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Abstract

Future high-throughput Grids may integrate millions or
even billions of processing and data storage nodes. Ser-
vices provided by the underlying Grid infrastructure may
have to be able to scale to capacities not even imaginable
today. In this paper we concentrate on one of the core com-
ponents of the Data Grid architecture - the Replica Location
Service - and evaluate a redesign of the system based on a
structured peer-to-peer network overlay. We argue that the
architecture of the currently most widespread solution for
file replica location on the Grid, is biased towards high-
performance deployments and can not scale to the future
needs of a global Grid. Structured peer-to-peer systems can
provide the same functionality, while being much more man-
ageable, scalable and fault-tolerant. However, they are only
capable of storing read-only data. To this end, we propose
a revised protocol for Distributed Hash Tables that allows
data to be changed in a distributed and scalable fashion.
Results from a prototype implementation of the system sug-
gest that Grids can truly benefit from the scalability and
fault-tolerance properties of such peer-to-peer algorithms.

1 Introduction

The Grid is a wide-area, large-scale distributed comput-
ing system, in which remotely located, disjoint and diverse
processing and data storage facilities are integrated under
a common service-oriented software architecture [11, 12].
A critical component of this infrastructure, commonly re-
ferred to as Grid “middleware”, is the data management
layer. Pioneering Grid efforts [14, 27] were early faced with
the problem of managing extremely large-scale datasets - in
the order of petabytes - shared among broad and heteroge-
neous end user communities. It was essential to design a
system architecture capable of meeting these advanced re-
quirements in the context of the Grid paradigm. The pro-
posed Data Grid architecture [6] allows the distributed stor-

age and management of a large set of shared data resources,
by defining a set of basic data services interacting with one
another in order to expose well known, file-like APIs and
semantics to end user applications and other higher-level
Grid layers.

One of the core building blocks of the Data Grid archi-
tecture is the Replica Location Service. The Grid environ-
ment may require that data is to be scattered globally due
to individual site storage limits, but also remain equally ac-
cessible from all participating computing elements. In such
cases, it is common to use local caching to reduce the net-
work latencies that would normally add up as a constant
overhead of remote data access operations. In Grid ter-
minology, local copies of read-only remote files are called
“replicas” [24], while applications running on the Grid re-
quest such local file instances through specialized Grid data
management services [17]. Data replicas help in improving
the performance of applications that require to frequently
access remotely placed information. By replicating data
closer to the application, the overall access latency is much
shorter and the aggregate network usage is reduced. More-
over, through replica-aware algorithms, data movement ser-
vices can exploit multiple replicas to boost transfer through-
put and data recovery tools can reproduce lost original data
from their corresponding replicated instances.

Replica Location Service implementations have evolved
significantly over the past years. The initial design of a cen-
tralized RLS was swiftly put aside in favor of a distributed
approach [23]. The most widespread solution currently de-
ployed on the Grid, namely the Giggle Framework [5], fol-
lows a multi-tier hierarchical structure, distributing data and
queries over global (Grid or VO-wide) and local, site-wide
RLS instances. Giggle is currently an integral component
of the Globus Toolkit [10] middleware distribution. Never-
theless, all implementations followed so far are optimized
for “high-performance” operational environments. Current
Grid deployments reside mainly in the scientific area, where
hardware crashes and network blackouts are rare exceptions
and may be sustained by redundant equipment or special



backup systems. However, in future global-scale, “high-
throughput” Grids, services like the RLS may have to ad-
dress these issues. We believe that in order to scale the Grid
to these numbers, there is a need to delegate the execution
of some of its core services to the edges of its infrastructure.
Therefore, service redesigns may benefit from concepts and
algorithms used by peer-to-peer overlay networks. Peer-to-
peer systems can scale without application and environment
specific fine-tuning to billions of simultaneous participants,
while their potential grows as more peers join in.

