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Abstract— The global inter-networking infrastructure that has
become essential for contemporary day-to-day computing and
communication tasks, has also enabled the deployment of several
large-scale data sharing overlays. Communities collaboratively
aggregate and distribute file and storage resources either in
the controlled environment of the Grid, or hidden under the
anonymity cloak created by peer-to-peer protocols. Both designs
exhibit unique properties and characteristics: Peer-to-peer algo-
rithms address the formation of vast, heterogeneous and dynamic
sharing networks, while Grids focus on policy enforcement and
accounting features. A distributed data management facility
that will assimilate respective practices has been envisioned by
numerous related research initiatives, especially when there is
a need to incorporate disperse resources in large pools, without
relinquishing participants of their respective rights. In this paper,
we describe the Distributed File Services (DFS) architecture — a
peer-to-peer service overlay, which allows distinct administrative
entities to form arbitrary file distribution relationships . Each
DFS peer can be uniquely authenticated and maintains direct
control of its own namespace and storage assets by defining
corresponding authorization directives and policies. Thepeer-
to-peer nature of the system allows for scalable deploymentand
resource allocation, either in a stand-alone scenario or inthe
Grid context. Moreover, we introduce the notion of a “web of
files”, as a non-hierarchical, global-scale namespace of distributed
data collections and elaborate on a prototype implementation
that features novel semantics for integrating our architectural
principles and concepts into the operating system level.

I. I NTRODUCTION

In the past decades, research and practice in the world of
computing systems has greatly transformed, moving deeper
and deeper into the new academic and industrial arena that
was born of the Internet phenomenon. One of the greatest
challenges of this new era is to eventuate in an agreement
of the protocols and methods that will allow global-scale
sharing and pooling of resources over the common network
infrastructure. For instance, consider distributed data manage-
ment and in particular file handling. Files, representing one of
the most intuitive and powerful of the traditional computing
concepts, live on in a planetary-wide scale. Once stored
inside a single administrative domain, they now have to be
accessed, managed, shared, located, replicated and transferred
across domains using distributed operations that must address
issues like authentication, authorization, scalability and fault-
tolerance. Operating systems may have been designed for
operation in a networked environment since the early days, but
their design does not anticipate any of the modern challenges
of an active presence in the Internet. In the global repository of
resources, data is volatile and communication is insecure and
unpredictable. Cooperative data sharing environments impose

unique features to distributed files that must be handled by
emerging filesystem designs.

The recognition of this issue is not new, although relevant
proposed architectures that tackle the problem are still largely
classified into the research domain. The same vision is also
reflected by the joint effort of researchers around the world
that have designed and deployed the Grid — a service-oriented
facility that allows the integration of remotely located, disjoint
and diverse processing and storage resources [1], [2]. The
Grid may soon provide the generic mechanisms required for
ubiquitous computational and storage consolidation, analogous
to the paradigm the World Wide Web has become for content
viewing. Furthermore, a major attempt in the same direction
is represented by the work done in peer-to-peer overlay net-
works, although using a completely different architectureand
approach regarding sharing policies. In the Grid nomenclature,
file services are provided by the Data Grid layer, a set of basic
services interacting with one another in order to allow the
distributed storage and management of a large set of shared
data resources and to expose well known APIs to end user
applications and other higher-level Grid software layers [3],
[4]. The Grid design requires that such services are highly-
available and statically located, while users of resourcesmust
be authenticated and authorized in order to enforce relevant
policies and accounting. On the other hand, peer-to-peer file
sharing deployments focus on scalable and fault-tolerant file
transfer services in an environment where all participantsshare
the same capabilities and responsibilities, while there isa
strong requirement for anonymity. In a peer-to-peer file sharing
system there can be no authority and no well-known, static
resource. While these two approaches seem contradictory,
there is a growing trend of merging corresponding algorithms
into new designs that retain the best characteristics of both
worlds. Peer-to-peer techniques pose unique properties that
have been recognized by many to be necessary in order to
shape next-generation Grid deployments [5], [6], [7].

