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ABSTRACT
In this paper we describe KANIS, a distributed system de-
signed to preserve the privacy of multidimensional, hierar-
chical data that are dispersed over a network. While al-
lowing for efficient storing, indexing and querying of the
data, our system employs an adaptive scheme that auto-
matically adjusts the level of indexing according to the pri-
vacy constrains: Efficient roll-up and drill-down operations
take place in order to guarantee k-anonymity while mini-
mizing data distortion and inconsistency. Thus, our system
manages to maintain k-anonymity of the published data
in a distributed and on-line manner even under frequent
updates, without affecting its ability to efficiently answer
queries. The initial experimental evaluation of our proto-
type shows that KANIS manages to preserve k-anonymity
while improving the data quality up to 22% compared to a
popular centralized global recoding algorithm. It achieves a
near-optimal distortion regardless of the network or dataset
size, with a reasonable communication overhead, scattered
among the participating nodes.

1. INTRODUCTION
The advent of Web 2.0 with its new, more democratized

model gave individuals the ability to equally become con-
tent producers as well as consumers. This fact drastically
changed the patterns of interaction between people and busi-
nesses, leading to an ever increasing demand for online pro-
cessing of immense volumes of data (blogs, wikis, social net-
works, social bookmarking, news aggregation sites, etc.).
The tools that make up the Web are abundant and con-
stantly evolving and recombining.

An example of such evolution is given by personalized web
services: It is estimated that over 80% of users prefer the
numerous personalization services that businesses and social
sites offer [3]. This entails the gathering of considerable
amounts of sensitive information, which often raises serious
privacy issues. For instance, the release of the AOL query
logs in 2006 led to the tracing of anonymous users to their
real names [2]. Location-based services [4, 15] offer a wide
variety of information based on the clients’ locations but
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also feature significant abuse possibilities [14].
k-Anonymity has been proposed as an approach to pro-

tect personalized data privacy against such attacks [8]. Its
goal is to ensure that individuals are unidentifiable in re-
leased data by making sure each value of a sensitive subset
of data attributes called quasi-identifier attributes (or just
QID) appears at least k times [18]. The most common way
to produce k identical tuples is to generalize values within
the attributes, e.g., by dropping the least significant digit
from the Zip code domain. At the same time, the utility of
the published data should remain as high as possible.

Various approaches for generalization dictate the mapping
of a set of attribute values to another set of values that
belong to a more general domain. This mapping can be
done either globally, by mapping the whole domain to a more
general one (global recoding) [10, 11] or locally, by mapping
each tuple individually to a generalized one (local recoding)
[13, 19]. More recent works use attribute hierarchies in order
to achieve k-anonymity with the less possible information
loss by “climbing up” in the domain hierarchy [13].

Yet, the way that k-anonymity has been implemented so
far refers to a centralized storage and processing server that
is responsible of gathering all sensitive data, anonymizing it
and distributing it to the numerous users. Some works [9, 20]
attempting to propose distributed k-anonymity algorithms
do not deal with data horizontally partitioned over multi-
ple network nodes. As more systems and applications opt
for data distribution, we believe that their efficient anonym-
ization is of great importance to offer customized privacy
according to the needs of the applications that access them.

In this paper, we investigate the problem of continuously
preserving the anonymity of fully distributed data in a way
that minimizes the data distortion and the communication
overhead. To that end, we propose KANIS1 (K-ANonymity
Indexing System), an always-on DHT-based system, that
guarantees real-time k-anonymization during updates. The
system comprises of multiple cooperating nodes that share
and serve multidimensional, hierarchical data. Individual
nodes actively monitor the privacy of the data they are re-
sponsible for, in order to adjust the indexing level to the
one that guarantees k-anonymity after the insertion of new
tuples. Furthermore, the system does not invalidate the se-
mantics of the stored hierarchies and allows for distributed
knowledge mining. To our knowledge, this is the first at-
tempt towards the support of distributed k-anonymity in
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Kanis (nobody in Greek) is how Ulysses cleverly introduced himself

to cyclop Polyphemus, who had captured him and his crew. After
being blinded by Ulysses, Polyphemus yelled to his fellow cyclops
that “nobody” had hurt him.



DHTs. Yet, while the main focus of this work is k-anonymity,
our system can be extended to support other privacy prin-
ciples (e.g., l-diversity, t-closeness, m-invariance etc.).

