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Abstract

is thesis focuses on the optimization of the SparseMatrix-VectorMultipli-
cation kernel (SpMV) for modern multicore architectures. We perform an
in-depth performance analysis of the kernel and identiĕed its major perfor-
mance bottlenecks. is allows us to propose an advanced storage format for
sparse matrices, the Compressed Sparse eXtended (CSX) format, which tar-
gets speciĕcally the minimization of the memory footprint of the sparse ma-
trix. is format provides signiĕcant improvements in the performance of
the SpMV kernel in a variety of matrices and multicore architectures, main-
taining a considerable performance stability. Finally, we investigate the per-
formance of the SpMVkernel from an energy-efficiency perspective, in order
to identify the execution conĕgurations that lead to optimal performance-
energy tradeoffs.

Keywords: high performance computing; scientiĕc applications; sparse matrix-vector
multiplication; multicore; data compression; energy-efficiency; SpMV; CSX; HPC
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Αντί Προλόγου

Πολλές οι σκέψεις και τα συναισθήματαπου γεμίζουν το μυαλό μουφτάνοντας
στο τέλος του «αγώνα» που λέγεται διδακτορικό. Ανακούφιση και ικανοποίη-
ση για την τελείωσή του, προσδοκία για το μέλλον, νοσταλγία για τις όμορφες
και δύσκολες στιγμές του. Κάθε τι που με τον ένα ή τον άλλο τρόπο σημα-
δεύει την πορεία σου είναι συνήθως άρρηκτα συνδεδεμένο με τον ανθρώπινο
παράγοντα, άμεσα ή έμμεσα, διακριτικά ή εύγλωττα. Το διδακτορικό δεν θα
μπορούσε να είναι εξαίρεση, όχι μόνο λόγω του πολυετούς του, αλλά και λό-
γω του δυναμικού και του φάσματος των συναισθημάτων που συχνά-πυκνά
προκαλεί κατά την διάρκειά του. Δεν πρόκειται, λοιπόν, επ’ ουδενί για ένα
«one-man-show», αλλά αποτελεί την συνισταμένη της συνεισφοράς, υλικής,
πνευματικής, ψυχολογικής, εμφανούς ή αφανούς, ενός συνόλου εξαιρετικών
ανθρώπων.

Κατ’ αρχήν, θα ήθελα να ευχαριστήσω τον επιβλέποντά μου, αναπληρω-
τή καθηγητή Νεκτάριο Κοζύρη, για την εμπιστοσύνη που μου έδειξε στο δύ-
σκολο έργο του διδακτορικού, εν πρώτοις αποδεχόμενός με στο διδακτορικό
πρόγραμμα, και εν συνεχεία, φροντίζοντας για την απρόσκοπτη και επί της ου-
σίας εκπόνηση της διατριβής μου, μέσω της συνεχούς επαφής ολόκληρης της
ομάδας μας με την τελευταία τεχνολογία και της ενθάρρυνσης της ενεργού
συμμετοχής μας στην ευρύτερη ερευνητική κοινότητα. Οφείλω, επίσης, την
ευχαριστία μου και στους συνεπιβλέποντες, καθηγητή Ανδρέα-Γεώργιο Στα-
φυλοπάτη, για την στενή, αρμονική και εποικοδομητική συνεργασία μας κατά
τα πρώτα χρόνια του διδακτορικού, και καθηγητή Παναγιώτη Τσανάκα.

Η διδακτορική αυτή διατριβή, όμως, ίσως να μην υπήρχε χωρίς την αμέ-
ριστη συμπαράσταση του Λέκτορα Γιώργου Γκούμα. Η συμβολή του Γιώρ-
γου ήταν καθοριστική, τόσο στο επίπεδο της οργάνωσης και της ερευνητικής
ισχυροποίησης της ομάδας μας, όσο και συγκεκριμένα στην δική μου διατρι-
βή. Από τα πρώτα μου βήματα στον απαιτητικό χώρο του High Performance
Computing, ο Γιώργος βρισκόταν συνεχώς δίπλα μου, στις ατυχίες, που υπήρ-
ξαν αρκετές, και στις επιτυχίες, που υπήρξαν σημαντικές και ελπιδοφόρες για
το μέλλον.
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Αντί Προλόγου

