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Abstract— The global inter-networking infrastructure that has  unique features to distributed files that must be handled by
become essential for contemporary day-to-day computing &  emerging filesystem designs.

communication tasks, has also enabled the deployment of szal o . .
large-scale data sharing overlays. Communities collabotively The recognition of this issue is not new, although relevant

aggregate and distribute file and storage resources eitherni proposed architectures that tackle the problem are stijkels

the controlled environment of the Grid, or hidden under the  ¢)assified into the research domain. The same vision is also
anonymity cloak created by peer-to-peer protocols. Both dagns ..

exhibit unique properties and characteristics: Peer-to-ger aigo- reflected by the joint effort of researchers around the world
rithms address the formation of vast, heterogeneous and dymic  that have designed and deployed the Grid — a service-odente

sharing networks, while Grids focus on policy enforcement ad i ; i i
accounting features. A distributed data management facity facility that allows the integration of remotely locatedsjdint

that will assimilate respective practices has been envisied by and diverse processing and storage resources [1], [2]. The
numerous related research initiatives, especially when #re is Grid may soon provide the generic mechanisms required for
a need to incorporate disperse resources in large pools, Wiout —hiqyitous computational and storage consolidation cals
relinquishing participants of their respective rights. In this paper, - . :

we describe the Distributed File Services (DFS) architecte — a  t0 the paradigm the World Wide Web has become for content
peer-to-peer service overlay, which allows distinct admiistrative  viewing. Furthermore, a major attempt in the same direction

entities to form arbitrary file distribution relationships . Each ; i _tO- -
DFS peer can be uniquely authenticated and maintains direct is represented by the work done in peer-to-peer overlay net

control of its own namespace and storage assets by definingWorks, although _using a_compl_et_ely different grchitectalmel
corresponding authorization directives and policies. Thepeer- approach regarding sharing policies. In the Grid nomenaiat
to-peer nature of the system allows for scalable deploymerdnd  fjje services are provided by the Data Grid layer, a set ofchasi
resource allocation, either in a stand-alone scenario or irthe . . . . . !

Grid context. Moreover, we introduce the notion of a “web of Services interacting with one another in order to allow the
files”, as a non-hierarchical, global-scale namespace ofstiibuted  distributed storage and management of a large set of shared

data collections and elaborate on a prototype implementabin 515 resources and to expose well known APIs to end user
that features novel semantics for integrating our architetural

principles and concepts into the operating system level. applications and other higher-level Grid software layed} [
[4]. The Grid design requires that such services are highly-

available and statically located, while users of resounsast
be authenticated and authorized in order to enforce refevan
In the past decades, research and practice in the worldpofiicies and accounting. On the other hand, peer-to-peer fil
computing systems has greatly transformed, moving deepbaring deployments focus on scalable and fault-tolergt fi
and deeper into the new academic and industrial arena ttransfer services in an environment where all participahése
was born of the Internet phenomenon. One of the greatdfs same capabilities and responsibilities, while there is
challenges of this new era is to eventuate in an agreemstrbng requirement for anonymity. In a peer-to-peer filaisiga
of the protocols and methods that will allow global-scaleystem there can be no authority and no well-known, static
sharing and pooling of resources over the common netwodsource. While these two approaches seem contradictory,
infrastructure. For instance, consider distributed datamage- there is a growing trend of merging corresponding algorghm
ment and in particular file handling. Files, representing ofi into new designs that retain the best characteristics dfi bot
the most intuitive and powerful of the traditional compgtin worlds. Peer-to-peer techniques pose unique propertis th
concepts, live on in a planetary-wide scale. Once storbdve been recognized by many to be necessary in order to
inside a single administrative domain, they now have to Isape next-generation Grid deployments [5], [6], [7].
accessed, managed, shared, located, replicated ancetraxsf Our proposed Distributed File Services architecture (DFS)
across domains using distributed operations that musieaddrenables distributed access and management of files andatora
issues like authentication, authorization, scalabilitgl dault- resources in a peer-to-peer environment while retainidlg fu
tolerance. Operating systems may have been designed lémal control and allowing accountability of corresporglirc-
operation in a networked environment since the early dayts, ions. In essence, we introduce a peer-to-peer serviested
their design does not anticipate any of the modern challengeachitecture for distributed file operations that allowstas
of an active presence in the Internet. In the global reposiid synthesize the diversity, scale and dynamicity of a typical
resources, data is volatile and communication is insecude gpeer-to-peer network with the control and accounting fesstu
unpredictable. Cooperative data sharing environmentesmp required by the Grid. DFS allows users of the system to

I. INTRODUCTION



administer file metadata and actual data as two distindiesti each peer may define its own sharing policy.