1.1 Definitions
The goal of k-anonymization is to make every tuple of a

published table identical to at least k − 1 other tuples with
respect to a set of attributes. As a motivating example, let
us assume a table of patient’s data (Table 1(a)). Record
No. 3 is unique with respect to the attribute set {Gender,
Age, Postcode}, hence the medical problem of this patient
may be revealed if the table is published. To preserve his
privacy, we may generalize the Postcode attribute values
such that each tuple has at least two occurrences. Assuming
each domain is analyzed in the hierarchies of Figure 1, we
can achieve 2-anonymity by climbing up one level in the
Postcode hierarchy (see Table 1(b)).

Definition 1 (Quasi-Identifier Attribute Set).
A quasi-identifier attribute set ( QID) is a minimal set of
attributes in a table that can be joined with external infor-
mation to potentially identify individual records.

The QID sets are selected by experts based on the specific
knowledge of the domain they refer to.

Definition 2 (Equivalence Class). An equivalence
class (EC) of a table with respect to an attribute set is the
set of all tuples that contain identical values for the attribute
set.

Definition 3 (Frequency Set). The frequency set of
a table with respect to an attribute set is a mapping from each
EC to the total number of tuples (counts) that belong to it.

Definition 4 (K-Anonymity). A table satisfies
k-anonymity with respect to a quasi-identifier set if its fre-
quency set contains counts greater than or equal to k.

Example: For our motivating example, the QID set is
{Gender, Age, Postcode}. Tuples 1 and 2 from Table 1(a)
form an EC with respect to the QID, with frequency count
equal to 2. k-anonymity requires that every tuple occurrence
for a given QID set has a frequency of at least k. For ex-
ample, Table 1(a) does not satisfy 2-anonymity since tuple
No.3 occurs only once.

There exist various metrics to evaluate the quality of a k-
anonymous dataset. A general criterion should be the dis-
tortion of a table. Since we are dealing with hierarchical
structures, in this paper we consider distortion as defined
in [12], based on the weighted hierarchical distance (WHD)
metric. Assuming each hierarchy level has a weight, the
WHD between two levels is the fraction of the weights of
the levels between them to the sum of all levels’ weights.
According to the definition of [12], the distortion of a gener-
alized tuple is the sum of the WHD values of all attributes
belonging to its QID set and the distortion of a table is the
sum of the distortions of all tuples belonging to that table.

1.2 Necessary Notation
Our data spawn the d-dimensional space. Each dimension

i is organized along Li hierarchy levels: Hi1, Hi2, . . . , HiLi ,
with Hi1 being the special ALL (∗) value. We assume that
our database comprises of fact-table tuples of the form:

〈tupleID,D11 . . . D1L1 , . . . , Dd1 . . . DdLd , fact1, . . . , factk〉,
where Dij , 1 ≤ i ≤ d and 1 ≤ j ≤ Li is the value of the jth

level of the ith dimension of this tuple and factl, 0 ≤ l ≤ k
are the numerical facts that correspond to it (we assume that
the numeric values correspond to the most detailed level of
the hierarchies). Our goal is to insert, index and update this
data so that it constantly remains k-anonymous, for values
of k according to the applications’ requirements.

Definition 5 (Level Ordering). We define that a hi-
erarchy level Hix, 1 ≤ x ≤ Li lies above (below) Hiy, 1 ≤
y ≤ Li and denote it as Hix < Hiy (Hix > Hiy) iff x ≤ y
(x ≥ y), i.e., if Hix corresponds to a less (more) detailed
level than Hiy.

Definition 6 (Level Combination Ordering).
A level combination C = 〈c1, c2, . . . , cd〉, where each element
ci can be a valid hierarchy level of the ith dimension (includ-
ing the special ∗ value): ci = Hiy, 1 ≤ y ≤ Li, lies above
(below) a level combination C′ = 〈c′1, c′2, . . . , c′d〉, denoted
C ≺ C′ (C � C′) iff ci < c′i (ci > c′i), ∀1 ≤ i ≤ d.

Example: For the data of our motivating example,
city<suburb, 〈gender, interval, city〉 ≺ 〈gender, value,
suburb〉, while 〈gender, interval, city〉 � 〈∗, interval,
state〉.

Property 1. If a table T satisfies k-anonymity with re-
spect to a level combination C, then it satisfies k-anonymity
∀C′, where C′ ≺ C.