Our proposed Distributed File Services architecture (DFS)
enables distributed access and management of files and storage
resources in a peer-to-peer environment while retaining full
local control and allowing accountability of corresponding ac-
tions. In essence, we introduce a peer-to-peer service-oriented
architecture for distributed file operations that allows usto
synthesize the diversity, scale and dynamicity of a typical
peer-to-peer network with the control and accounting features
required by the Grid. DFS allows users of the system to



administer file metadata and actual data as two distinct entities,
independently of each other, although combined into a single
overlay. Moreover, we present a novel distributed filesystem
design where there is no global hierarchical namespace, but
a graph of names that can have unlimited traditional “root”
points and views — what we call a “web of files”. One of
the greatest challenges has been to integrate all concepts of
the DFS design in an implementation that would integrate
seamlessly with already deployed Grid services and present
a straight-forward interface to the user.

In the next section we discuss the specific requirements
and scenarios that have formed this project, before proceeding
to describe the principles and architecture of our design. In
subsequent sections we present details of the prototype imple-
mentation and its specific features, as well as representative
related work in the field.

II. D ESIGN

A. Requirements and challenges

The design and implementation of our distributed file
services framework has in large part been driven by the
requirements set by the European Union’s Grid4All research
project [8]. Grid4All’s main objective is to produce the nec-
essary infrastructure that will enable domestic users, non-
profit organisations such as schools, and small enterprises
to participate in a massive resource sharing network over
the Internet. The vision of the project is a “democratic”
Grid where inexpensive resources are cooperatively pooled
in a dynamic and scalable fashion. Even small-scale users
that do not have the necessary computing and storage assets
to participate in current Grid deployments should be able
to contribute their resources and in turn be able to utilize
the unified substrate. All services implemented in such an
environment face great challenges regarding security, support
for multiple administrative and management authorities, on-
demand resource allocation, heterogeneity and fault-tolerance.

Most relevant issues have already been addressed in the
context of peer-to-peer data sharing and resource location
networks — most, except administration and authority, which
contradict the purpose the majority of such systems have
been designed for. In classic peer-to-peer overlay designs,
participants agree on the protocol to be used, which in turn
enforces the policy of resource allocation and usage. Peers
donate their storage resources to a common pool which is then
managed by the network itself. Of course, one can refuse to
implement the complete protocol semantics or process selec-
tive commands in an arbitrary way, although the corresponding
results of such behavior are ambiguous. On the other hand, the
design proposed in this paper takes into account a peer-to-peer
environment where:

• Peers have direct control of their resources. Each peer
may administer its own storage and file objects and per-
form operations on them independently of their location
and usage in the network.

• Peers have control of how their resources are used. Each
peer may authorize specific peers to certain actions. Also

each peer may define its own sharing policy.
• Peers should be able to allocate and use resources they

do not physically possess. This can be achieved either by
pooling of resources or sharing, as long as the process
complies with the previous requirements.

• All actions should be accountable. Every transaction in
the network should be traceable to a named peer, resource
or combination of two.

• The network’s capacity should grow as more nodes join it,
in typical peer-to-peer fashion. Moreover, well connected
and well resourced nodes should be exploited when
needed and if they allow so.

Moreover, the Grid environment we target has imposed
special requirements, including:

• Shared namespaces: In addition to sharing file contents,
participants should be able to agree on common collec-
tions or clusters of files. This is traditionally achieved
through distributed filesystem designs where numerous
peers agree on a common namespace of data. We should
allow equal functionality, additionally supporting the ad-
hoc creation and management of multiple such views.

• Support for multiple storage types: As we presume co-
operation among new and already deployed file services,
we should provide mechanisms for merging existing
data exported via GridFTP, FTP, HTTP, etc. into the
same distributed namespace and allow seamless access
to objects disregarding the transfer protocol or location.

• Support for special file types: Data contained in files
may have special semantics, and as so require or support
special operations beyond access, move, copy, delete, etc.
For example log files may provide special mechanisms to
append entries or files storing experimental results from
scientific measurements may contain special metadata.

B. Architecture

Before delving deeper into the details of the proposed archi-
tecture, we discuss one of its most prominent characteristics:
The separation of storage resources into two distinct entities:

• The filesystem resourcerefers to a namespace and file
metadata, as in typical computer filesystems. It should
be noted that only the file description and information
content belongs to the resource — storage space for data
blocks belongs to the storage resource, defined next.