independently of each other, although combined into a singl « Peers should be able to allocate and use resources they

overlay. Moreover, we present a novel distributed filesyste do not physically possess. This can be achieved either by

design where there is no global hierarchical namespace, but pooling of resources or sharing, as long as the process

a graph of names that can have unlimited traditional “root” complies with the previous requirements.

points and views — what we call a “web of files”. One of « All actions should be accountable. Every transaction in

the greatest challenges has been to integrate all concépts o the network should be traceable to a named peer, resource

the DFS design in an implementation that would integrate or combination of two.

seamlessly with already deployed Grid services and present The network’s capacity should grow as more nodes join it,

a straight-forward interface to the user. in typical peer-to-peer fashion. Moreover, well connected
In the next section we discuss the specific requirements and well resourced nodes should be exploited when

and scenarios that have formed this project, before pracged needed and if they allow so.

to describe the principles and architecture of our design. | \oreover, the Grid environment we target has imposed

subsequent sections we present details of the prototypeimppecial requirements, including:

mentation and its specific features, as well as represeatati

related work in the field. « Shared namespaces: In addition to sharing file contents,

participants should be able to agree on common collec-
Il. DESIGN tions or clusters of files. This is traditionally achieved
A. Requirements and challenges through distributed filesystem designs where numerous

The design and implementation of our distributed file PEETS agree on a common namespace of da_ta. We should
services framework has in large part been driven by the allow equal functionality, additionally supporting the-ad

requirements set by the European Union’s Grid4All research goc crea]tclon anld_ rranagement of r_m:tlple such views.
project [8]. Grid4All's main objective is to produce the rec * upport for multiple storfégel typdes.d SI wedpfrllesume_co-
essary infrastructure that will enable domestic users,- non operation among new and already deployed file services,

profit organisations such as schools, and small enterprises \(/jve should péov!deemgchanlsms for_merging ,eX'St'Qg
to participate in a massive resource sharing network over ata ex_por_te via GridrTP, FTP, HTTP, etc. into the
the Internet. The vision of the project is a “democratic” same distributed namespace and allow seamless access

Grid where inexpensive resources are cooperatively pooled ?ObJeCt? d|srega_rcillr;$ the trar?slger protocol_ or dlo.catf[(l) n.
in a dynamic and scalable fashion. Even small-scale users upport for special file types: Data contained in files

that do not have the necessary computing and storage assets may _h?ve spe_C|aI s;mangcs, and as so requwec;)rlsupport
to participate in current Grid deployments should be able special operations beyond access, move, copy, delete, etc.

to contribute their resources and in turn be able to utilize For example log files may provide special mechanisms to

the unified substrate. All services implemented in such an ap_pen_;j_ entries or files storing expe_nmenta_ll Iresultsdfrom
environment face great challenges regarding securitypatip scientific measurements may contain special metadata.
for multiple administrative and management authorities, og  architecture

demand resource allocation, heterogeneity and faultgotz. ] ] ] )
Most relevant issues have already been addressed in thBefore delving deeper into the details of the proposed archi

context of peer-to-peer data sharing and resource locatf§fture, we discuss one of its most prominent charactsisti
networks — most, except administration and authority, whidl he separation of storage resources into two distinctiestit
contradict the purpose the majority of such systems haves The filesystem resourceefers to a namespace and file
been designed for. In classic peer-to-peer overlay designs metadata, as in typical computer filesystems. It should
participants agree on the protocol to be used, which in turn be noted that only the file description and information
enforces the policy of resource allocation and usage. Peers content belongs to the resource — storage space for data
donate their storage resources to a common pool which is then blocks belongs to the storage resource, defined next.
managed by the network itself. Of course, one can refuse tos The storage resourceefers to the actual storage of con-
implement the complete protocol semantics or process-selec tent. Filesystem resources are used to associate data with
tive commands in an arbitrary way, although the correspundi filesystem peers and policies, whereas storage resources
results of such behavior are ambiguous. On the other haed, th are consumed to store file data and make it available for
design proposed in this paper takes into account a peezdb-p retrieval over the network. Storage is allocateddmta
environment where: block units.