Θα ήταν μεγάλη παράλειψη στο σύντομο αυτό σημείωμα να μην αναφερ-
θώ στα υπόλοιπα μέλη του εργαστηρίου, παλαιότερα και νεώτερα, που με το
υψηλό τους επιστημονικό και πνευματικό επίπεδο δημιουργούν ένα σημαντι-
κό ρεύμα ανόδου που συμπαρασύρει και εμπνέει κάθε νεοεισερχόμενο στην
ομάδα. Δύσκολο να ξεχωρίσεις συγκεκριμένα πρόσωπα χωρίς ενδεχομένως
να «αδικήσεις» κάποια άλλα, καθότι το ευχάριστο κλίμα εργασίας και συνερ-
γασίας δημιουργήθηκε και συντηρείται συλλογικά. Από τον Βαγγέλη Κού-
κη, που απετελέσε ένα σημαντικό έναυσμα ώστε να ενταχθώ στην ομάδα του
CSLabƬ, γνωρίζοντάς τον ως προπτυχιακός φοιτητής, τον Κορνήλιο Κούρτη,
με τον οποίο συνεργαστήκαμε και με ενέπνευσε σε μεγάλο βαθμό ο τρόπος
εργασίας του και αντίληψης των πραγμάτων, τον Γιώργο Τσουκαλά, τον Νίκο
Αναστόπουλο, τον Κωστή Νίκα, τον Τάσο Νάνο, την Γεωργία Κουβέλη, τον
Τάσο Κατσιγιάννη, τον Στέφανο Γεράγγελο, με τους οποίους περάσαμε όμορ-
φες στιγμές τεχνικών ή μη αναλύσεων εντός και εκτός συνόρων, τον Θοδωρή
Γκούντουβα, ο οποίος συνέβαλε με την διπλωματική του εργασία στην βελ-
τίωση και επέκταση καίριων σημείων της διατριβής μου, αλλά και τα υπόλοι-
πα μέλη των «Παραλλήλων» και «Κατανεμημένων», όλοι μαζί συνέβαλαν και
συμβάλλουν στην δημιουργία του ευχάριστου κλίματος που δρα ως κινητή-
ριος δύναμη για κάθε επιτυχία.

Οφείλω, όμως, να ευχαριστήσω θερμά και τους «εκτός του κάδρου» συμ-
βάλλοντες, τους αεί φίλους μου από τα λυκειακά και προπτυχιακά χρόνια, Νί-
κο, Κώστα και Σωκράτη, που απετέλεσαν συχνά την διαφυγή και διέξοδο από
την τύρβη της καθημερινότητας, και την κοπέλα μου, Ευανθία, που τα τελευ-
ταία χρόνια βρισκόταν συνεχώς δίπλα μου, μεταδίδοντάς μου την δύναμη και
την αγάπη της, για να συνεχίσω στον δύσκολο δρόμο του διδακτορικού.

Τέλος, αλλά μάλλον ως ακρογωνιαίοι παρά ακροτελεύτιοι, οι γονείς μου,
Κωνσταντίνος και Ειρήνη, και τα αδέλφια μου, Μάριος, Όλγα και Αλέξανδρος,
αξίζουν την αμέριστη ευγνωμοσύνη και ευχαριστία μου για όλα όσα μου έχουν
προσφέρει όλα αυτά τα χρόνια, υλικά, ηθικά, πνευματικά. Τους αφιερώνω αυ-
τό το πόνημα.

Με βαθειά εκτίμηση,
Βασίλειος Κ. Καρακάσης

Ƭ H διατριβή αυτή εκπονήθηκε στο Εργαστήριο Υπολογιστικών Συστημάτων του Τομέα Τεχνο-
λογίας Πληροφορικής και Υπολογιστών της Σχολής Ηλεκτρολόγων Μηχανικών και Μηχανι-
κών Υπολογιστών του Εθνικού Μετσοβίου Πολυτεχνείου.
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Introduction

Research in sparse matrices has been active since the early days of comput-
ing systems. eir use is intertwined strongly with the solution of large sparse
linear systems, whose mathematical and computational properties, as well as
their performance optimization opportunities, are still of particular interest in
the applied mathematics and computer science communities. e advent of
modern multicore architectures has posed new challenges to the performance
optimization of sparse matrix kernels, which are now even more important for
the efficient execution of large sparse linear systems. In this chapter, we present
brieĘy the different methods for solving large sparse linear systems and desig-
nate the importance of the sparse matrix-vector multiplication kernel, which
has been the key motivation for this work. We also discuss the main challenges
posed by the modern multicore architectures in the execution of this kernel
and give an overview of our approach for its optimization.