• The storage resourcerefers to the actual storage of con-
tent. Filesystem resources are used to associate data with
filesystem peers and policies, whereas storage resources
are consumed to store file data and make it available for
retrieval over the network. Storage is allocated indata
block units.

Thus, we define two distinct but overlapping peer-to-peer
networks: One for namespace aggregation and unification and
one for collaboratively consolidating storage assets. These
overlays collectively form theDFS Network — a system
that complies with the principles and design of theDFS
Architecture. Metadata and data separation allows the same



data to be available under many names and moved in the
namespace without actually being transferred. Moreover, it
offers unlimited flexibility in managing and defining names-
paces, file types and special file attributes. Current Grid mid-
dleware implementations follow a similar approach, although
using static, centralized services for metadata indexing [9].
Such services are responsible for maintaining files’ “logical
names”, which may in turn correspond to replicas located in
numerous physical sites (actual data) [10]. Our approach offers
augmented flexibility when managing namespaces and storage,
though it can be used in conjunction with current deployments.

The DFS Architecture is based on the following principles:

• DFS Usersare uniquely identified by a cryptographic
certificate. With this certificate, they can be named,
authenticated, authorized, accounted, attributed an action,
associated with a resource entity or with each other. The
term user throughout this text refers to a DFS User.

• Any resource and policy concerning resources is identi-
fied by and submitted to the unconditionalauthorityof a
unique DFS User.

• Any action upon a resource can be ultimately attributed
to a single DFS User. This facilitates accountability of
actions and simplifies resource access control.

• Any resource manipulating action is equivalent to atrans-
action between the DFS User performing the action and
the authority of the resource. The former must acquire
the permission of the authority in order to successfully
complete the action.

In contrast to current peer-to-peer designs, where peers
correspond to physical users or machines, we define a peer
in the DFS Architecture as an autonomous, cryptographically
certified authority, that has complete control over a specific set
of namespace and/or storage resources. We then provide the
mechanisms for resource management and sharing between
authorities, always in the context of conformity to relevant
policies and authentication schemes that are enforced by
the authority providing the resource. In practice, assuming
each DFS User corresponds to a single public/private key
pair, resource control may be achieved through directives in
an access list. A physical user may choose to create and
administer multiple certificates — one DFS User for each
group of resources exposed using different sharing attributes.
Respectively, the physical user accessing a resource may pose
as any DFS User under his control in order to request a
transaction. The result will depend on the permissions and
policies defined by the resource’s authority in respect to the
identifier of the consumer DFS User.

According to the principles, a DFS User (a cryptographic
key) mayown, provideandconsumeresources in any combi-
nation. We use the termprovide to emphasize the delegation
of management from one user to another, without sacrificing
ownership. Users owning resources have direct control over
respective access rights and may choose which namespace
and storage assets can be accessed. Resources may also be
allocated and then managed by another user. The allocation

action corresponds to a generic mechanism for pooling raw
storage from multiple providers or using some other peer’s
namespace in order to remotely register file names and meta-
data. In the DFS network some users may not posses resources
at all and some may relinquish their rights and only choose
to offer resources to the infrastructure.

C. Resource naming and structure

Both namespace and storage resources are identi-
fied in the DFS Architecture using the URI model:
dfs://user:service/path. Thedfs:// prefix stands
for the entire protocol family within the DFS network, while
the service directive denotes that the URI points to either
filesystem (namespace) or raw storage resources and encodes
the specific protocol that should be used to access the corre-
spondingpath. The latter may equally represent a file in the
respective user’s namespace or a storage handle that uniquely
identifies a data block of arbitrary size. By utilizing URIs,DFS
software components can transparently incorporate established
protocols, as well as name and manage external resources
along internal, architecture-specific objects.

Namespace entities identified by URIs may refer to regular
files, directories or any special file type. Each such entry
is managed by the associated user’s filesystem service and
stored along corresponding metadata. In the case of regular
files, data appears to the filesystem resource as URIspointing
to the block contents of the file. This is dictated by the
principle of explicit filesystem and storage resource separation.
Other metadata encode the policy according to which both the
object and file data can be manipulated. Note, however, that
permission from the filesystem is not in principle capable to
control a user’s access to the actual data, as storage belongs
to a different resource. Users define separate access rights
when owning namespaces and providing storage. Also, while
filesystem rights refer to the usual set of operations like read,
write, copy, move, etc., storage resource privileges can be
defined on a different set of actions, like allocation, which
may take into account size quotas and storage types.