« Peers have direct control of their resources. Each peefThus, we define two distinct but overlapping peer-to-peer
may administer its own storage and file objects and peretworks: One for namespace aggregation and unification and
form operations on them independently of their locatioane for collaboratively consolidating storage assets.s&he
and usage in the network. overlays collectively form theDFS Network— a system

« Peers have control of how their resources are used. Eabht complies with the principles and design of tb&S
peer may authorize specific peers to certain actions. Alsachitecture Metadata and data separation allows the same



data to be available under many names and moved in thetion corresponds to a generic mechanism for pooling raw
namespace without actually being transferred. Moreover,storage from multiple providers or using some other peer’s
offers unlimited flexibility in managing and defining namesnamespace in order to remotely register file names and meta-
paces, file types and special file attributes. Current Grid- midata. In the DFS network some users may not posses resources
dleware implementations follow a similar approach, althfou at all and some may relinquish their rights and only choose
using static, centralized services for metadata index8jg [to offer resources to the infrastructure.
Such services are responsible for maintaining files’ “lagic
names”, which may in turn correspond to replicas located
numerous physical sites (actual data) [10]. Our approdeinof Both namespace and storage resources are identi-
augmented flexibility when managing namespaces and stordggdl in the DFS Architecture using the URI model:
though it can be used in conjunction with current deploymmentf s: / / user : servi ce/ pat h. Thedf s: // prefix stands

The DFS Architecture is based on the following principledor the entire protocol family within the DFS network, while
. . - . the ser vi ce directive denotes that the URI points to either
« DFS Usersare uniquely identified by a cryptographlcﬁles stem (namespace) or raw storage resources and encodes

certificate. With this certificate, they can be nameq ystem P g

authenticated, authorized, accounted, attributed aorgcti he she cific protocol that should be used to access thg corre-

associated Wi',[h a resourc’e entity or \;vith each other Tﬁgondmgpat h. The latter may equally represent a file in t_he

" respective user’'s namespace or a storage handle that iynique

term user throughout .thls text ref_ers to a DFS L_Jsgr. '{dentifies a data block of arbitrary size. By utilizing URBES
« Any resource and policy concerning resources is 'dens'bftware components can transparently incorporate éstail
fied by and submitted to the unconditioraalthority of a P P y P

X protocols, as well as name and manage external resources
unique DFS User.

Any action upon a resource can be ultimately attributegIong internal, architecture-specific objects,
L] . . .pe
to a single DFS User. This facilitates accountability Offi Namespace entities identified by URIs may refer to regular

) L les, directories or any special file type. Each such entry
actions and simplifies resource access control. : : g .
. ; o . is managed by the associated user’s filesystem service and
« Any resource manipulating action is equivalent tieans-

action between the DFS User performing the action anﬁored along correspondmg metadata. In the case OT regular
iles, data appears to the filesystem resource as péitting

the aUthO.”tY of the resource. T_he former must acault® +he block contents of the file. This is dictated by the
the permission of the authority in order to successfullg. inle of explicit fi t d st .
complete the action. rinciple of explicit filesystem and storage resource setjr.
Other metadata encode the policy according to which both the
In contrast to current peer-to-peer designs, where peeilsject and file data can be manipulated. Note, however, that
correspond to physical users or machines, we define a pgermission from the filesystem is not in principle capable to
in the DFS Architecture as an autonomous, cryptograplyicaiontrol a user’s access to the actual data, as storage Iselong
certified authority, that has complete control over a spesét to a different resource. Users define separate access rights
of namespace and/or storage resources. We then providew@n owning namespaces and providing storage. Also, while
mechanisms for resource management and sharing betwfeBystem rights refer to the usual set of operations likere
authorities, always in the context of conformity to relevarwrite, copy, move, etc., storage resource privileges can be
policies and authentication schemes that are enforced dufined on a different set of actions, like allocation, which
the authority providing the resource. In practice, assgmimay take into account size quotas and storage types.
each DFS User corresponds to a single public/private keyAnother prominent feature of the DFS Architecture is that
pair, resource control may be achieved through directives filesystems can link to each other, much like web pages do.
an access list. A physical user may choose to create amthile each user will normally maintain an hierarchical name
administer multiple certificates — one DFS User for eagsace, resembling a traditional filesystem structure, trexail
group of resources exposed using different sharing at&#u pattern of the file namespace throughout the DFS network may
Respectively, the physical user accessing a resource sy pge arbitrary — a “web of files”. Namespace manipulation is
as any DFS User under his control in order to requestaghieved through a special type of file, thetalink Metalinks
transaction. The result will depend on the permissions anshy point to any DFS filesystem URI. In this way, users may
policies defined by the resource’s authority in respect ® thorm simple or more complex filesystems in a peer-to-peer
identifier of the consumer DFS User. fashion, symbolically including foreign hierarchies irtteeir
According to the principles, a DFS User (a cryptographimwn. Resources may be combined in shared namespaces, or a
key) mayown, provide and consumeaesources in any combi- single file may appear under numerous paths. Note that in the
nation. We use the terrprovide to emphasize the delegationlatter case, only one of those paths remainsatthoritative
of management from one user to another, without sacrificipgth for the resource. This is by definition the path whose
ownership. Users owning resources have direct control oueser also owns the file. When using metalinks, it is evident
respective access rights and may choose which namesphe¢ each user can define access rights only to the namespace
and storage assets can be accessed. Resources may alsmdber his control. The user controlling the authoritatiathp
allocated and then managed by another user. The allocatinay define the privileges in respect to the file’s metadata,

fnr Resource naming and structure



@. S structure. Thus, the actual network location of each user's
A A service can be found by querying the index for the respective