1.1 Sparse linear systems

Sparse matrices are ĕnite matrices dominated by zero elements. ese matri-
ces arise oen with the discretization of partial differential equations (PDE) in
ĕnite element methods (FEM) and are usually involved in the solution of large
linear systems of the form

Ax = b, (1.1)

where A is an n × n coefficient matrix, b is the right-hand side vector, and x is
the vector of unknowns. ere are two large categories of methods for solving
linear systems: direct and iterative solution methods.

e direct solution methods compute the exact solution of a linear system
by factorizing the matrix A, i.e., expressing it as a product of two or more ma-
trices, and then relying on forward and backward substitution for computing
the unknown vector x. Well-known direct solutionmethods include the Gaus-
sian elimination, the LU decomposition and the Cholesky factorization [Duff

1
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et al., 1989; Barrett et al., 1987; Davis, 2006]. e cost of these methods is pro-
portional to the matrix-matrix multiplication cost [Strassen, 1969], which can
be prohibitive for large dense linear systems. For sparse matrices, though, this
cost is at the order of the non-zero elements of the matrix, but in this case the
implementation of direct methods is not as straightforward as for dense ma-
trices. During the factorization process of the original matrix, new non-zero
elements, called ĕll-in elements, may be introduced in places which were ini-
tially occupied by zeros. is complicates both the data structures needed to
store the sparse matrix and the factorization process. e storage of sparse ma-
trices must efficiently support the insertion of the ĕll-in elements, whereas the
factorization process must be preceded by a ĕll-in minimization step, in order
to reduce the overall insertion overhead [Saad, 2003]. is increased cost of
sparse direct methods favors the use of approximate iterative methods for the
solution of large sparse linear systems.

e iterative solution methods do not compute the exact solution of a lin-
ear system, but instead, they try to provide a close approximation of the so-
lution. e iterative methods for linear systems can be divided into two large
categories [Barrett et al., 1987; Saad, 2003]:
(a) the stationary methods and
(b) the projection methods.

e stationary methods start with an initial approximation x0 of the sys-
tem’s solution, which then reĕne iteratively by trying to annihilate one or more
components of the residual vector b− Ax at a time. In its general form, a sta-
tionary method can be written as following [Barrett et al., 1987]:

x(k+1) = Bx(k) + c (1.2)

At each iteration k, the next approximation x(k+1) of the solution is computed
by multiplying the current approximation with a sparse coefficient matrix B,
derived from the original matrix A. e most common stationary methods
are the Jacobi, Gauss-Seidel and the SuccessiveOverrelaxation (SOR)methods.
e convergence of thesemethods relies on strict requirements on the structure
of the original matrix and, therefore, it is not guaranteed for all matrices [James
and Riha, 1975; Ferziger and Peric, 2001; Saad, 2003].

e projectionmethods try to extract an approximate solution x̃ of the sys-
tem from a subspace K of Rn by constraining the residual vector r = b − Ax̃
to be orthogonal to a subspace L ofRn. Starting from an initial guess x0, these
methods proceed at every iteration by selecting a pair of subspaces K and L
and advance x in K, so that the new residual is orthogonal to L. In prac-
tice, these methods can be viewed as a generalization of the steepest descent
method, where at each iteration the selected solution is the one that minimizes

2
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the distance from the right hand side vector b. Indeed, the steepest descent
method can be obtained by settingK = L = r [Saad, 2003].

e most successful and widely used projection methods are the Krylov
subspace methods [Saad, 1981]. ese methods rely on Krylov subspaces for
drawing the approximate solution at each iteration. A Krylov subspace is de-
ĕned as

Km(A, v) = span{v, Av, A2v,…, Am−1v}, (1.3)

where the span operator denotes the set of all linear combinations of its vector
arguments. At each iteration m, a Krylov method draws a solution from the
subspace Km(A, r0), where A is the system’s coefficient matrix and r0 is the
residual of the initial guess x0. A Krylovmethod can be viewed as a polynomial
approximation of A−1. Indeed, if the method has converged aerm iterations
to a solution x̃ and x0 = 0, then the following equations must hold:

x ≈ x̃ (1.4)

A−1b ≈

(m−1∑
i=1

αiAi

)
b (1.5)

e disadvantage of iterative solution methods compared to direct ones is
the lack of robustness. e convergence of stationary methods cannot be guar-
anteed for all matrices, while the convergence ratio of the projection methods
may be too slow to be practical. For this reason, it is desirable to transform the
initial problem to an equivalent one with better convergence characteristics.
is process is known as preconditioning of the linear system.