Another prominent feature of the DFS Architecture is that
filesystems can link to each other, much like web pages do.
While each user will normally maintain an hierarchical names-
pace, resembling a traditional filesystem structure, the overall
pattern of the file namespace throughout the DFS network may
be arbitrary — a “web of files”. Namespace manipulation is
achieved through a special type of file, themetalink. Metalinks
may point to any DFS filesystem URI. In this way, users may
form simple or more complex filesystems in a peer-to-peer
fashion, symbolically including foreign hierarchies intotheir
own. Resources may be combined in shared namespaces, or a
single file may appear under numerous paths. Note that in the
latter case, only one of those paths remains theauthoritative
path for the resource. This is by definition the path whose
user also owns the file. When using metalinks, it is evident
that each user can define access rights only to the namespace
under his control. The user controlling the authoritative path
may define the privileges in respect to the file’s metadata,
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Fig. 1. Simple example of DFS User interconnections

while users linking to the file may only define access rights
to corresponding links.

Metalinks in the DFS network can be considered as an
extension of the traditional filesystems’ symbolic links. Nev-
ertheless, the resulting effect is unique. Traditionaldistributed
file systemsfocus on the management of a single, global
namespace over a distributed group of participants. This also
implies and imposes a single administrative domain — that of
the shared namespace, that can be managed either by a single
entity, or collectively by all group members using complex
consistency mechanisms. In the DFS Architecture, the ad-hoc,
peer-to-peer nature of participants is also extended into the
filesystem structure. Each DFS User manages and controls
namespace hierarchies in owned or delegated administrative
domains, while inter-filesystem connections allow for a global
structure. This represents a novel conceptual approach to
distributed filesystem designs. Intuitively, it is apeer-to-peer
filesystemand not a distributed filesystem formed by peers.

Storage services are structured in a similar way. While
a DFS User has complete control over the storage owned,
there can be users that do not contribute, but rather pool
storage from selective providers. This is achieved throughlinks
in the storage services layer. Each user maintains a storage
service that may manage owned storage, linked storage or a
combination of both. Filesystem metalinks and links at the
storage level may encode peering agreements on resource
provision and allocation.

An example scenario is depicted in Figure 1. CirclesA
throughF represent DFS Users that manage namespace re-
sources (triangles), storage (cylinders) or a combinationof
both. Note that the filesystem structure of userA is extended
to include part ofB’s files, either with the metalink fromA
to B, or via C. File data for each user may be stored locally
or remotely. UserC does not own storage and is the only one
that does not run a storage service. However, what appears to
be local storage space for other users may be an aggregation
of both local resources and remote offerings. UserB provides
part of his storage toE, which in turn offers part of it toD. D
also usesF’s local storage.

D. Resource discovery

The use of DFS-specific URIs for peer and resource iden-
tification necessitates employment of a Global DFS User
Index for aquiring network access to resources. Physical peers
participating in the DFS system cooperatively store user-to-
service mappings via a Distributed Hash Table or similar

structure. Thus, the actual network location of each user’s
service can be found by querying the index for the respective
public key. Similarly, DFS URIs translate to network paths
and resources can be accessed by contacting the right network
endpoint using the URI-encoded protocol. The DFS-wide user
index also allows peer mobility.

The aforementioned requirements dictate a mechanism for
discovering globally available resources and exploiting the fact
that some nodes may offer more resources than others. Both
challenges can be addressed through the thoughtful deploy-
ment of special DFS Users — special administrative entities
that only pool and offer resource pointers and may incorpo-
rate specific algorithms for load-balancing or load-skewing
through provisioned resources. Similarly, special peers may
be deployed to implement a variety of higher level services,
such as indexing and search engines according to the web
paradigm.

E. Grid integration

In the Grid context, the authenticity of each physical user is
certified by a local certification authority. Moreover, multiple
physical users may form arbitrary virtual groups, referred
to as “Virtual Organizations”. Resources are safeguarded by
authorization directives and respective policies [11]. The DFS
Architecture relies on similar principles, though there isno
distinction between physical users and virtual groups. Con-
sidering the deployment of a DFS network in the context
of the Grid, there is a need to map corresponding “Grid
authoritative entities” into DFS Users. This is to be handled by
a distinct architectural component — anauthentication plug-
in, that in the case of the Grid may be deployed side-by-side
to organizational certification authorities. A variety of current
Grid VO management utilities may need to become DFS-
aware in order to transparently administer dynamic changes
in relations between Grid users and groups and DFS Users.