The next section of this paper includes some comments
on Giggle’s design limitations, while in the following sec-
tions, we concentrate on the observation that a special cat-
egory of peer-to-peer systems, which are tailored for data
lookups in a distributed collection of key-value tuples, can
effectively address all needs of a truly scale-proof and fault-
tolerant RLS infrastructure. However, structured peer-to-
peer networks or Distributed Hash Tables are only capable
of storing read-only information. To this end, we analyze
the complications associated with supporting update oper-
ations in DHTs and propose an algorithm to enable inher-
ent mutable data storage and management in the peer-to-
peer network level. In addition, we present how our al-
gorithm can be incorporated into a simple DHT protocol,
discuss on the method and evaluate its merits, based on per-
formance results from an early implementation. This paper
is concluded with references to related work in the area and
thoughts on future work in the same direction.

2 Limitations of the Giggle Framework

As most other preceding RLS designs, the Giggle (GIGa-
scale Global Location Engine) Framework constructs a uni-
form filename namespace of unique per VO identifiers (log-
ical filenames - LFNs) and manages the mappings of these
identifiers to physical locations of files (physical filenames
- PFNs). LFNs are used by the applications to locate data,
while PFNs, which are used by the RLS and other Data Grid
services, are structured similar to a URL, describing the ac-
cess protocol, the site and the path in the site directory struc-
ture for a given replica.

In order to distribute the replica location data through-
out the Grid, Giggle makes use of two main components,
the local replica catalogs (LRCs) and the replica location
indices (RLIs). RLIs help in finding which catalogs hold
the replica file lists for a given LFN, while LRCs maintain
the actual replica location information (LFN to PFN map-
pings). To meet varying operational requirements, multi-
ple RLIs may be deployed in parallel, providing optional
coarse-grain load-balancing and fail-over features to the
replica location infrastructure. A standard deployment sce-
nario may include running one LRC per site and a multitude
of VO-wide RLIs in a tree-like structure. Each LRC may be

linked to multiple RLIs and vice versa. The exact form of
the catalog and index hierarchy can be controlled through
the definition of a number of deployment parameters. Nev-
ertheless, changes in any LFN’s replicas, will all be con-
centrated at the LRCs responsible for storing the particular
mappings. Specific catalogs may get overloaded when very
popular LFNs require frequent updates of their associated
PFN lists.

RLI

RLI RLI RLI

LRC LRC LRC

Replica Location Indices

Local Replica Catalogs

LRC

Figure 1. Giggle deployment example

LRCs are required to refresh RLIs, in order to inform
them on the latest mapping updates and to prevent them
from deleting old mappings because of timeouts. As the
update mechanism has to be as efficient as possible, LRCs
use soft-state update protocols to inform RLIs of changes.
Either full or incremental, updates are asynchronous, so
when an add or delete operation occurs, it is not immedi-
ately propagated to the appropriate index. Moreover, soft
updates can be very demanding on the size of the data in-
volved. To reduce the overhead of such transactions, they
are compressed using Bloom filters - a lossy compression
scheme. Asynchronous updates and lossy compression of
data, may result in clients getting false positive answers.
Although the relaxed consistency requirements set by Gig-
gle’s designers allow false positives, we believe that the pur-
suit of scalability has led Giggle to employ complex mech-
anisms to update data which may in turn limit the system’s
efficiency on very large networks.

There is also an option to partition mappings among
global servers, by defining an LFN namespace segmen-
tation function. Data partitioning can be used to limit
the amount of changes that need to be communicated be-
tween LRCs and RLIs, but it has to be manually config-
ured. If the RLS has huge data sets to handle and storage
requirements change, the participating nodes must manu-
ally adapt to the new situation by specifying a new distri-
bution scheme. In general, Giggle’s parameters cannot be
dynamically changed.

According to the experimental analysis of a prototype
implementation [7], compression of the updates induces
performance overheads when the filter is initialized and
every time a number of hash functions need to be calculated
for a filename. In order to reduce the performance loss, the



relational database backend is not used when compression
is enabled. Instead, there is a need for a customized in-
memory data structure and the Giggle code has to support
two different methods for the same function. The code be-
comes more complicated and the logical and organizational
advantages of a database backend are lost. On the other
hand, although the database backend offers easy modeling
and deployment of catalogs and indices, it requires non-
trivial fine tuning (e.g. disabling database flush in MySQL
or forcing periodic vacuums in PostgreSQL). When data-
base products used are third-party, these modifications may
prove even harder to implement. Moreover, the catalogs
and indices cannot automatically handle a new addition or
deletion of a participating catalog or index. Although the
designers have envisioned a membership management ser-
vice that will allow the system to deal with unplanned LRC
and RLI joins and failures, the current static configuration
implies that every time a new entity is to be added in the
network the whole service may have to be reconfigured.

