
XOROS: A mutable Distributed Hash Table

Antony Chazapis and Nectarios Koziris

National Technical University of Athens
School of Electrical and Computer Engineering

Computing Systems Laboratory
{chazapis, nkoziris}@cslab.ece.ntua.gr

Abstract. Data redundancy in DHTs is commonly accomplished through
automatic replication of values to a set of close participating nodes. Such
copies, once written, should not be modified, as there is no inherent DHT
function that can operate on a dynamic set of mutable replicas. In this
paper, we present XOROS — a system based on the Kademlia rout-
ing scheme, that addresses the problem by implementing a Byzantine-
tolerant protocol for serializable data updates directly at the peer-to-peer
level. Based upon related works that study distributed replica synchro-
nization, mutual exclusion and communication in the presence of Byzan-
tine behavior, we propose a unified DHT-based algorithm, that ties cor-
responding practices together in order to consistently propagate changes
to all primary replicas of any key-value pair stored in the network. A
multitude of applications may benefit from the resulting distributed
read/write storage substrate as it retains all the advanced features of
DHTs and is backwards compatible with existing put/get semantics.

1 Introduction

Distributed Hash Tables represent a major class of peer-to-peer designs that
abstract the aggregate overlay as a key-value based storage facility. Putting and
getting named data items requires only a small number of steps, proportional to
the logarithm of the total network size. To achieve this, all DHT implementations
assume a predefined structure for a vast, virtual identifier space, where both
peers and data are uniformly hashed within. Each physical node stores values
and manages lookup queries that refer to data with IDs “close” to its own. The
notion of closeness depends on the details of each specific DHT implementation,
as does the arrangement of the key space [1].

DHTs have allowed a large number of distributed applications to be layered
on top, instantly inheriting their ability to scale to millions of nodes while re-
maining resilient to unadvertised subsystem or network failures. For instance,
applications like distributed filesystems [2] and metadata management services
[3] directly use a structured peer-to-peer deployment as a distributed storage
substrate. Nevertheless, DHTs provide a write-once/read-only data repository.
Any changes to a value result in a new key — a new object that is unique and will
be placed at a different address. Furthermore, to guarantee availability, values



are copied to a range of nodes, usually via internal automatic replication mecha-
nisms [4]. If an external system tries to update a value in-place (using the same
key), the results will be unpredictable. An inherent DHT update function should
properly resolve all consistency issues by uniformly modifying all instances of a
value in a single operation, even if the particular nodes responsible for storing
the copies continuously change due to network churn.

The absence of an update operation has led research initiatives to propose
designs that work around the constrain: Ivy [5], a peer-to-peer filesystem, uses
a DHT to store read-only state changes of namespace and file contents (logs),
while Eliot [6], relies on centralized servers to handle metadata changes and
index read-only file blocks. Updates are of significant importance to applications
that can encode internal semantics to specific keys. Consider the aforementioned
examples that could use DHT IDs to represent native objects (i.e. i-nodes or
filename hashes). Similarly, mutable values would enable the implementation of
common data structures over DHTs.

In this paper, we present a novel protocol that allows in-place, automatic,
serializable data updates in the primary-replica set of any structured peer-to-
peer system. We define primary replicas as the values stored at the closest nodes
of a data item’s key — the nodes that will be contacted by a get operation
assuming that it does not use cached data. We argue that a consistent update
operation requires implementing a secure and fault-tolerant mutual exclusion
protocol directly at the DHT layer, accompanied by a value propagation pro-
cess that will synchronize all primary replicas in a single, unified transaction.
Moreover, we consider the DHT as an environment where any peer may exhibit
arbitrary behavior, either on purpose or due to network instability.

Distributed mutual exclusion and conflicting decision resolution in the con-
text of dynamic and Byzantine environments has been an active research target
for many years. In this paper, we elaborate on the specific steps required to
incorporate respective knowledge into a DHT implementation that inherently
and transparently handles all corresponding issues. Peers of the resulting over-
lay, namely XOR Object Store (XOROS), use a Kademlia [7] routing scheme,
along with a modified protocol to get and put data, although the additions and
changes presented here could have been equally applied to any DHT design.