Furthermore, if automatically created DFS Users own or
provide resources, there is a need to initialize, deploy and
publish corresponding physical network services over the
network. This must also be handled by a new breed of VO
management tools. In summary, when a group of users need
to form a new VO, they must:

• Create a new DFS User (a new set of cryptogaphic keys).
• Record the relationship of the VO with the DFS User so

members of the VO may also be authenticated properly
in the DFS network.

• Run and register corresponding DFS services, if the VO
is to own or provide resources.

Additionally, special VO-representative DFS Users may
be deployed in order to pool their members’ resources by
hosting metalinks and storage links to respective filesystem
and storage objects. Individual users may choose to delegate
selective permissions to group members, as they retain full
local administrative control over their resources. Metalinks
from the VO User’s filesystem may not be authoritative in
regard to content, but may pose as “official” pointers to the
group’s set of collective assets.



III. I MPLEMENTATION

A. Overall structure

The implementation of the DFS Architecture is currently at
a prototype status. Most of the design has been realized as soft-
ware components that closely resemble distinct mechanisms
and functionalities described in the architectural overview. The
core of our implementation framework is theDFS Peerwhich
provides the generic protocol handling functions in order
to implement network communication endpoints. The DFS
Peer manages and deploys software modules that implement
services, depending on the role of the respective user in the
DFS network. Such roles include:

• Filesystem resource ownership and provision, handled by
theMetaData DataBase (MDDB)component. DFS Users
use their MDDB to host and export namespace structures
to the overlay. Corresponding file name and metadata
entries - including ACLs, pointers to storage facilities,
etc. - may be physically stored at the host filesystem or
a local SQL database server.

• Storage resource ownership and provision, handled by
the Virtual Block Store (VBS)component. A VBS peer
manages and exports locally attached raw block storage
on behalf of a DFS User. It also handles remote allocation
requests and logically aggregates all the local and/or
distributed storage resources under the respective user’s
disposal.

• Resource consumption, through aDFS Client Librarythat
provides external software the ability to access the DFS
network of resources.

Peer intra-communication is achieved via genericDFS
Messagesthat comply to either theMDDB or VBS protocol.
The DFS Message structure suggests a generic layout for
protocols, based on request/reply verbs and corresponding
arguments. MDDB and VBS protocols differ in the semantics
of associated verbs and the handling mechanisms implemented
in each component. The common message format permits
peers to ignore protocols or protocol extensions they do not
support or even to partially or abstractly parse messages.

DFS Users materialize in the network as their corresponding
roles are handled by service components deployed in DFS
Peers. Services, named by URIs which include user identifica-
tion and protocol description directives, can be located via the
global DHT index. Some users may only provide storage, thus
appear as a VBS-enabled peer in the network, while others
may export files, storage and access the network — all through
a single DFS Peer hosting all necessary components. Note that
a user not owning resources may only use the Client Library,
although deploying an MDDB and VBS will result in imposing
authority to corresponding namespace entries and flexibility in
the management of remote storage offerings.

B. Implementation features

Specific features of the prototype DFS implementation,
sketched out in Figure 2, are discussed in the following
sections.
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Fig. 2. Anatomy of the component-based DFS prototype

1) Operating system integration:The DFS Peer’s Client
Library exposes a high-level API that presents the peer-to-
peer namespace and storage through traditional POSIX-like
calls. Additionally, we have implemented a FUSE filesystem
[12] that uses this API and allows “mounting” an MDDB
hierarchy alongside local files in a Linux system. Normal
applications can then transparently access the DFS Network
via a file interface regardless of whether those files and their
corresponding data is local or remote.