Sl ~
\ y _ public key. Similarly, DFS URIs translate to network paths
b (ter espstom nks) and resources can be accessed by contacting the right ketwor
U —_— . . .
N % Storage pointers _endpomt using the URI-enC(_)gIed protocol. The DFS-wide user
PN (flesystem-to-storage) index also allows peer mobility.
T tw. . . . .
hiad NN _ Storage links The aforementioned requirements dictate a mechanism for
i (inter-storage peering) . . - H
------------- > discovering globally available resources and exploithegfact

that some nodes may offer more resources than others. Both
challenges can be addressed through the thoughtful deploy-
while users linking to the file may only define access righf@e”t of special DFS Users — specigl administrative_ entities
to corresponding links. that only p_ool and_offer resource pomters and may incorpo-
Metalinks in the DFS network can be considered as &dte specific algorithms for load-balancing or load-skegwin
extension of the traditional filesystems’ symbolic linksew through provisioned resources. Similarly, special peeay m
ertheless, the resulting effect is unique. Traditiodiatributed P€ deployed to implement a variety of higher level services,
file systemsfocus on the management of a single, g|0b§|uch as indexing and search engines according to the web
namespace over a distributed group of participants. Tisis aParadigm.
implies and imposes a single administrative domain — that pf Grid integration

the shared namespace, that can be managed either by a sinqlﬁ the Grid context, the authenticity of each physical user i

e”t'tY' or colIch;:er_ by a:l gﬁougpgimbﬁrs using ﬁomplﬁéertified by a local certification authority. Moreover, niple
consistency mechanisms. In the rchitecture, the aq- hysical users may form arbitrary virtual groups, referred

peer-to-peer nature of participants is also extended inéo o as “Virtual Organizations”. Resources are safeguarded b

filesystem strr]l_JctureHEa(.:h DFS dUser q rr;anageas ?jnd. (?O”tré’iﬁhorization directives and respective policies [11]le DFS
namespace hierarchies in owned or gegate administraliy ivecture relies on similar principles, though therenis
domains, while inter-filesystem connections allow for abgllo

structure. This represents a novel conceptual approach
distributed filesystem designs. Intuitively, it ispeer-to-peer

filesystemand not a distributed filesystem formed by peers. , yyitative entities” into DFS Users. This is to be haddig

gtlgéa%e seLwces arel structuredl in-a srllmllar way. Whi distinct architectural component — amthentication plug-
a ser has complete control over the storage own?ﬁi’that in the case of the Grid may be deployed side-by-side

there can be USers that _do not ‘?Of‘t”b“t_e’ but rat_her P 8|organizational certification authorities. A variety afreent
storage from selective providers. This is achieved thrdindts Grid VO management utilities may need to become DFS-

n the stﬁrage services layer. E(?Ch user nlw_a;(ntglns a storag e in order to transparently administer dynamic changes
service that may manage owned storage, linked storage Of, 34|ations between Grid users and groups and DFS Users.
combination of both. Filesystem metalinks and links at the Furthermore, if automatically created DFS Users own or

storage level may encode peering agreements on reso%ﬁﬁ/ide resources, there is a need to initialize, deploy and

provision and allocation. publish corresponding physical network services over the

An example scenario is depicted in Figure 1. CircRs ,oq o This must also be handled by a new breed of VO
throughF represent DFS Users that manage namespace ﬁ%nagement tools. In summary, when a group of users need
sources (triangles), storage (cylinders) or a combinatibn ’

both. Note that the filesystem structure of useis extended
to include part ofB’s files, either with the metalink froni
to B, or via C. File data for each user may be stored locally
or remotely. UselC does not own storage and is the only one .

that does not run a storage service. However, what appears to in the DFS n_etwork. . . .

be local storage space for other users may be an aggregatioh Run and reglster_correspondmg DFS services, if the VO
of both local resources and remote offerings. UBgrovides is to own or provide resources.

part of his storage t&, which in turn offers part of it t>. D Additionally, special VO-representative DFS Users may
also uses’s local storage. be deployed in order to pool their members’ resources by

hosting metalinks and storage links to respective filesyste
and storage objects. Individual users may choose to delegat

The use of DFS-specific URIs for peer and resource idegelective permissions to group members, as they retain full
tification necessitates employment of a Global DFS Uskrcal administrative control over their resources. Meiedi
Index for aquiring network access to resources. Physiaaispefrom the VO User’s filesystem may not be authoritative in
participating in the DFS system cooperatively store user-tregard to content, but may pose as “official” pointers to the
service mappings via a Distributed Hash Table or similgroup’s set of collective assets.