The number of parameters that have to be tuned in or-
der to deploy and use the RLS, make Giggle difficult to
deploy and manage. Moreover, we believe that the distri-
bution approach used may reach its limits, when the num-
ber of logical to physical filename mappings or the number
of catalogs and indices increase in several orders of magni-
tude. There are currently no performance results of a very
large RLS system serving millions or billions of mappings,
so there is no practical way to plead for this hypothesis.
Nevertheless, we propose that a Replica Location Service
for high-throughput Grid deployments, can be implemented
with the help of an already scalable, fault-tolerant and self-
configurable peer-to-peer network.

3 Using a peer-to-peer system as the basis of
a scalable RLS

Peer-to-peer networks represent a large class of distrib-
uted systems that focus on the construction of a scalable
and fault-tolerant overlay of interconnected peers. In peer-
to-peer terminology, the terms network and overlay refer to
the mesh of virtual links created between the physical peers
or nodes of the system. The latter can practically be appli-
cations, running on actual machines attached to a common
lower-level communication infrastructure, like the Internet.
By abstracting the underlying network into a higher-level
overlay, peers can “encode” application specific semantics
in their corresponding links. In general, there are algorithms
that can exploit the overlay design in order to provide opti-
mized resource location services.

Recent literature in the field distinguishes peer-to-peer
systems into two basic categories, depending on the struc-
ture of the overlay network produced when nodes join the
system. Unstructured systems like Gnutella leave the peers

free to participate in any part of the overlay and the connec-
tion graph formed resembles that of a power-law network
[22], while structured systems or Distributed Hash Tables
(DHTs), such as Kademlia [19], Chord [25] and Tapestry
[26], impose a specific virtual structure which accommo-
dates peers in particular slots as they join the network. Each
family of systems has its own advantages and disadvantages
over the other: In structured systems the lookup procedure
is highly deterministic (will almost always return a result if
there is such a value in the network) and any operation will
almost certainly succeed in a predefined number of steps
(usually equal to the logarithm of the number of total par-
ticipating nodes). On the other hand, unstructured systems,
have the ability to handle free-text search queries in very
few steps [1], although the procedure is probabilistic and
usually requires flooding the network with messages.

An appealing fact is that structured peer-to-peer systems
can provide the required mechanisms in order to construct a
truly scalable RLS. DHTs try at least to solve the same basic
problem as Giggle: Given a unique global identifier, locate
in a distributed and scalable way the resource in question
[2]. Actually, the idea of using a peer-to-peer lookup sys-
tem for locating file replicas in a Grid environment is not
new. Ian Foster, Adriana Iamnitchi et al. in [9, 15], recog-
nize that the peer-to-peer and Grid research communities
have much in common and even more to learn one from an-
other. Furthermore, the authors of the Giggle system credit
the work being done in peer-to-peer location discovery sys-
tems as most relevant to theirs.

3.1 Design

In the context of the Data Grid architecture, the main
concern of the RLS is how to locate the physical file names
(replica identifiers) that may be available, when knowing
the Logical File Name of a resource. LFNs are provided
by metadata servers [8] or are hidden in application specific
semantics. A DHT can be used to support all needs of a
Replica Location Service, if its inherent key-value pairs are
correlated to LFN to PFN mappings. In such a system, keys
will not be generated by computing the SHA1 hash of the
value (as is the common case with DHTs). Keys should
correspond to the hash of the logical filename (LFN) of the
resource. LFN hashes can then be used as identifiers by the
overlay network to route data operations to corresponding
PFN lists. A value for a key will actually be a data structure
- a list containing the physical locations of replicas (PFNs)
for a given LFN. Also, as LFNs are unique per VO iden-
tifiers, a single peer-to-peer overlay network must be de-
ployed per VO (a single identifier space). Grid services and
end-user applications will access LFN to PFN mappings,
by interacting with applications participating in the peer-to-
peer overlay, through predefined APIs.