Property 2. If a table T does not satisfy k-anonymity
with respect to a level combination C, nor does it satisfy
k-anonymity ∀C′, where C′ � C.

Example: The data of our motivating example is 2-anony-
mous with respect to 〈gender, interval, city〉. Therefore,
the data is also 2-anonymous with respect to 〈∗, interval,
state〉. On the contrary, since 〈gender, value, city〉 does
not ensure 2-anonymity, nor does 〈gender, value, suburb〉.

1.3 Assumptions
We assume that there exist private channels between the

nodes participating in the system. By exchanging messages
through these channels, the system nodes attempt to jointly
k-anonymize their data. Moreover, we do not consider the
existence of malicious nodes among the participating ones:
Peers follow the protocol without trying to derive extra in-
formation in order to violate privacy.

2. THE SYSTEM
KANIS is a system that efficiently preserves the k-ano-

nymity property for different multidimensional, hierarchy-
annotated datasets in the face of continuous updates. The
system initially chooses a level of hierarchy for each dimen-
sion and indexes tuples according to that default level com-
bination, called pivot P = 〈p1, p2, . . . , pd〉 where each pivot
element pi can be a valid hierarchy level of the ith dimen-
sion (including the special ∗ value). Each tuple receives an
ID that equals the hashed value of the attribute combina-
tion corresponding to P . The DHT then assigns each tuple
to the node with ID numerically closest to its ID. Inserted
tuples are internally stored in a hierarchy-preserving man-
ner (tree-like form). As data are shared this way among



Gender Age Postcode
∗ ∗ ∗
↑ ↑ ↑

gender interval state

↑ ↑
value region

↑
city

↑
suburb

Figure 1: Concept hierarchies
for Gender, Age and Postcode.

Table 1: (a) Raw table and (b) its 2-anonymized version through
the use of hierarchies

No. Gender Age Postcode Problem
1 male middle 4350 Flu
2 male middle 4350 Ulcer
3 male middle 4351 Ulcer
4 female old 4353 Flu
5 female old 4353 Ulcer

No. Gender Age Postcode Problem
1 male middle 435* Flu
2 male middle 435* Ulcer
3 male middle 435* Ulcer
4 female old 435* Flu
5 female old 435* Ulcer
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Figure 2: KANIS system for the motivating example

the overlay nodes, coordination is thus required in order to
decide a switch to a more or less general level combination.

We note that our system focuses on global recoding, which
usually over-generalizes a table, resulting in more informa-
tion loss than local recoding. However, global recoding as-
sures that all values of an attribute belong to the same do-
main. This is very important for data mining and statistical
analysis, as most such tools assume domain consistency.

2.1 Insertion
Before the data are initially inserted to the system, we

assume the fact table undergoes global recoding centrally
(e.g., using Incognito [10]) and the appropriate P is selected
so that the dataset is k-anonymous. The data are parsed
tuple by tuple, hashed according to the selected P and in-
serted to the corresponding network nodes. Inserted tuples
are internally stored in a hierarchy-preserving manner: The
data of Table 1(b) would be stored as seen in Figure 2, with
P being equal to 〈gender, interval, city〉2. Since there
exist 2 distinct value combinations for pivot, two different
trees are created and stored in the corresponding overlay
nodes after the insertion process is over. Note that only the
values above the pivot level (the yellow area) are available
for user queries, in order to ensure k-anonymity.

2.2 Updates
Updates refer to the insertion of new tuples, since for most

analytics applications tuples are commonly considered as
read-only. Given that P is known to all nodes participating
in the overlay, hashing the newly inserted tuple according to
it and storing the new item is trivial. However, k-anonymity
must be preserved at all times while maintaining data as
useful as possible.

On one hand, new tuples might break the k-anonymity
constraint of existing data. Suppose that a tuple 〈female,
middle, 4352, Flu〉 is inserted in our k-anonymous dis-
tributed system. Since P is equal to 〈gender, interval,
city〉, a new tree will be created, as shown in Figure 3.
However, this new tuple is unique for the QID set and thus
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The most detailed level of the Age hierarchy is not depicted for

simplicity reasons.

jeopardizes the privacy of the individual it refers to. In this
case, a new global P must be selected in order to generalize
the data and ensure k-anonymity.