Fig. 1. Simple example of DFS User interconnections

distinction between physical users and virtual groups.-Con
sf&ering the deployment of a DFS network in the context
of the Grid, there is a need to map corresponding “Grid

to form a new VO, they must:

« Create a new DFS User (a new set of cryptogaphic keys).
« Record the relationship of the VO with the DFS User so
members of the VO may also be authenticated properly

D. Resource discovery



[1l. | MPLEMENTATION | Applcation \
A. Overall structure ‘

DFS-aware apps

DFS-unaware apps
(management tools)

(current applications)

The implementation of the DFS Architecture is currently ¢
a prototype status. Most of the design has been realizedtas s
ware components that closely resemble distinct mechanis
and functionalities described in the architectural ovemwiThe DFS Peer (component order is demonstrative)
core of our implementation framework is tBd&=S Peerwhich [ cache | [ Protocol Engine oHT | [ Autn
provides the generic protocol handling functions in orde
to implement network communication endpoints. The DF
Peer manages and deploys software modules that implem 4> 40

. ; r ) I e . . — — ‘ Networking ‘
services, depending on the role of the respective user in saL [ pep { } % } %Vi

FUSE Filesystem I ‘

DFS Client Library ‘

‘ Persistent Storage ‘

Storage Backends

DFS network. Such roles include:
« Filesystem resource ownership and provision, handled e D e oo

(unstructured (structured ~ Services
the MetaData DataBase (MDDBjomponent. DFS Users overan overta)
use their MDDB to host and export namespace structures
to the overlay. Corresponding file name and metadata
entries - including ACLs, pointers to storage facilities, ] . . )
etc. - may be physically stored at the host filesystem or1) Operating system integrationThe DFS Peer's Client
a local SQL database server. Library exposes a high-level API that presents the peer-to-

. Storage resource ownership and provision, handled B§er namespace and storage through traditional POSIX-Iike
the Virtual Block Store (VBSomponent. A VBS peer calls. Add|t|onaIIy,. we have implemented a I_:USE filesystem
manages and exports locally attached raw block storade] that uses this APl and allows “mounting” an MDDB
on behalf of a DFS User. It also handles remote allocatiéherarchy alongside local files in a Linux system. Normal
requests and logically aggregates all the local and/gpphcgtlo_ns can then transparently access the pFS Netwo_rk
distributed storage resources under the respective usd&  file interface regardless of whether those files and thei
disposal. corresponding data is local or remote.

« Resource consumption, througb&S Client Librarythat ~ When viewing DFS through FUSE, metalinks appear as
provides external software the ability to access the DFggular symbolic links, only with special naming semantics
network of resources. The mounted DFS namespace, rooted at the local filesystem

Peer intra-communication is achieved via geneBES path specified at mounting time, includes a specific MDDB's

Messageghat comply to either thé/DDB or VBS protocal hiera_rchy. Nevertheless, it also provides_ access to angr oth
The DFS Message structure suggests a generic layout lfg?l in the DFS Net\_/vork through special paths. A virtual
protocols, based on request/reply verbs and correspondffigCctory. named @ is present in every FUSE directory,
arguments. MDDB and VBS protocols differ in the semantic@1aPling the creation of metalinks via symlinks with the
of associated verbs and the handling mechanisms implecherdfio™m @ UR as their target. Thus clients can navigate freely
in each component. The common message format pernif§oughout the DES network. Request i@ UR! -like paths
peers to ignore protocols or protocol extensions they do rigtywhere in the FUSE filesystem will dereference the URI and
support or even to partially or abstractly parse messages. access it (_j|rectly over the network. L|_keW|se, Io_cgl fileasys

DFS Users materialize in the network as their correspondifi mbolic links can refer to any DFS f_|Ie by prefixing the URI

roles are handled by service components deployed in DE&N the FUSE mountpoint and th@directory. _

Peers. Services, named by URIs which include user identifica The @directory is actually a special case ofvatual file.