The main problem associated with the usage of a Dis-
tributed Hash Table to store file replica locations, lies in
the disability of the peer-to-peer network to handle mutable
data. DHTs may provide get and set operations, but there
is no straightforward way to update data. When a key-value
pair is stored into a DHT it is destined to remain in the over-
lay unchanged until it expires. These systems are tuned to
scale to very large network sizes and adapt to random node
behavior. Tracing the nodes responsible for storing a spe-
cific data item would require complex and demanding algo-
rithms, so there is no method to determine the exact loca-
tion(s) of a key-value tuple in any given moment (this is also
a prerequisite for peer-to-peer network security [13]). Nev-
ertheless, a data update operation is absolutely necessary
for serving the needs of the Data Grid’s RLS, as PFN map-
pings for a given LFN could change frequently and there
should be a way for propagating the modifications through-
out the network as soon as possible.

The ideal solution would be to enable mutable data stor-
age at the level of each individual key-value pair stored at
the peer-to-peer system. We argue that this could be done
with a very simple addition to the basic DHT algorithm.
DHTs may distribute the data in numerous peers of the sys-
tem, but the only important nodes for every key-value pair
are the ones returned by the lookup procedure. If we change
the value in these nodes there is a very high probability that
upon subsequent queries for the same key, at least one of
the updated ones will be contacted. Of course this is not
enough, as the network is not a static entity and the nodes
responsible for a specific key-value pair storage change over
time. DHTs support dynamic node arrivals and departures,
so storage relationships between data items and nodes may
be altered over time in an unpredictable manner.

As a consequence, every lookup should always query all
nodes responsible for a specific key-value pair, compare the
results based on some predefined version vector (indicating
the latest update of the value) and propagate the changes
to the nodes it has found responsible for storage but not
yet up-to-date with the latest value. This requires that the
algorithm for locating data items will not stop when the
first value is returned, but continue until all available ver-
sions of the pair are present at the initiator. The querying
node will then decide which version to keep and send cor-
responding store messages back to the peers that seem to
hold older or invalid values. Updates could therefore be im-
plemented through the predefined set operation, as version
checking would also be done by nodes receiving store com-
mands. The latter should check their local storage reposito-
ries for an already-present identifier, and if there is a con-
flict, keep the latest version of the two values in hand. A
simple data versioning scheme could be accomplished by
using timestamp indicators along every key-value pair.

Figure 2. Moving closer towards a key in a
Kademlia overlay

3.2 Enabling mutable data storage

With the above design in mind, we have tweaked the
Kademlia protocol to support mutable data storage. While
these changes could have been applied to any DHT (like
Chord or others), we picked Kademlia as it has a sim-
pler routing table structure and uses a consistent algorithm
throughout the lookup procedure. Kademlia relies on a
XOR operation between identifiers to find which nodes are
responsible for storing a specific key-value pair. As in any
DHT, Kademlia’s peers and data items have identifiers from
the same address space. XOR is used as the distance func-
tion, to indicate which are the closest nodes to a given key.
The XOR induced topology is easier to understand if the ad-
dress space is represented as a binary tree. Nodes and key
value pairs are treated as the leaves of the structure, while
each node has more routing information for near subtrees
and stores items closer to its corresponding leaf (Figure 6).

According to the Kademlia protocol, three RPCs
take place in any data storage or retrieval operation:
FIND NODE, FIND VALUE and STORE. To store a key-
value pair, a node will first need to find the closest nodes
to the key. Starting with a list of closest nodes from
its own routing table, it will send parallel asynchronous
FIND NODE commands to the top α nodes of the list.
Nodes receiving a FIND NODE RPC should reply with a
list of at most κ closest peers to the given ID. The request-
ing node will collect the results, merge them in the list, sort
by distance from the key, and repeat the process. When all
κ closest nodes have replied, the key-value pair is copied
to the corresponding peers via STORE RPCs. The system-
wide parameter κ, also specifies the number of copies main-
tained for each data item and controls the size of routing ta-
bles in peers. To retrieve a value from the system, a node
will initiate a similar query loop, using FIND VALUE RPCs
instead of FIND NODEs. FIND VALUE requests return ei-



ther a value from the remote node’s local repository, or - if
no such value is present - a list of at most κ nodes close to
the key. In the later case, this information helps the query-
ing node dig deeper into the network, progressing closer to-
wards a node responsible for storing the value at the next
step. The procedure stops immediately when a value is
returned, or when the κ closest peers have replied and no
value is found.