2 Related Work

The steps involved in constantly tracking the locations of replicas and synchro-
nizing relevant data changes have been addressed both in the context of un-
structured [8] and structured [9] peer-to-peer networks. The basic idea behind
all proposed algorithms is to build a distributed replica location index that is
dynamically updated, either as lookup commands follow the path from a node
to a replica maintainer, or by a subscription protocol. When an update is is-
sued, the new value is pushed to all members of the index. Some systems also
require a periodic pull phase. Such practices require cooperation between nodes,
that can either be enforced or propelled by establishing corresponding incentives.



Furthermore, it is assumed that there is one primary node that holds the latest
value of an item and a replica set that needs to be updated.

In contrast, we consider an environment where multiple primary replicas of
a key-value pair must be updated in a consistent and secure manner. Primary
replicas are always available and their position is well-known (the dynamic set of
closest nodes to an ID), so there is no need to maintain special indices in order to
locate them. The algorithms proposed for maintaining loose replica consistency
can be applied along our protocol to support secondary replica synchronization
— i.e. to track down cached key-value pairs that may be distributed anywhere in
the overlay. The main objective of keeping a replica index is to track availability
of data. Thus, we argue that corresponding protocols not only do not overlap,
but may also benefit from our work.

A distributed system known to be coordinating changes between primary
and secondary replica sets is Oceanstore [10]. Oceanstore uses a top-level, well-
connected server group that decides on the update commit order, before sending
the new values to the rest of the nodes. Our algorithm aims at providing similar
functionality, though inherently in a DHT, where all participating nodes have
equal privileges and responsibilities. The need to provide atomic data opera-
tions across all replicated data items at the DHT level has been pointed out by
Lynch et. al [11]. However, their proposed algorithms require a reliable message
passing substrate and a network of trusted nodes that thoroughly comply to the
respective protocols for joining and leaving the network.

Much related work can also be found in the context of distributed mutual ex-
clusion algorithms [12], although to our knowledge, only the Sigma protocol [13]
presents a method for implementing permission-based mutual exclusion directly
at the peer level of DHTs. According to Sigma, in order to lock a given resource,
a client must acquire the majority of its logical “replicas”. Each such replica, is
represented by a unique identifier which maps to a physical node responsible for
granting one permission for the corresponding resource. The protocol addresses
node failures and high lock contention, but requires trusting the involved parties.
We argue that there is no need to have separate commands for mutual exclusion
and data updates, especially when the semantics of obtaining the lock are well
known beforehand. Moreover, there is a need to protect the mutual exclusion
from peers that could exploit the update mechanism by not performing the nec-
essary steps orderly. Our approach to handle these cases has been influenced by
related studies on the diffusion of messages in Byzantine environments [14, 15].

Similar goals are targeted by Rosebud [16], a DHT-based storage system that
employes a Byzantine-aware protocol for changing values of “public-key” data
objects. To perform an update, the issuer first contacts replica holders to obtain
a new version identifier and then issues a signed write request. In contrast to
XOROS, these two phases are disjoint. By using a lock protocol instead of a
version vector, XOROS supports a richer set of data manipulation operations.
Rosebud also tracks DHT membership through a distributed “configuration ser-
vice” and makes heavy use of certificates, practices which could contradict the
requirements of some extremely dynamic or anonymity-preserving deployments.



LOCK

GRANTED

NOT_GRANTED

UPDATE

COMMIT

COMMIT

COMMIT

FIND_NODES

FIND_NODES

STEP 1
Find closest nodes

STEP 2
Send lock requests

STEP 3
Get permissions

STEP 4
Send updated data

STEP 5
Update propagated
and commited

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Fig. 1. A step-by-step representation of the update process

3 Design

3.1 Defining the update transaction

In Kademlia, any peer wishing to get a value sends FIND VALUE RPCs to contacts
from its routing table that are closest to the value’s key. Nodes receiving the
requests can either reply with data or return routing information. The process
is iterative and continues until the key-value pair is found or no more routing
options exist. Each query step involves issuing multiple concurrent requests (up
to α), which reduces the total time needed for completion and helps in identifying
and bypassing faulty peers. Put operations are based on a similar query loop,
using FIND NODE RPCs instead. Replies contain a predefined number of close
nodes — equal to κ, a system-wide parameter which specifies the number of
replicas maintained for each data item and controls the size of routing tables.
The key-value pair is replicated to the κ closest nodes to the ID via STORE
RPCs. Kademlia suggests that all key-value pairs are republished in this way
every hour, and expire in 24 hours from their initial publication.