tion and protocol description directives, can be locatedthe Virtual files are special files that are not physically stored
global DHT index. Some users may only provide storage, thi§ey are used to access file metadata and unique operations of
appear as a VBS-enabled peer in the network, while othdf§ DFS implementation through the traditional filesysteRi A
may export files, storage and access the network — all throu@}qowded by the FQSE layer). Virtual files are formatted as:

a single DFS Peer hosting all necessary components. Ndte @€ path>@virtual path>. The <base pat h>

a user not owning resources may only use the Client Libragjgnifies the actual (non-virtual) path that the virtual fise
although deploying an MDDB and VBS will result in imposingassomated with. Thevi rt ual pat h> can either be a name
authority to corresponding namespace entries and fleyifmili  (if the virtual file is a plain file), or a whole hierarchy (ingh

Fig. 2. Anatomy of the component-based DFS prototype

the management of remote storage offerings. case the virtual file is a directory). For example, the DFSrUse
_ owning a file is accessible via | e@wner and the visibility
B. Implementation features of virtual files when listing directories can be controlleg b

Specific features of the prototype DFS implementatio/fiting a boolean value in th@i si bl e file in any directory.
sketched out in Figure 2, are discussed in the following 2) Caching and disconnected operatio@FS Peers in-
sections. clude a cache component to temporarily store frequently-



/dfs DFS mount point

accessed remote objects (file metadata and contents). Us

o . ) - e/ Access to global DFS namespace
may also explicitly request that certain files remain cache Contains DFS User owning directory
. . . . @visible Controls virtual file visibility in directory
through the client APl or a virtual file (when using the sample.txt Text file
FUSE filesystem). By exploiting the cache module we alsi [ 327 =fome Doy eeronng sample e
have an initial implementation of a disconnected operatior e/ Access to global DFS namespace
. . @owner Contains DFS User owning directory
component. To support disconnected operations, DFS mbtoc evisible Controls virtual file visibility in directory
mechanisms do not make any assumptions regarding remt sample.rtf Rich-text document
. - . . sample.rtf@owner Contains DFS User owning sample.rtf
peer aVa.||a.b|||ty. Loca”y CaChed a.nd mOdIerd ObJeCtS, eﬁ w sample.rtf@subscribers Contains DFS Users subscribed to sample.rtf
B H R H sL sample.rtf@publish Contacts all subscribers of sample.rtf
as Comm_unl(?atlon me_ssaggs remain in pendlng State unt_ll th samgle.rtf@sotify/ Directory containing notifications for sample.rtf
Synchr0n|zat|on or de||\/ery is acknow|edged_ Also, a [sresit Epublications Notifications received via sample.rtf@publish
. . . modifications Notifications of sample.rtf modifications
storage module allows such objects to survive peer downtim
Offline operations can result in complex file consistenc —

issues. In the prototype, we follow a variant of tbpen-
close consistencgcheme. When a remote file is opened, itsig. 3. Portion of the resulting filesystem structure wheruntimg a DFS

g . ...namespace locally through FUSE
contents can be modified in the cache and are only written P y 9

back_ to_the remote location and become globally visible V_Vh%mponent before being applied to the original files. Metada
the file is closed (or flushed). We also allow users to defing g ,es that cannot be directly mapped to operating system

policy of read-only offline files in order to completely avoidsemantics are stored in a hidden directory calletidb.
synchronization problems. Future work will address remvaSimiIarly, the VBS instance exports the original files' dat

mechanisms in more detail. storage containers named after their corresponding fiesys

3) Publish-subscribe servicesDFS Peers can subscrib&,ih ~ again, storage allocation operations that cannot be
to any object addressable by a URI and be notified asyfirored directly in the filesystem structure, result in the

chronously when events associated with the object 0CCUfsation of arbitrary files in a hiddenvbs directory under
Event notifications can be reliably propagated and their dg;, mountpoint root.

livery is deferred by the online status of a peer. There ame tw 5) Using a DHT for storing data blocksWe have also

kinds of subscriptions to an o_bject. One deIivers_a_noticcmab experimented with a P2P storage backend, which enables
an event that occurred, creating a local evengaiivity logof 4 deployment of special VBS peers that act as proxies
the remote object. The other forwards the very actionsvedei 1, 5 kademlia-based DHT. Each such VBS peer spawns a
by the remote object, enabling a kind of selective statei-Tépk ygemlia instance into the specified overlay and translates
cation by locally executing the same actions on an assatiafg,erations from the VBS protocol, into accesses to content-
object. File replicas, whose consistency is maintaineduil  p5h piocks in the DHT. Peer-to-peer VBS peers allow a group
the action notification mechanism, are caladine files ¢ physical users to form configuration-free, self-managed
The FUSE filesystem implementation provides a full virtual.51aple and fault-tolerant collective storage pooldcalgh