When viewing DFS through FUSE, metalinks appear as
regular symbolic links, only with special naming semantics.
The mounted DFS namespace, rooted at the local filesystem
path specified at mounting time, includes a specific MDDB’s
hierarchy. Nevertheless, it also provides access to any other
URI in the DFS Network through special paths. A virtual
directory, named ‘@’, is present in every FUSE directory,
enabling the creation of metalinks via symlinks with the
idiom @/URI as their target. Thus clients can navigate freely
throughout the DFS network. Request for@/URI-like paths
anywhere in the FUSE filesystem will dereference the URI and
access it directly over the network. Likewise, local filesystem
symbolic links can refer to any DFS file by prefixing the URI
with the FUSE mountpoint and the@ directory.

The @ directory is actually a special case of avirtual file.
Virtual files are special files that are not physically stored.
They are used to access file metadata and unique operations of
the DFS implementation through the traditional filesystem API
(provided by the FUSE layer). Virtual files are formatted as:
<base path>@<virtual path>. The <base path>
signifies the actual (non-virtual) path that the virtual fileis
associated with. The<virtual path> can either be a name
(if the virtual file is a plain file), or a whole hierarchy (in the
case the virtual file is a directory). For example, the DFS User
owning a file is accessible viafile@owner and the visibility
of virtual files when listing directories can be controlled by
writing a boolean value in the@visible file in any directory.

2) Caching and disconnected operation:DFS Peers in-
clude a cache component to temporarily store frequently-



accessed remote objects (file metadata and contents). Users
may also explicitly request that certain files remain cached
through the client API or a virtual file (when using the
FUSE filesystem). By exploiting the cache module we also
have an initial implementation of a disconnected operations
component. To support disconnected operations, DFS protocol
mechanisms do not make any assumptions regarding remote
peer availability. Locally cached and modified objects, as well
as communication messages remain in pending state until their
synchronization or delivery is acknowledged. Also, a persistent
storage module allows such objects to survive peer downtime.

Offline operations can result in complex file consistency
issues. In the prototype, we follow a variant of theopen-
close consistencyscheme. When a remote file is opened, its
contents can be modified in the cache and are only written
back to the remote location and become globally visible when
the file is closed (or flushed). We also allow users to define a
policy of read-only offline files in order to completely avoid
synchronization problems. Future work will address relevant
mechanisms in more detail.

3) Publish-subscribe services:DFS Peers can subscribe
to any object addressable by a URI and be notified asyn-
chronously when events associated with the object occur.
Event notifications can be reliably propagated and their de-
livery is deferred by the online status of a peer. There are two
kinds of subscriptions to an object. One delivers a notice about
an event that occurred, creating a local event, oractivity logof
the remote object. The other forwards the very actions received
by the remote object, enabling a kind of selective state repli-
cation by locally executing the same actions on an associated
object. File replicas, whose consistency is maintained through
the action notification mechanism, are calledonline files.

The FUSE filesystem implementation provides a full virtual
file-based API to facilitate DFS publish-subscribe services, as
depicted in Figure 3 (virtual files and directories except@
are shown in grey). The file<base path>@subscribers
lists all current subscribers of the namespace object at<base
path> and can also be used to subscribe for notifica-
tions, which in turn appear in corresponding virtual files of
the <base path>@notify/ directory. Writing to<base
path>@publish produces message notifications at all reg-
istered subscribers and can be used by the owner of the object
as a communication mechanism. Of course all these files
are under the full administrative control of their respective
authority or delegates.

4) Exporting local filesystems:To ease the deployment of
DFS Peers, the prototype includes a mechanism to expose
local Linux filesystems to the overlay in a single step. This is
achieved through special MDDB and VBS components that
exploit the local filesystem for metadata and data storage.
The user specifies authority credentials to a script, which in
turn starts all necessary services, including a FUSE filesystem
that is mounted over the original Linux filesystem. The local
directory must be hidden from the user in order to avoid
consistency issues. Namespace operations, such as renaming,
moving in the hierarchy and so on, pass through the MDDB
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Fig. 3. Portion of the resulting filesystem structure when mounting a DFS
namespace locally through FUSE

component before being applied to the original files. Metadata
values that cannot be directly mapped to operating system
semantics are stored in a hidden directory called.mddb.
Similarly, the VBS instance exports the original files’ dataas
storage containers named after their corresponding filesystem
path. Again, storage allocation operations that cannot be
mirrored directly in the filesystem structure, result in the
creation of arbitrary files in a hidden.vbs directory under
the mountpoint root.