Our modified lookup algorithm works similar to the
FIND NODE loop, originally used for storing values in the
network. We first find all closest nodes to the requested key-
value pair, through FIND NODE RPCs, and then send them
FIND VALUE messages. The querying node will check all
values returned, find the most recent version and notify the
nodes having stale copies of the change. Of course, if a
peer replies to the FIND VALUE RPC with a list of nodes it
is marked as not up to date. When the top κ nodes have re-
turned a result (either a value or a list of nodes), we send the
appropriate STORE RPCs. Nodes receiving a STORE com-
mand should replace their local copy of the key-value pair
with its updated version. Storing a new key in the system is
done exactly in the same way, with the only difference that
the latest version of the data item is provided by the user,
so there is no need to send FIND VALUE RPCs to the clos-
est nodes of a key (version checking is done by the remote
peers). Moreover, deleting a value equals to updating it to
zero length. Deleted data will eventually be removed from
the system when it expires.

3.3 Discussion

In the original Kademlia protocol, a lookup operation
will normally require at most log(N) hops through a net-
work of N peers. If an “early” FIND VALUE RPC re-
turns a result, there is no need to continue with the indirect
FIND NODE loop. On the other hand, the changes we pro-
pose merge the lookup and store operations into a common
two-step procedure: Find the closest nodes of the given key
and propagate the updated value. Cached items are ignored
and lookups will continue until finding all nodes responsi-
ble for storing the requested data item. The disadvantage
is that it is always necessary to follow at least log(N) hops
through the overlay to discover an identifier’s closest peers.

Nevertheless, the lookup procedure is also used to prop-
agate updated values to the network. So the extra cost in
messages is equal to the “price” needed by the infrastruc-
ture to support mutable data. There certainly can not be a
way to support such a major change in the peer-to-peer sys-
tem without paying some cost, either in terms of bytes ex-
changed or in terms of increased latency required for a result
(two benchmarking metrics proposed as a common denom-
inator in evaluating peer-to-peer systems [18]). Moreover,
the aforementioned drawback in lookup performance could

even be accounted as a feature: DHT nodes generally ex-
ploit messages exchanged in favor of updating their routing
tables. The more the messages, the more fault-tolerant the
system gets.

The changes we propose for Kademlia can easily be
adopted by other DHTs as well. There is a small number of
changes required and most (if not all of them) should hap-
pen in the storage and retrieval functions of the protocol.
There was no need to change the way Kademlia handles
the node join procedure or routing table refreshes. Also, as
values are automatically republished on every usage, they
is no need to explicitly redistribute key-value pairs every
hour. Data items are reseeded only when an hour passes
since they were last part of a store or lookup operation (ef-
fectively propagating updates). Nevertheless, there is still
a requirement that all tuples expire 24 hours after their last
modification. Among other advantages refreshing provides,
it is the only way of completely clearing up the ID space of
deleted values.

4 Implementation

We implemented the full Kademlia protocol plus our ad-
ditions in a very lightweight C program. In the core of
the implementation lies a custom, asynchronous message
handler that forwards incoming UDP packets to a state ma-
chine, while outgoing messages are sent directly to the net-
work. Except from the connectionless stream socket, used
for communicating with other peers, the message handler
also manages local TCP connections that are used by client
programs. The program runs as a standard UNIX-like dae-
mon. Client applications willing to retrieve data from the
network or store key-value pairs in the overlay, first connect
to the daemon through a TCP socket and then issue the ap-
propriate get or set operations. All items are stored in the
local filesystem and the total requirements on memory and
processing capacity are minimal.