file-pased_ API_ to facilitat_e DFS_ publish-su_bscrib_e Sersjces by design they do not support all VBS operations (for instanc
depicted in Figure 3 (virtual files and directories excé®t 4)ocation requests have no actual effect).
are shown in grey). The filebase pat h>@ubscri bers

lists all current subscribers of the namespace objecbase C-. Future directions
pat h> and can also be used to subscribe for notifica- We are investigating various solutions for managing file
tions, which in turn appear in corresponding virtual files adind data replication and addressing respective consistenc
the <base pat h>@ot i fy/ directory. Writing to<base mechanisms and policies. In the DFS Architecture replicas
pat h>@ubl i sh produces message natifications at all regzan have the form of online files (replication through action
istered subscribers and can be used by the owner of the objeatifications), result from offline, disconnected openasiar
as a communication mechanism. Of course all these files explicitly defined as distributed copies of a file in other
are under the full administrative control of their respesti authoritative domains. Furthermore, we target the implame
authority or delegates. tion of an advanced replica-aware transfer component titlat w
4) Exporting local filesystemsTo ease the deployment ofbe able to take advantage of the availability of multipleiesp
DFS Peers, the prototype includes a mechanism to expegeen transferring the block contents of a file. Analogous
local Linux filesystems to the overlay in a single step. This algorithms and protocols have been deployed in both the Grid
achieved through special MDDB and VBS components thahd peer-to-peer file-sharing contexts [13], [14], [15].
exploit the local filesystem for metadata and data storageAnother design issue that relies on similar implementation
The user specifies authority credentials to a script, which inechanisms is the DFS User’s service availability. By eah
turn starts all necessary services, including a FUSE fitegys ing services at a number of DFS Peers we envision the notion
that is mounted over the original Linux filesystem. The localf a floating DFS User that may selectively or collaboratively
directory must be hidden from the user in order to avoidlways be active in the DFS Network. The current, proof-
consistency issues. Namespace operations, such as regnanaficoncept prototype does not address DFS User availabilit
moving in the hierarchy and so on, pass through the MDDBsues and requires that “important” DFS Users are deployed