On the other hand, new tuples that arrive and load the
existing trees with new values might result in an over-gener-
alized dataset with high distortion. If tuple 〈male, middle,

4351, Flu〉 is inserted, we observe that drilling down one
level in the Postcode hierarchy preserves k-anonymity and
significantly decreases data distortion (see Figure 4).

Both cases require the reindexing of the system’s data ac-
cording to a new P . Our system supports near real-time
updates of the distributed data by dynamically adjusting
its indexing to the incoming tuples without assuming any
prior knowledge, solely relying on locally maintained infor-
mation. By shifting to a different P we aim at guaranteeing
k-anonymity while causing the least possible distortion.

Every time a new tuple or a batch of new tuples is in-
serted to the system, the receiving nodes check the modified
trees. Note here that each tree corresponds to an EC. If
the number of tuples belonging to a tree t (the count of the
EC), denoted Countt, is less than k, then the k-anonymity
constraint is violated and the rollup anonymization strategy
must be followed. If, on the other hand, Countt > 2 ·k then
the drilldown anonymization strategy further investigates
whether a P with less distortion could be chosen.
Rollup Anonymization During this procedure, the node

where the privacy breach has occurred must select an alter-
native global P in order to ensure k-anonymity. To do so,
the node requires information from the rest of the network
nodes. To that end, it floods a CollectStats message over
the network, which contains the values of all hierarchy lev-
els above pivot. Upon reception, each node collates these
values with each of its trees and calculates the frequency set
of all possible ECs that lie above P . This frequency set is
returned to the initiator.

With this process we aim to find all possible ECs that can
be merged with the non-anonymized one in order to result
in an EC with size of at least k. Since the new P will always
be a generalization of the old one, the already anonymized
ECs will remain anonymized after the reindexing.

After collecting all the node statistics, the initiator chooses
among the possible rollup level combinations the one, Pnew,
that will result in an EC of k or more tuples and will cause
the minimum distortion, performing the necessary calcula-
tions locally. A reindexing operation is then initiated with
Pnew (see section 2.3).

Drilldown Anonymization This procedure is performed
in order to check if there exists a level combination that pre-
serves k-anonymity while reducing distortion. It is divided
in two phases, the local and the global one. During the local
phase, for the specific tree t where Countt > 2 · k the node
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Figure 3: The insertion of 〈female, middle, 4352,

Flu〉 causes a rollup operation.

calculates the frequency set for all possible level combina-
tions that lie below P . Pcand is the set of level combinations
that result in ECs with Countt > k. If the set is empty,
the process stops. Otherwise, the global phase begins with
Pcand being flooded to all network nodes. Upon reception,
each node n checks for each level combination of Pcand if
the resulting ECs are k-anonymous and sends back those
that satisfy this constraint (Pcand,n). After collecting all the
answers, the initiator calculates the intersection of the re-
turned sets

⋂N
i=1 Pcand,n and chooses the level combination

Pnew with the minimum distortion. A reindexing operation
is then initiated with Pnew.

There is an open issue related to the continuous publishing
of updated data. Since the same data might be anonymized
differently in different releases, the anonymity of an indi-
vidual may be compromised when cross-examining multiple
releases over time. Dealing with such inferences is part of
our future work. We just note that generally, depending on
the scenario and the assumed knowledge of the attacker, a
variety of strategies can be applied [16, 7]. For example,
in the case of global recoding, if the attacker has no tem-
poral background knowledge then a k-anonymity breach is
avoided.

2.3 Reindexing
The initiating node floods a Reindex message to force all

nodes to change their pivot. Each node that receives this
message traverses its tuples, finds all the values of the level
combination that will constitute the new reference point and
rehashes them one by one, sending the tuples to the cor-
responding nodes. Assuming that the size of the dataset
|D| � N2, N being the size of the network, the preferred
method to perform this is to send at most N − 1 messages
per node, grouping the tuples by recipient. After the node
completes the procedure, it erases all its data.

3. EXPERIMENTAL RESULTS
Our proposed method has been developed using a heav-

ily modified version of the FreePastry simulator [6], although
any DHT implementation could be used as a substrate. The
default number of nodes used is 16, although experiments
have been conducted with up to 128 nodes. Incognito [10],
the most popular global recoding method, has been imple-
mented as well for direct comparison. For the initial evalua-
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Figure 4: The insertion of 〈male, middle, 4351, Flu〉
causes a drilldown operation.