For our tests we used a cluster of eight SMP nodes, each
running multiple peer instances. Another application would
generate insert, update and select commands and propagate
them to nodes in the peer-to-peer network.

4.1 Performance in a static network

To get some insight on the scalability properties of the
underlying DHT, we first measured the mean time needed
for the system to complete each type of operation for differ-
ent amounts of key-value pairs and DHT peers. Kademlia’s
parameters were set to α=3 and κ=4, as the network size
was limited to a few hundred nodes.

Figures 3(a), 3(b) and 3(c) show that the implementa-
tion takes less than 2 milliseconds to complete a select op-
eration and an average of 2.5 milliseconds to complete an



insert operation in a network of 512 nodes with up to 8K
key-value pairs stored in the system. The overall system
seems to remain scalable, although there is an evident prob-
lem with disk latency if a specific node stores more than 8K
key-value pairs as individual files in the filesystem. This is
the reason behind the performance degradation of the four
node scenario as the amount of mappings increases. As κ
has been set to 4, all data items are present at all 4 nodes.
When the network has 8K key-value pairs, each node has a
copy of all 8K mappings.

Nevertheless, systems larger than 4 nodes behave very
well, since the mean time to complete queries does not ex-
perience large deviations as the number data items doubles
in size. Also, the graphs representing inserts and updates are
almost identical. The reason is that both operations are han-
dled in the same way by the protocol. The only functional
difference is that inserts are done in an empty overlay, while
updates are done after the inserts, so the version checking
code has data to evaluate.

4.2 Performance in a dynamic network

Our second goal was to measure the performance of the
overlay under high levels of churn (random participant joins
and failures), even in a scaled-down scenario. Using the
implementation prototype, we constructed a network of 256
peers, storing a total of 2048 key-value pairs, for each of the
following experiments. Node and data identifiers were 32
bits long and Kademlia’s concurrency and replication para-
meters were set to α=3 and κ=4 respectively. A small value
of κ assures that whatever the distribution of node identi-
fiers, routing tables will always hold a subset of the total
population of nodes. Also it guarantees that values will not
be over-replicated in this relatively small network.

Each experiment involved node arrivals and departures,
as long as item lookups and updates, during a one hour
timeframe. Corresponding startup, shutdown, get and set
commands were generated randomly according to a Pois-
son distribution, and then issued in parallel to the nodes. We
started by setting the item update and lookup rates to 1024
operations

hour , while doubling the node arrival and departure
rates. Initially 64 new nodes were generated per hour and
64 nodes

hour failed. The arrival and departure rates were kept
equal so that the network would neither grow nor shrink.
Figure 4 shows the average query completion time during
a one minute rolling timeframe for four different node join
and fail rates. In the simulation environment there is prac-
tically no communication latency between peers. Neverthe-
less, timeouts were set to 4 seconds.

4.2.1 Handling timeouts

As expected, increasing the number of node failures, caused
the total time needed for the completion of each query to
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Figure 4. Time to complete queries while in-
creasing node arrival and departure rates

scale up. High levels of churn, result in stale routing ta-
ble entries, so nodes send messages to nonexistent peers
and are forced to wait for timeouts before they can con-
tinue. Kademlia nodes try to circumvent stale peers in get
operations, as they take α parallel paths to reach the key in
question. It is most likely that at least one of these paths
will reach a cached pair, while other paths may be blocked,
waiting for replies to timeout. Our protocol additions re-
quire that caching is disabled, especially for networks where
key-value pairs are frequently updated.
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Figure 5. Dynamically adapting α to changes
in the lookup list

Instead, we try to lower query completion times by mak-
ing nodes dynamically adapt their query paths as other
peers reply. In the first phase of the get operation, where
FIND NODE requests are issued, nodes are instructed to
constantly wait for a maximum of α peers to reply from the
closest κ. If a reply changes the κ closest node candidates,
the requesting node may in turn send more than one com-
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Figure 3. Mean time to complete operations in a static network

mands, thus having more than α requests inflight, in con-
trast to α in total as proposed by Kademlia. This optimiza-
tion yields slightly better results in total query completion
times, in expense to a small increase in the number of mes-
sages. Figure 5 shows a comparison of the two algorithms
in a network handling 256 node arrivals and departures per
hour.

