency and high quality in terms of equity measures.

Enhancing Local Search The local search procedure in BILS [45] uses breakmarriage operations
[34], each requiring O(n2) time, thus spends O(n3) per step to evaluate neighboring solutions
produced by breakmarriage on each of n agents. We reduce this cost by exploring the lattice via
fine-grained rotations [22] rather than bulk breakmarriage operations. We compute all rotations in
O(n2) [19], and then, in each step, eliminate those exposed (i.e., amenable to elimination) in O(n2).
We also designed an enhanced, rotation-based version of BILS, which we term iBILS.

Applying Local Search Our first Deferred Local Search (DLS) proposal, HYBRID, moves ahead
from the output of POWERBALANCE, so as to reach a good neighboring solution in the lattice of
stable matchings via rotation operations. Even in its refined form, BILS starts out from an extreme
position in the lattice and proceeds through several O(n2) local search steps, amounting to a O(n4)
worst-case complexity. By contrast, HYBRID starts out from a middle position in the lattice, and
performs a controlled number of local search steps, with aO(n2) worst-case complexity. Our second
DLS proposal, HYBRIDMULTISEARCH (HMS), enforces the termination of POWERBALANCE at
different rounds to yield several evenly placed solutions as starting points for local search. Instead
of deciding on one of two sides when enforcing termination by COMPROMISE, we use both options
as starting points. HMS takes O(rn + kmn2) time, where r is the number of POWERBALANCE
proposal rounds, k the number of local searches, and m the maximum number of local search steps.

6 Experimental Study

We conduct experiments measuring sex-equality cost, balance cost, and runtime. We use synthetic
datasets that draw preferences from three distributions: Uniform(U), with preferences created fully at
random; Discrete(D), where for a Hot Set H ⊆ A, if ai ∈ H then ai �bk aj ,∀aj ∈ (A−H),∀bk ∈
A ; and Gaussian(G), in which ai �bk aj iff i+X ≥ j + Y,∀bk ∈ A for X,Y = N (0, 0.4n). We
also generate asymmetric data set, in which one side follows the Uniform model, while the other
side follows the Discrete; we set the Hot Set of Discrete distributions to include 40% of the agents.
Last, we apply our solution on real data, reported at the end of this section. The algorithms are
implemented in Java4 and tested on an Intel Xeon 2.67GHz CPU with 28GB RAM.

PowerBalance Parameter Tuning POWERBALANCE employs a limit parameter, which deter-
mines the maximum number of matchmaking proposal rounds it performs before enforcing termi-
nation. We experimentally determine a sufficient value for limit as a function of dataset size. We
generated 100 instances for every size n; for each instance, we tested a large number of limit values
to find out the smallest value that suffices to get the best obtained results on sex-equality (SEq). We
observed that a sufficient limit value grows in a fashion similar to n log2(n). In effect, we set the

4Code and data are available at https://github.com/ntzia/stable-marriage
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POWERBALANCE limit to Θ(n log2 n), yielding a complexity of O(n2 log2 n). We set the k and m
parameters of HMS to Θ(log n), so as to maintain the same asymptotic complexity bound.

BILS Probability Parameter Viet et al. [45] suggest that their bidirectional local search execute
random moves with probability p = 0.05. We shed light on the impact of p, measuring the sex-
equality cost of the solution returned by both BILS and iBILS for three different sizes, 2000 instances
per size, and a range of p values across distribution types. With iBILS, we observe an improvement
in sex equality on Discrete data, peaking at around p = 0.125. Contrariwise, BILS did not benefit
by randomization, obtaining best results with p = 0. This difference is due to that fact that iBILS
explores the lattice by rotations, which are smaller steps than the breakmarriages used in BILS.