Table 2: Description of the datasets
Adult APB

Attribute Values Levels Attribute Values Levels
age 74 5

work class 7 3 customer 900 3
education 16 5

marital status 7 4 product 9000 7
occupation 14 5

race 5 3 channel 9 2
sex 2 2

native country 41 4 time 18 4

tion of our prototype we measure the quality of our method
as well as the cost of the process in terms of time, messages
and bandwidth in various settings.

For our experiments we utilize the adult dataset of the
UCIrvine Machine Learning Repository [5], which has be-
come the de facto benchmark for k-anonymization. Records
with unknown values have been eliminated, resulting in a
dataset of 45k tuples (denoted as Adult). To prove the scal-
ability of our system, we have also utilized datasets produced
by the APB-1 benchmark generator [1] (denoted as APB),
which simulates a realistic business situation. More specifi-
cally, using the APB benchmark generator we produce three
4-d datasets A, B and C with densities 0.1, 0.5 and 1 and
sizes 1M, 6M and 12M respectively. The characteristics of
both datasets are presented in Table 2.

3.1 Varying the Size of the Update Batch
In this set of experiments, KANIS and Incognito initially

contain the first 5k tuples of the Adult dataset, k-anonymized.
Next, we continuously pose batches of updates with sizes
varying from 1k to 10k tuples to both of them and record
their behavior. For Incognito, we assume that it maintains
the initial domain generalizations (the ones that arise from
the processing of the initial table of 5k tuples), as long as
k-anonymity is preserved, at the risk of potentially keeping
the table over-generalized. The quality of both anonymi-
zation methods is evaluated using the distortion metric, as
defined in Section 1.1.

Table 3 presents measurements for various k values, as-
suming that the QID set contains all the available dimen-
sions (|QID |= 8). The communication cost of KANIS is es-
timated through the number of reindexings performed through-
out the simulations, the number of messages required and
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Table 3: Results for various sizes of continuous up-
date batches and various k values (Adult dataset)

upd KANIS distortion
size #ReInd msg/node BW deviation

k
=

5

1k 1 5.3 1.6M 2%
5k 1 5.1 1.7M 1%
10k 1 5.1 1.7M 1%

k
=

1
0 1k 2 9.8 2.6M 4%

5k 2 9.8 3.3M 4%
10k 2 9.8 4.5M 4%

k
=

1
5 1k 2 9.8 2.5M 3%

5k 2 9.8 3.1M 3%
10k 2 9.8 4.4M 3%

the size of the relocated data. The quality of the anonymized
dataset is captured by the maximum % difference in distor-
tion between a resulting k-anonymized table and the optimal
k-anonymized table, namely the one that would have been
created, had it been anonymized by Incognito from scratch.
We term this value deviation and the optimal case baseline.

We observe that our method manages to maintain the pri-
vacy of the continuously growing dataset while keeping dis-
tortions close to the baseline ones (less than 4% deviation).
KANIS achieves this online, with less than 2 reindexing pro-
cedures and a communication cost in messages per node and
bandwidth certainly affordable by current systems. For the
smallest k value we observe that the communication cost as
well as the distortion deviation are almost half the respec-
tive measures for k=10 and k=15. This is natural, since
smaller k values translate to a more relaxed privacy policy.

In Figure 5 we plot the distortion deviation with respect
to the baseline case throughout the experiment, as update
batches of 1k tuples arrive at the system. This deviation is
attributed to the fact that drilldown anonymization, to min-
imize communication costs and utilize as much local (rather
than global) knowledge as possible, considers only the P
combinations that strictly lie below the current P . The de-
viation remains less than 5% regardless of the value of k and
demonstrates a steady behavior (with only minor fluctua-
tions) despite the continuous insertion of updates. Exploring
ways to enable reindexings to all possible P combinations is
part of our future work.