5) Using a DHT for storing data blocks:We have also
experimented with a P2P storage backend, which enables
the deployment of special VBS peers that act as proxies
to a Kademlia-based DHT. Each such VBS peer spawns a
Kademlia instance into the specified overlay and translates
operations from the VBS protocol, into accesses to content-
hash blocks in the DHT. Peer-to-peer VBS peers allow a group
of physical users to form configuration-free, self-managed,
scalable and fault-tolerant collective storage pools, although
by design they do not support all VBS operations (for instance,
allocation requests have no actual effect).

C. Future directions

We are investigating various solutions for managing file
and data replication and addressing respective consistency
mechanisms and policies. In the DFS Architecture replicas
can have the form of online files (replication through action
notifications), result from offline, disconnected operations or
be explicitly defined as distributed copies of a file in other
authoritative domains. Furthermore, we target the implementa-
tion of an advanced replica-aware transfer component that will
be able to take advantage of the availability of multiple copies
when transferring the block contents of a file. Analogous
algorithms and protocols have been deployed in both the Grid
and peer-to-peer file-sharing contexts [13], [14], [15].

Another design issue that relies on similar implementation
mechanisms is the DFS User’s service availability. By replicat-
ing services at a number of DFS Peers we envision the notion
of a floatingDFS User that may selectively or collaboratively
always be active in the DFS Network. The current, proof-
of-concept prototype does not address DFS User availability
issues and requires that “important” DFS Users are deployed



on highly-available DFS Peers. In the Grid environment, where
most services are statically hosted at highly-available, fault-
tolerant sites, floating DFS Users may not be necessary.
Nevertheless, DFS User availability is critical for deploying
DFS in dynamic networks.

IV. RELATED WORK

Peer-to-peer networks are generally classified in two basic
categories, depending on the structure of the overlay main-
tained by participating peers.Unstructureddesigns, like the
pioneering Gnutella system, leave the peers free to form
arbitrary message routing paths. To reach a resource, each
peer will forward requests to his virtual neighbors, practically
flooding the physical infrastructure with messages (at least this
was the initial approach, in time replaced by more “clever”
routing algorithms). Such deployments usually converge to
a “small-world” network, thus allow reaching any resource
with high probability and in a very small number of steps
[16]. On the other hand,structured overlays or Distributed
Hash Tables (DHTs), such as Kademlia [17], impose a specific
virtual structure which accommodates peers in particular slots
as they join in. Such overlays are mostly used for key-value
pair storage, as the lookup procedure is highly deterministic
and operations complete in a predefined number of steps —
proportional to the logarithm of the number of participating
nodes [18]. According to the DFS Architecture, DFS Peers are
actually organized in both structures. A similar peer layout is
described in [19]. The DFS collaboration network resembles
an unstructured peer-to-peer design, as resource dependencies
and links can be arbitrary between participating nodes. How-
ever, a subset of requests follow the overlay of namespace and
storage aggregation and distribution. DFS User and resource
location is handled by a Kademlia-based DHT maintained
by all peers in the DFS universe. Relevant work can also
be found in the context of peer-to-peercontent distribution
networks(CDNs) [20], as well as the Freenet censorship-free
data distribution overlay [21].

TheDFSacronym usually refers toDistributed File Systems
— the software that enables a distributed group of intercon-
nected computers to view and manage a single namespace of
files and their collective storage. Distributed filesystemscan
be considered as the predecessors of most modern peer-to-
peer and distributed file sharing services and as such have
provided from early on the necessary tools and mentality
required to envision contemporary global-scale data collab-
oration architectures. Most notable examples of initial dis-
tributed filesystem designs include Frangipani [22] and xFS
[23]. Frangipani follows a two-layer approach, distinguishing
between file metadata and actual storage (a shared virtual
disk). The shared storage is the core of Frangipani — even
metadata servers use it for communication. On the other hand,
the authors of xFS describe a server-less network filesystemin
which nodes cooperate with each other to provide all filesys-
tem services. Our architecture of distributed interconnected
metadata and file data servers closely resembles Lustre, a
modern cluster filesystem [24]. In general, distributed and

cluster-wide filesystems have similar objectives to peer-to-
peer and distributed file sharing services, but mainly focus
on different issues: High-performance installations inside a
single administrative domain. An exception is representedby
the Farsite project [25], which resembles xFS’s peer-to-peer
design, but does not require central administration and global
trust. Farsite pools distributed resources into a single, logical
filesystem.