In order to support serializable data updates, XOROS requires multiple
closely related messaging phases that form a single transaction. When a peer
is instructed to update data, it first performs a FIND NODE loop in order to find
the κ nodes that store replicas of the specified key-value pair (Fig. 1). We con-
sider these same nodes as the ones responsible for giving permission to update
the corresponding key. The next step is to issue LOCK RPCs to all members of the
quorum in order to request mutual exclusion. Nodes may reply to incoming lock
requests with either a GRANTED or NOT GRANTED message, depending on whether
they have already granted their vote to another peer. Moreover, a GRANTED mes-
sage signifies the permission to send an updated value. A requesting node can
only send respective UPDATE RPCs to the nodes that have voted in its favor. We
require that UPDATE RPCs are sent only after a node has successfully collected
μlock permissions — a number that guarantees that no other, competing update
issuer may gain mutual exclusion. GRANTED RPCs also contain the item’s current
value, in order to implement atomic read-modify-write transactions.

When a replica maintainer receives an UPDATE RPC, there is no assurance
that the quorum has indeed concurred on the peer that should perform the
update. The last step of the algorithm requires the closest nodes of the key-value



pair to communicate with each other via COMMIT RPCs in order to complete the
transaction and propagate the correct data even to parts of the quorum that
may have given their permission elsewhere. Quorum members consider a value
as updated and store it, only if they receive μstore COMMIT messages (including
an initial UPDATE if applicable), all referring to the same data from the same
issuer. Similar to μlock, μstore protects the consistency of the transaction in the
case of competing updates. Supposing that there are no malicious peers and no
failures, it is evident that μlock = μstore = κ/2 + 1. However, in every other
case, μstore has a different value and μlock is larger than μstore by the maximum
number of nodes that may exhibit arbitrary behavior or fail.

We assume that each peer has a good knowledge of its close peers and thus
will know the quorum members of each data item it stores. Nevertheless, depend-
ing on the way each particular DHT implementation manages routing tables, this
may require an extra messaging step. In XOROS, quorum members check their
routing tables to certify that a peer is indeed part of the key-value pair’s closest
nodes, once they receive a COMMIT message. If the sender is not found, respective
FIND NODE queries are issued. Different RPCs are used for updating and com-
mitting a value, to be able to distinguish the respective semantics if the issuer
is also a member of the quorum. Also, XOROS peers ignore STORE RPCs for
key-value pairs already in their registry.

3.2 Tolerating incompatible behavior

Let us now consider a scenario where λ of the κ nodes forming the quorum
are “corrupt”, meaning they may execute the protocol in an arbitrary way. Let
σ denote the number of nodes that can be trusted to conform to the protocol
(κ = σ + λ). If we instruct all κ nodes to report the same value to each other,
any node will receive at least σ consistent values. In the following discussion, we
require that no message can fake its originator, which can be asserted by hashing
the peers’ network addresses into their corresponding IDs.

In every lock round, σ votes may be distributed among issuers competing for
an update, while up to λ additional votes may be simultaneously granted to all.
In the next step, assuming all issuers send UPDATE RPCs, σ nodes will forward
a correct value, while λ may send anything or nothing at all. They may even
retransmit COMMIT RPCs received, as if they have granted a permission to the
issuer, producing an additional λ commit messages for each value.

Trustful quorum members that receive μ consistent update requests may
safely store a value when they can be certain that no other competing value can
be successfully propagated during the same transaction. From the μ messages
received, at least μ−λ can be trusted. This leaves other issuers with the remain-
ing σ−(μ−λ) trustful peers available to forward their update, plus an additional
λ that may propagate any value. We set μstore to the smallest possible integer
value, so that even if λ out of μstore values are reported from corrupt nodes,
no other competitor can violate the system’s consistency by producing μstore

conflicting updates. Intuitively, if any quorum member receives μstore consistent
update messages, the issuer has successfully gained mutual exclusion.