Performance Evaluation We compare the proposed algorithms against: APPROX, the lattice-
based approximation algorithm [25]; POLYMIN, which finds the solutions minimizing the regret and
egalitarian cost and reports the best result; DACC, the proposal-based method of [11]; BILS, the
local-search-based method [46, 45]; and iBILS, our own enhancement of BILS. We normalize cost
results, dividing by the corresponding best cost the DA algorithm can obtain. Algorithms using local
search guide their search using a SEq or Bal cost function; POWERBALANCE selects the best of
two outcomes with regard to cost when enforcing termination. DACC [11] does not specify an order
of proposals; thus, we employ the proposal strategy of PowerBalance, letting all members of the
advantaged side act as proposers in each round. Given our analysis, we set the probability parameter
in BILS to 0, in iBILS to 0.125, the limit parameter of POWERBALANCE to dn log2

2 n/10e, and the
parameters in HMS to k = d2 log ne and m = dlog ne.
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Figure 1: Quality comparison against heuristics
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Figure 2: Time comparison against heuristics

Comparison against other heuristics We compare our proposals against state-of-the-art heuristics,
on data sizes up to 4,000, with 50 instances per size and distribution and depict cost results with
box and whisker plots, with a black dot indicating the mean. On runtime, we plot mean values.
Figures 1 and 2 show our results. DACC and POLYMIN perform poorly for both cost metrics.
POWERBALANCE is among the fastest, yet falls short cost-wise compared against the local search
methods. BILS performs the worst in runtime, while it is also weak in terms of balance and sex

8



equality cost on Discrete data (Figures 1b, 1f). iBILS and HYBRID behave similarly, with HYBRID
having a slight scalability advantage (Figure 2a). HMS achieves top quality across the board and
outperforms others significantly on Discrete data (Figure 1f). Most algorithms detect the same
one-side-biased solution on UniformDiscrete data (Figures 1d, 1h); due to the innate asymmetry
among the two sides, a solution that favors one side over the other achieves good sex equality and
balance. Overall, POWERBALANCE is the most scalable, while HMS provides the highest quality.
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Figure 3: Performance comparison against APPROX

Comparison against APPROX We now test our best methods, iBILS and HMS, against AP-
PROX [24], whose ε parameter provides a sex-equality approximation guarantee with respect to the
best of the two DA outputs. We generate 50 data sets of size 4000 for each distribution, and explore
the range of ε to find values that yield competitive results. Figure 3 presents our results. The axes
on the left denote cost ratio (for APPROX, upper-bounded by ε), while those on the right denote
runtime. On Uniform and Gauss, iBILS and HMS significantly outperform APPROX, while the cost
ratios they achieve put an overwhelming strain on the latter’s runtime (Figures 3a, 3c). On Discrete
data, APPROX surpasses the ratios of iBILS at the cost of a runtime overhead, but does not reach
the ratios of HMS within reasonable runtime (Figure 3b). All algorithms find the same solution on
UniformDiscrete, while APPROX needs an unnecessarily high runtime with ill-chosen ε (Figure 3d).
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Figure 4: Real Data Experiment

Application on real data. To investigate performance on real data, we extract distributions from
the data of an online dating service [10]. The data consists of 17,359,346 anonymous ratings, on the
1− 10 scale, of 168,791 profiles made by 135,359 LibimSeTi users, along with gender information.
We remove users of unknown gender and those who have not rated the opposite gender, and construct
a 2D distribution of the frequency of each pair of ratings (i, j). Drawing from this distribution, we
generate data of n = 100. We resolve ties using 80% randomness and 20% popularity (P), i.e., the
global ranking of agents by all ratings. We run 50 instances per size, and plot quality and runtime
results in Figures 4a, 4b, and 4c. We also visualize, Figure 4d, the process for POWERBALANCE
with the instance yielding the median sex equality cost; in each iteration, we measure the number of
single agents and the sum of κ index values for the two sides, i.e., ℘′m and women ℘′w as defined in
Section 2, which dictate which side proposes in the next round. The left-side axis marks the scale of
singles, while the right-side axis marks the scale for ℘′m and ℘′w; the vertical black dashed line shows
the round in which POWERBALANCE enters its termination procedure, COMPROMISE.

7 Conclusions
We revisited the NP-hard problem of finding a stable matching optimizing an equity measure. We
extended the Deferred Acceptance algorithm to a two-sided form, Monotonic Deferred Acceptance,
proposed a simpler variant of its proposal acceptance criterion, Strongly Deferred Acceptance (SDA),
and amended that with a few selective steps of efficient local search, Deferred Local Search (DLS).
These are the first, to our knowledge, procedures that reach stable matchings of good equity in
quadratic time. Our experimental results demonstrate that DLS delivers both efficiency and high
equity. In the future, we intend to study the problem under manipulation incentives, as in [36].
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