on highly-available DFS Peers. In the Grid environment,ighecluster-wide filesystems have similar objectives to peer-t
most services are statically hosted at highly-availatde)tf peer and distributed file sharing services, but mainly focus
tolerant sites, floating DFS Users may not be necessapn different issues: High-performance installations desia
Nevertheless, DFS User availability is critical for deptay single administrative domain. An exception is represeted
DFS in dynamic networks. the Farsite project [25], which resembles xXFS’s peer-tex-pe
design, but does not require central administration antailo
trust. Farsite pools distributed resources into a singigichl
Peer-to-peer networks are generally classified in two bagiesystem.
categories, depending on the structure of the overlay main-Related work includes version 4.1 of the NFS network
tained by participating peerd&nstructureddesigns, like the filesystem, which significantly enhances the traditionalSNF
pioneering Gnutella system, leave the peers free to fomesign towards Internet-wide usage [26]. It supports an im-
arbitrary message routing paths. To reach a resource, epobved security model, where users are identified with gérin
peer will forward requests to his virtual neighbors, pregity of the form “user@domain” and separates data and metadata
flooding the physical infrastructure with messages (atldés allowing them to be stored in different servers. In addition
was the initial approach, in time replaced by more “cleverhultiple data servers can host the same data, enabling the
routing algorithms). Such deployments usually converge tlient to perform parallel transfers. Client sessions, AGInd
a “small-world” network, thus allow reaching any resourcen-demand mounting of remote filesystems further extend the
with high probability and in a very small number of stepsisefulness of NFSv4, however its scalability and flexipilit
[16]. On the other handstructured overlays or Distributed is far behind a truly distributed or peer-to-peer file system
Hash Tables (DHTSs), such as Kademlia [17], impose a specifither relevant features of NFSv4 are aggressive clienticgch
virtual structure which accommodates peers in particdgss and delegation of file serving to clients. Furthermore, we
as they join in. Such overlays are mostly used for key-valshould note CODA — a filesystem designed for user mobility
pair storage, as the lookup procedure is highly deterniinisf27]. Disconnected operation is provided as an extensiom of
and operations complete in a predefined number of stepscaching scheme to handle indefinite write-back time intsrva
proportional to the logarithm of the number of participgtin CODA also performs file “hoarding”, which is the automatic
nodes [18]. According to the DFS Architecture, DFS Peers acaching of specific files that have been listed as criticalafor
actually organized in both structures. A similar peer layisu user. These files are monitored so that fresh copies are slway
described in [19]. The DFS collaboration network resembléscally cached.
an unstructured peer-to-peer design, as resource depseslen An evolutionary step is represented by DHT-based storage
and links can be arbitrary between participating nodes. Howarchitectures. For instance, CFS [28] uses a DHT to store file
ever, a subset of requests follow the overlay of namespate dmfocks and namespace structure, exploiting the peerdo-pe
storage aggregation and distribution. DFS User and resouowerlay much like Frangipani's shared virtual storage. BHT
location is handled by a Kademlia-based DHT maintaindthve been extensively used as storage substrates in nusmerou
by all peers in the DFS universe. Relevant work can alselated designs, as they provide a scalable and faultaiaier
be found in the context of peer-to-peeontent distribution mechanism to store data in a distributed fashion. Neversisel
networks(CDNs) [20], as well as the Freenet censorship-frd@HTs can only abstract a read-only data storage facilityctvh
data distribution overlay [21]. has forced researchers to propose hybrid designs: Pastis is
The DFSacronym usually refers tDistributed File Systems similar to CFS, but uses the notion of modifiable i-node béock
— the software that enables a distributed group of intercof29], Eliot uses centralized metadata servers to index files
nected computers to view and manage a single namespacstofed in a DHT [30], while Oceanstore incorporates an upper
files and their collective storage. Distributed filesystezas layer of servers that coordinate changes to file blocks [31].
be considered as the predecessors of most modern peeMoreover, vy [32], like Oceanstore, stores a sequence of
peer and distributed file sharing services and as such haianges to the filesystem (log) in order to build the latest
provided from early on the necessary tools and mentalifyesystem state from a set of read-only entries. Peer-&v-pe
required to envision contemporary global-scale data bellafilesystems significantly differ from the DFS Architectuss
oration architectures. Most notable examples of initiad- dithey have no control on data placement. As mentioned earlier
tributed filesystem designs include Frangipani [22] and xA®spective policies are imposed by the DHT protocol and
[23]. Frangipani follows a two-layer approach, distindningy not by its peers. Also, all peer-to-peer filesystems, except
between file metadata and actual storage (a shared virtal manage a single, distributed namespace. lvy creates a
disk). The shared storage is the core of Frangipani — eveamespace per user and addresses issues like shared names
metadata servers use it for communication. On the other,hapdces (views), although the corresponding mechanisms are
the authors of XFS describe a server-less network filesystencumbersome as they depend on the read-only nature of the
which nodes cooperate with each other to provide all filesysnderlying DHT.
tem services. Our architecture of distributed intercoteec  Similarly to DFS, in Plan 9 each user has a private view of
metadata and file data servers closely resembles Lustreth@operating system, that is constructed by mountingrarit
modern cluster filesystem [24]. In general, distributed amémote resources to the local hierarchy [33]. ActuallynFas

IV. RELATED WORK



comprised of a whole ecosystem of languages, compilers ai
network protocols, with design goals similar to the Gridis.
such, Plan 9 nodes interoperate only with one other. In the Gr[o]
context, the construction of a single, uniform and hieraah

file namespace has been studied in [34] and [35]. [10]

V. CONCLUSION

Data management in the context of a global-scale neton<1,]
like the Internet, remains one of the most challenging proB-Z]
lems. Constant evolution of ideas and practices has led[ig]
numerous platforms that address different points-of-viadw
the same fundamental issue. Current deployments thatecrgad
and expose a collaborative file space, either use a set of well
administered centralized components or distribute thekwofis)
among anonymous participating entities. The Distributéd F
Services (DFS) architecture represents our effort to combi
both methods into a single system, where distinct admazistr
tive domains can consolidate file namespace and data resoult”!
into a single overlay. DFS preserves each participant’s ful
rights on his respective assets and allows for arbitraryipge
agreements to be encoded into corresponding resource links
The net result is a peer-to-peer platform where peers’astsr
and policies form an unstructured “web-of-files” and ad-hoc
pools of storage space. The DFS prototype implements mostt
the basic design concepts and provides us with a platform for
future work and experimentation. Moreover, it offers featu (21]
like a complete publish-subscribe framework and suppart fo

[16]

disconnected operations. DFS can be seamlessly used[zal/

existing applications, as distributed file semantics aretis,
implementation-specific features can be directly encodéal i (23]
local operating-system file functions. A close study of teda [24]
work reveals that the DFS design is by no means revolution
but a step in the direction of bridging and fusing respective
practices into a design that meets a broader range of thalbve[Es]
requirements. Consequently, DFS offers a novel approach to
file and data distribution and sharing — what we believe cé#Y]

prove beneficial to a multitude of prospective scenarios.
[28]
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