Figure 6 presents the gain in distortion compared to Incog-
nito, achieved by KANIS by virtue of its drilldown anonymi-
zation method, which effectively monitors the number of tu-
ples belonging to each stored tree and adaptively reindexes
its contents if a P resulting in less distortion is discovered.
As updates arrive at the system the gain grows, reaching
over 10% for the highest k values. This is natural, since the
addition of tuples increases the counts for the existing ECs,
thus increasing the possibility of finding new ECs with less

distortion that conform to the k constraint.
Finally, Figure 7 plots the average time needed per rein-

dexing operation in order to keep the dataset 10-anonymized
for update batches of 5k tuples and for various QID set sizes.
In this graph results for the APB datasets are added as well,
but in their case the QID parameter cannot exceed 4 (4-d
dataset). Since it is a simulation-based experiment, time is
represented by simulation time-ticks. The increase in the
number of the QID attributes complicates both the deci-
sion and the reindexing process and results in an increase
in time per operation. Yet, the increase is not linear, since
KANIS takes advantage of all of its resources, which share
the processing. Indeed, each participating node handles the
reindexing of the part of the dataset it hosts, parallelizing
the procedure to a great extent. Moreover, the cost of the
reindexing operation rises with the dataset size, due to the
relocation of the data. Again, thanks to the parallelization,
the increase is not directly proportional: While APB-B con-
sists of 5 times more tuples than APB-A, its reindexing lasts
only 2.6 times longer.

3.2 Scaling the Number of Tuples
In this set of experiments we aim to evaluate the perfor-

mance as well as the communication cost of our system with
an increasing dataset size. To that end, we have used the
largest of our generated APB datasets (APB-C). To an ini-
tial k-anonymized table of 1M tuples we pose batches of 1M
updates. Figure 8 shows the gain in distortion for various k
values. Besides affirming the previous findings, that the gain
in distortion rises with the addition of new data, we prove
that our system is capable of handling increasing dataset
sizes achieving more than 20% of quality improvement com-
pared to the centralized algorithm. It is worth noting that,
in this set of experiments, the distortion deviation is 0 dur-
ing the biggest part of them, with a maximum value of 3%
reached only under the most strict policy (k=1000).

3.3 Scaling the Number of Nodes
Finally, we evaluate the horizontal scalability of our method

by varying the number of participating nodes from 16 to
128. We believe this to be a more than adequate number
for our target application. Adding more nodes on one hand
increases its ability to handle large volumes of data, but on
the other hand imposes bigger communication costs. Utiliz-
ing the two largest APB datasets (6–12M tuples) we plot the
communication cost of the reindexing process with various
network sizes (see Figure 9).

As expected, the average number of messages required to
perform a reindexing operation increases with the increase in
network nodes, as flooding becomes more costly. However,
this number is scattered over the network nodes, resulting
in a decreasing average load per node. Apart from that,
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we have observed that KANIS manages to maintain steady
gains in distortion regardless of the network size, performing
the necessary reindexings.

4. RELATED WORK
The fist works to study k-anonymization were those by

Samarati and Sweeney [18, 17], who proposed mechanisms
to protect privacy using the ideas of suppression and gen-
eralization. Suppression removes some attribute values ore
even the whole tuple from the table. Generalization, the
most popular anonymization mechanism, is achieved by re-
placing an exact QID value with a more general one, e.g.,
an integer value can be substituted by a range.

A common taxonomy for generalization algorithms divides
them to global and local recoding methods. Global recoding
generalizes a table at the domain level, mapping all tuples
of a QID value to the same EC [10, 11]. Incognito [10] ex-
haustively discovers the minimal full-domain generalizations
of a large database table. Local recoding generalizes a table
at cell levels, resulting in tuples with the same QID being
mapped to different ECs [13, 19].

All the above methods deal with the anonymization of one
centralized database and do not consider data distributed
over multiple locations. The work in [9] attempts to pro-
pose a distributed k-anonymity algorithm but for vertically
partitioned data. The works of Zhong et al [20, 21] consider
horizontally distributed data, but focus on k-anonymization
by suppression only. To the best of our knowledge, this work
is the first one to concern anonymization of data horizontally
partitioned and distributed among multiple network nodes
through recoding.

5. CONCLUSIONS
In this paper we proposed KANIS, a system that pre-

serves the anonymity of fully distributed data under con-
tinuous updates employing an adaptive scheme that adjusts
the level of hierarchy generalization according to the privacy
constrains. This is achieved in an online manner, through
efficient rollup and drilldown operations, while minimizing
data distortion with just a small communication overhead.
An initial evaluation of our prototype shows that KANIS
manages to preserve k-anonymity while improving the data
quality up to 22% compared to a popular centralized global
recoding algorithm. It achieves a near-optimal distortion
regardless of the network or dataset size, with a communi-
cation overhead scattered among the participating nodes.
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