4.2.2 Handling lookup failures

High levels of churn also lead to increasing lookup failures.
Experiment results shown in Table 1 suggest that as the rate
of node arrivals and departures doubles, the lookup failure
rate grows almost exponentially. In order to prove that the
extra messaging cost by our protocol additions can be ex-
ploited in favor of overall network fault-tolerance, we reran
the worst case scenario (512 node joins and 512 node fail-
ures per hour) several times, while doubling the lookup rate
from 1024 up to 16384 operations

hour . It is evident from the
results presented in Table 2, that even in a network with
very unreliable peers, a high lookup rate can cause the cor-
responding failure rate to drop to values less than 1%. This
owes to the fact that lookup operations are responsible for
propagating key-value pairs to a continuously changing set
of closest nodes, while helping peers find and remove stale
entries from their routing tables.

Table 1. Increasing node node arrival and de-
parture rates

nodes
hour

64 128 256 512

Failures 0 2 32 154

Rate 0.00% 0.19% 3.12% 15.03%

The initial high failure rate is also dependent on the way
Kademlia manages routing tables. When a node learns of
a new peer, it may send corresponding values for storage,
but it is not necessary that it will update its routing table.

For small values of κ and networks of this size, routing ta-
bles may already be full of other active nodes. As a result,
lookups may fail to find the new closest peers to a key. A
dominant percentage of lookup failures in our experiments
were caused by nodes not being able to identify the latest
closest peers of a value. Also, Kademlia’s routing tables are
designed to favor nodes that stay longer in the network, but
the random departure scheme currently used by our simula-
tion environment does not exploit this feature.

Table 2. Increasing the lookup rate
operations

hour
1024 2048 4096 8192 16384

Failures 162 106 172 126 84

131 91 137 80 58

163 63 145 116 106

143 61 130 120 87

Rate 15.82% 5.17% 4.19% 1.53% 0.51%

12.79% 4.44% 3.34% 0.97% 0.35%

15.91% 3.07% 3.54% 1.41% 0.64%

13.96% 2.97% 3.17% 1.46% 0.53%

4.3 Results and future work

The prototype implementation behaves very well in
terms of scalability and fault-tolerance, which has allowed
us to plan future experiments with much larger network
sizes and data set populations. We will be focusing on eval-
uating various aspects of the system, while varying node
network characteristics. Nevertheless, scaling the experi-
ments from a few hundred nodes to orders of magnitude
upwards is not straightforward, as it requires special con-
siderations regarding the limits of the underlying simulation
hardware and software [3].

In future versions of the implementation, we intend on
evaluating embedded, lightweight database engines like
SQLite for the local storage requirements of each node.



We also plan on adding support for Kademlia’s accelerated
lookups and integrate interfaces to the advanced security
services provided by Grid middleware distributions.

A question left open is how to incorporate a caching
scheme along our algorithm for distributed mutable data
management. If we enable caches there has to be a way
of using them without sacrificing the integrity of key-value
pairs throughout the network. We are currently investigat-
ing various cache management schemes that could fit in
as a solution to this problem. There is a need to invali-
date caches throughout the network on every data item up-
date. On the other hand, we could just enable caches with
small timeouts, especially for replica location environments
where lookups are much more frequent than stores and strict
data consistency is not a must.

5 Related work

A solution to the problem of storing mutable data in a
DHT is presented by the designers of Ivy [20]. Ivy is a dis-
tributed filesystem functioning on top of a structured peer-
to-peer network. All operations on files and their contents
are stored in a distributed hash table, arranged in a linked
list of changes - a log. Each participant of the filesystem
knows the identifier of the last data item he put in the sys-
tem, while each data item contains a list of operations done
on the file system and a pointer to the next key-value pair
(previous set of changes). By traversing the log from the
most recent to the oldest item, the filesystem can “remem-
ber” the latest state of each file and directory for a given
participant. Nevertheless, there may be a need to go through
hundreds of key-value lookups in the DHT in order to find
the latest aggregate value, which would incur an intolerable
cost in terms of network messages. Even more, Ivy’s log
records never get deleted as they are needed for recovery in
case of network failures and the cost for managing the sta-
tus of which entries should be deleted could be enormous.
An analogous design is followed by OceanStore [16], which
implements a file management layer on top of an underlying
Tapestry network. The update model used is very similar to
the one utilized by Ivy, although updates are handled at the
file - not the participant - level. If any of these systems was
to be used as the basis for an RLS, there would be a need
to maintain an external mutable directory of the latest keys
inserted in the peer-to-peer overlay.