μstore > σ − (μ − λ) + λ
(κ=σ+λ)

>
κ + λ

2
⇒ μstore = �κ + λ

2
� + 1 (1)

From an issuer’s point of view μstore is the minimum number of quorum
members that must vote to his favor in order to proceed with the update. Nev-
ertheless, there is no way to know how many corrupt nodes are contained within
those μstore peers and as a result how many will indeed forward the correspond-
ing COMMIT commands. We suggest that each peer receives at least μlock GRANTED
RPCs before proceeding with an update. Moreover, if we want the system to
guarantee that an issuer conforming to the protocol will be able to commit an
update, we must bind μlock to κ, which allows us to infer an upper bound for λ.

μlock ≥ μstore + λ
(1)
>

κ + 3λ

2
⇒ μlock = �κ + 3λ

2
� + 1 (2)

κ ≥ μlock

(2)
>

κ + 3λ

2
⇒ λ <

κ

3
(3)

Note that XOROS, for a quorum of 3λ + 1, can sustain up to λ corrupt
members, which has been proven optimal [14]. Even if there are no harmful
peers in the network, the behavior expected from up to λ peers may address
node failures or arrivals. Involuntary bad behavior can also be expected when
peers join the network or when the overlay is experiencing high levels of churn.

3.3 Protocol enhancements

XOROS also uses a modified get procedure. As up to λ closest nodes may report
any value, a peer must locate and query at least 2λ + 1 primary replicas in
order to get a consistent (majority) reply, unless the specific key is currently
updated, the update process is in its last phase and some quorum members are
“slower” than others. We currently backoff and repeat reading a key-value pair
for a predefined number of retries. Note that this implementation offers only
loose consistency semantics and in some cases Byzantine replicas may influence
the result by collectively reporting old values along trustful but slow quorum
members. Although this will not yield an invalid result, an alternative get policy
could instruct contacting more primary replicas, or even locking the quorum
before sending FIND VALUE messages.

To protect the mutual exclusion from greedy peers and avoid starvation, we
require that all granted votes expire and issuers exponentially backoff after a
round of unsuccessful LOCK RPCs. Both conditions are regulated by the quorum
members themselves. Upon the receipt of a GRANTED message, the peer requesting
the lock must issue an UPDATE or YIELD RPC before the lease expires. Failure
to do so results in the node being banned from further lock requests for a large
time interval by the respective voter. UPDATE RPCs also trigger a similar time
counter. A non-Byzantine quorum member automatically releases a lock when
the corresponding value is finally committed or any of the two timeouts expires.
Thus, neither the update issuer, nor part of the closest nodes can deliberately
or accidentally stall any phase of the update transaction.



0

100

200

300

400

500

600

700

4 8 12 16 20

m
ea

n
m

es
sa

g
es

quorum size (κ)

λ = 0
λ = 1
λ = 2
λ = 4

after quorum found λ = 0

(a) Mean messages per update

1

1.5

2

2.5

3

4 8 12 16 20

m
ea

n
ti

m
e

(s
ec

)

quorum size (κ)

λ = 0
λ = 1
λ = 2
λ = 4

until mutex granted λ = 0

(b) Mean time per update

Fig. 2. Results for the same request pattern and different values of κ and λ

4 Evaluation

The XOROS prototype is implemented in way that allows us both to deploy
a network of peers and perform large-scale distributed packet-level simulations
using the same codebase. In order to get an insight into the performance char-
acteristics of XOROS, we created a scenario where 1024 peers, storing an equal
number of items perform random updates at a constant rate of 1 update

sec . Results
depicted in Fig. 2 correspond to multiple runs of the same scenario for different
values of κ and λ. The messaging roundtrip latency is distributed between 120
and 180 milliseconds and Kademlia’s α is set to 3.

The number of messages produced by each update operation follow a quadratic
increase in respect to the quorum size. Looking back at Fig. 1, we can see that
steps 2, 3 and 4 of the protocol produce at most κ messages each, while the com-
mit round requires μlock(κ−1) messages, which contains a κ2 term. On the other
hand, it is evident from Fig. 2(b) that the messaging cost is distributed across
the network. The first four lines of Fig. 2(b) show the total time required for each
update transaction, measured from the moment the command is issued until the
last quorum member commits the value. Also, the time needed for the issuers
to complete steps 1 to 3 of the protocol is marked as “until mutex granted”.
There is a constant difference between the latter and the total time consumed
by each command, representing the time needed to propagate an update. Notice
that this is equal to the maximum message roundtrip latency. The mean time
required for each transaction is affected by the quorum size only because of the
protocol’s first step, where we locate the closest nodes of a key-value pair. In
Fig. 2(a) we also show the number of messages required for steps 2 to 5 of the
update transaction (marked as “after quorum found”). Although the message
count for the first step is relatively small, FIND NODE RPCs are sent in waves of
α parallel requests — a process that requires more time as κ increases.