Related work includes version 4.1 of the NFS network
filesystem, which significantly enhances the traditional NFS
design towards Internet-wide usage [26]. It supports an im-
proved security model, where users are identified with strings
of the form “user@domain” and separates data and metadata
allowing them to be stored in different servers. In addition,
multiple data servers can host the same data, enabling the
client to perform parallel transfers. Client sessions, ACLs and
on-demand mounting of remote filesystems further extend the
usefulness of NFSv4, however its scalability and flexibility
is far behind a truly distributed or peer-to-peer file system.
Other relevant features of NFSv4 are aggressive client caching
and delegation of file serving to clients. Furthermore, we
should note CODA — a filesystem designed for user mobility
[27]. Disconnected operation is provided as an extension ofa
caching scheme to handle indefinite write-back time intervals.
CODA also performs file “hoarding”, which is the automatic
caching of specific files that have been listed as critical fora
user. These files are monitored so that fresh copies are always
locally cached.

An evolutionary step is represented by DHT-based storage
architectures. For instance, CFS [28] uses a DHT to store file
blocks and namespace structure, exploiting the peer-to-peer
overlay much like Frangipani’s shared virtual storage. DHTs
have been extensively used as storage substrates in numerous
related designs, as they provide a scalable and fault-tolerant
mechanism to store data in a distributed fashion. Nevertheless,
DHTs can only abstract a read-only data storage facility, which
has forced researchers to propose hybrid designs: Pastis is
similar to CFS, but uses the notion of modifiable i-node blocks
[29], Eliot uses centralized metadata servers to index files
stored in a DHT [30], while Oceanstore incorporates an upper-
layer of servers that coordinate changes to file blocks [31].
Moreover, Ivy [32], like Oceanstore, stores a sequence of
changes to the filesystem (log) in order to build the latest
filesystem state from a set of read-only entries. Peer-to-peer
filesystems significantly differ from the DFS Architecture,as
they have no control on data placement. As mentioned earlier,
respective policies are imposed by the DHT protocol and
not by its peers. Also, all peer-to-peer filesystems, except
Ivy, manage a single, distributed namespace. Ivy creates a
namespace per user and addresses issues like shared names-
paces (views), although the corresponding mechanisms are
cumbersome as they depend on the read-only nature of the
underlying DHT.

Similarly to DFS, in Plan 9 each user has a private view of
the operating system, that is constructed by mounting arbitrary
remote resources to the local hierarchy [33]. Actually, Plan 9 is



comprised of a whole ecosystem of languages, compilers and
network protocols, with design goals similar to the Grid’s.As
such, Plan 9 nodes interoperate only with one other. In the Grid
context, the construction of a single, uniform and hierarchical
file namespace has been studied in [34] and [35].

V. CONCLUSION

Data management in the context of a global-scale network,
like the Internet, remains one of the most challenging prob-
lems. Constant evolution of ideas and practices has led to
numerous platforms that address different points-of-viewof
the same fundamental issue. Current deployments that create
and expose a collaborative file space, either use a set of well-
administered centralized components or distribute the work
among anonymous participating entities. The Distributed File
Services (DFS) architecture represents our effort to combine
both methods into a single system, where distinct administra-
tive domains can consolidate file namespace and data resources
into a single overlay. DFS preserves each participant’s full
rights on his respective assets and allows for arbitrary peering
agreements to be encoded into corresponding resource links.
The net result is a peer-to-peer platform where peers’ interests
and policies form an unstructured “web-of-files” and ad-hoc
pools of storage space. The DFS prototype implements most of
the basic design concepts and provides us with a platform for
future work and experimentation. Moreover, it offers features
like a complete publish-subscribe framework and support for
disconnected operations. DFS can be seamlessly used by
existing applications, as distributed file semantics and special,
implementation-specific features can be directly encoded into
local operating-system file functions. A close study of related
work reveals that the DFS design is by no means revolutionary,
but a step in the direction of bridging and fusing respective
practices into a design that meets a broader range of the overall
requirements. Consequently, DFS offers a novel approach to
file and data distribution and sharing — what we believe can
prove beneficial to a multitude of prospective scenarios.
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