Peer-to-peer overlay networks have already been incor-
porated in other RLS designs. In a recent paper [4], Min
Cai et al., have replaced the global indices of Giggle with
a Chord network, producing a variant of Giggle called P-
RLS. A Chord topology can tolerate random node joins and
leaves, but does not provide data fault-tolerance by default.
The authors choose to replicate data in the successor set of
each root node (the node responsible for storage of a partic-
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Figure 6. Storing a mutable log of read-only
key-value pairs in a DHT

ular mapping), effectively reproducing Kademlia’s behavior
of replicating data according to the replication parameter κ.
In order to update a specific key-value pair, the new value is
inserted as usual, by finding the root node and replacing the
corresponding value stored there and at all nodes in its suc-
cessor set. While there is a great resemblance to this design
and the one we propose, there is no support for updating
key-value pairs directly in the peer-to-peer protocol layer. It
is an open question how the P-RLS design would cope with
highly transient nodes. Frequent joins and departures in the
Chord layer would require nodes continuously exchanging
key-value pairs in order to keep the network balanced and
the replicas of a particular mapping in the correct succes-
sors. Our design deals with this problem, as the routing
tables inside the nodes are immune to participants that stay
in the network for a very short amount of time. Moreover,
our protocol additions to support mutable data storage are
not dependent on node behavior; the integrity of updated
data is established only by relevant data operations.

In another variant of an RLS implementation using a
peer-to-peer network [21], all replica location information
is organized in an unstructured overlay and all nodes grad-
ually store all mappings in a compressed form. This way
each node can locally serve a query without forwarding re-
quests. Nevertheless, the amount of data (compressed or
not) that has to be updated throughout the network each
time, can grow to such a large extent, that the scalability
properties of the peer-to-peer overlay are lost.

6 Conclusion

We believe that in future high-throughput Grid deploy-
ments, core services - such as the RLS component of the
Data Grid architecture - should be distributed to as many
resources as possible. To this end, services must use distrib-
ution algorithms with unique scalability and fault-tolerance
properties - assets already available by peer-to-peer archi-
tectures. In this paper, we argue that a truly scalable and
fault-tolerant Replica Location Service can be based on a
structured peer-to-peer design (a Distributed Hash Table).

Nevertheless, a read-only key-value pair storage facility



is not adequate to store continuously changing replica loca-
tion mappings. The basic DHT algorithm has to be modified
in some way to enable mutable data storage. We have im-
plemented a prototype of a distributed hash table that will
allow stored data to be updated through the basic set com-
mand. Our protocol additions that enable this new operation
are very simple and could easily be applied to any analo-
gous peer-to-peer system. We are currently trying to make
the initial implementation even more efficient and plan to
evaluate its performance in large scale experiments involv-
ing close to real-life situations.

The performance of the RLS depends on the effective-
ness of its underlying resource lookup algorithm. We do
not expect our DHT-based design to outperform the cur-
rently deployed system - Giggle, which is based on an hi-
erarchical distribution model. In the contrary, we expect
that high-performance Grid deployments will continue to
benefit from Giggle’s architecture. However, we doubt that
Giggle will be able to scale, in order to cover the needs of
an extremely large Grid. In contrast to Giggle and other
peer-to-peer RLS designs, we envision a service that does
not require the use of specialized servers for locating repli-
cas. We believe that a lightweight DHT-enabled RLS peer
can run at multiple machines per site or even every machine
of the Grid having a public IP address, as the deployment
and management requirements are minimal. Furthermore,
the architecture of the network will ensure that as more
and more nodes join, the replica location infrastructure will
scale in storage capacity without significant losses in lookup
performance.
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