5 Conclusion

DHTs are widely used by a multitude of large-scale, high-throughput applica-
tions. Their distinctive feature set has allowed many systems to seamlessly scale
to Internet-wide deployments. Nevertheless, we believe that the DHT design



has not yet reached its full potential, as it restricts upper-layer services to a
read-only repository. A mutable DHT can meet a broader range of application
requirements and may prove extremely important for future implementations.

In this paper, we have presented a protocol in the context of an actual DHT
implementation we call XOROS, that tackles the problem of performing con-
sistent updates to the primary data replicas in DHTs. XOROS’s foundation is
previous work on distributed mutual exclusion and Byzantine-tolerant commu-
nication. We propose an algorithm, where the actions of locking a resource and
committing a change are bound into the same transaction, in turn controlled
and driven by the closest nodes of each key-value pair. The quorum responsible
for mutual exclusion consists of the nodes that also hold the data item to be up-
dated, thus we can implement fine-grain locking. Moreover, by having quorum
members communicate with each other before committing data items to storage,
we can handle cases where there are malicious or faulty peers in the overlay.

References

1. Balakrishnan, H., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Looking Up
Data in P2P Systems. Communications of the ACM 46 (2003) 43–48

2. Busca, J.M., Picconi, F., Sens, P.: Pastis: A Highly-Scalable Multi-User Peer-to-
Peer File System. In: Proc. of the 11th Inter. Euro-Par Conference. (2005)

3. Chazapis, A., Zissimos, A., Koziris, N.: A Peer-to-Peer Replica Management Ser-
vice for High-Throughput Grids. In: Proc. of the 34th ICPP. (2005)

4. Ghodsi, A., Alima, L.O., Haridi, S.: Symmetric Replication for Structured Peer-
to-Peer Systems. In: Proc. of the 3rd DBISP2P. (2005)

5. Muthitacharoen, A., Morris, R., Gil, T.M., Chen, B.: Ivy: A Read/Write Peer-to-
Peer File System. In: Proc. of the 5th OSDI. (2002)

6. Stein, C., Tucker, M., Seltzer, M.: Building a Reliable Mutable File System on
Peer-to-Peer Storage. In: Proc. of the RPPDS. (2002)

7. Maymounkov, P., Mazières, D.: Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric. In: Proc. of the 1st IPTPS. (2002)

8. Wang, Z., et al.: Update Propagation Through Replica Chain in Decentralized and
Unstructured P2P Systems. In: Proc. of the 4th IEEE P2P. (2004)

9. Roussopoulos, M., Baker, M.: CUP: Controlled Update Propagation in Peer-to-
Peer Networks. In: Proc. of the USENIX Annual Technical Conference. (2003)

10. Kubiatowicz, J., et al.: OceanStore: An Architecture for Global-Scale Persistent
Storage. In: Proc. of the 9th ASPLOS. (2000)

11. Lynch, N., Malkhi, D., Ratajczak, D.: Atomic Data access in Content Addressable
Networks, A Position Paper. In: Proc. of the 1st IPTPS. (2002)

12. Velasquez, M.G.: A Survey of Distributed Mutual Exclusion Algorithms. Technical
Report CS-93-116, Colorado State University (1993)

13. Lin, S.D., Lian, Q., Chen, M., Zhang, Z.: A Practical Distributed Mutual Exclusion
Protocol in Dynamic Peer-to-Peer Systems. In: Proc. of the 3rd IPTPS. (2004)

14. Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems 4 (1982) 382–401

15. Malkhi, D., Mansour, Y., Reiter, M.K.: On Diffusing Updates in a Byzantine
Environment. In: Proc. of the 18th IEEE SRDS. (1999)

16. Rodrigues, R., Liskov, B.: Rosebud: A Scalable Byzantine-Fault-Tolerant Storage
Architecture. Technical Report LCS TR/932, MIT (2003)