Preconditioned Krylov methods are currently the most widely used meth-
ods for solving large sparse linear systems. Additionally, these methods in-
volve a small and well-deĕned set of computational kernels, which favor high-
performance parallel implementations. Among the most prominent Krylov
methods are the Generalized Minimum Residual (GMRES) method and the
Conjugate Gradient (CG) method with its variations, Bi-CG and Bi-CG Stabi-
lized [Saad and Schultz, 1986; Hestenes and Stiefel, 1952; van der Vorst, 1992].

1.2 The computational aspect of iterative methods

Krylov iterative methods for the solution of sparse linear systems involve the
execution of the following four computational operations [Saad, 2003; Hoem-
men, 2010]:
(a) Vector updates. A vector update is a combination of scalar multiplication

and vector addition. Given two vectors, x and y, and a scalar α, the vector

3
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update operation is of the form

x = x+ αy.

is operation is also known as AXPY, named aer the corresponding
BLAS subroutines [Lawson et al., 1979].

(b) Dot products. e dot product is the inner product of two vectors. us,
given two x and y vectors with n elements, the dot product is calculated as

t = xTy =
n∑

i=1
xiyi.

(c) Matrix-by-vector products. is is the product of a sparse matrix A and a
vector x:

y = Ax.

e sparse matrix A is the coefficient matrix of the system or the trans-
formed coefficient matrix in case of a preconditioned Krylov method.

(d) Preconditioner operations. ese are operations related to the precondi-
tioning process and usually involve the direct solution of an ‘easy’ linear
system.

Each of the above well-deĕned operations forms a computational kernel. e
most time-consuming kernel in a Krylovmethod is thematrix-by-vector prod-
uct, which we will henceforth call Sparse Matrix-Vector Multiplication kernel,
or simply SpMV. Figure 1.1 shows an execution time breakdown of a typical se-
rial implementation of the CG method in a modern multicore architecture for
different coefficient matrices. e majority of the execution time, surpassing
90% in some cases, is spent executing the SpMV kernel. is kernel, therefore,
becomes of crucial importance for the acceleration of iterative solution meth-
ods and has been recently characterized as one of the computational problems
whose optimization will play a signiĕcant role in scientiĕc computing in the
next decade [Colella, 2004; Asanovic et al., 2006].

However, the importance of the preconditioner operations and the dot prod-
ucts must not be underestimated. An expensive preconditioner, e.g., the in-
complete LU factorization (ILU), may consume the majority of the execution
time of an iterative method. Nonetheless, since preconditioners are actually
direct solution methods, they are not directly related to the iterative process it-
self, as is the SpMV kernel and the dot products, but they are rather part of the
intriguing problem of direct solution methods for sparse matrices [Asanovic
et al., 2006]. Additionally, conversely to the SpMV kernel and the vector op-
erations, there is not such a strict requirement in high precision arithmetic for

4
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Figure 1.1: Execution time breakdown for the non-preconditioned CG iterative
method for different problem categories.

the preconditioners, therefore allowing high-performance low precision im-
plementations [Buttari et al., 2008].

e dot products can also become a performance bottleneck in certain
cases, especially in a parallel execution environment. e reduction opera-
tion required to calculate the ĕnal result has limited parallelism, logarithmic
to the input size n. Although large input sizes lead to adequate parallelism,
undesirable side-effects may be introduced, such as cache misses or increased
communication cost, hindering the exploitation of the available parallelism.

Implementing high-performance iterative solutionmethods for large sparse
linear systems is indeed an extremely challenging task with multiple aspects
that need a careful and in-depth examination. e advent of multicore and
manycore architectures has introduced further challenges for the optimization
of these methods, that should be successfully addressed in order to harness the
performance capacity of the new hardware.

1.3 Challenges of multicore architectures

It is not very long ago that the quest for higher processor frequencies was aban-
doned by the leader chipmanufacturers, due to the need for higher energy effi-
ciency and the need to keep Moore’s law alive at the same time. e interest of
academia and industry has since shied toward incorporating multiple cores
inside the same physical processor, inaugurating the multicore era and setting
up new challenges. e use of multiple cores or hardware threads inside the
same physical processor has broaden the gap between the rate that the proces-
sor can now consume data and the rate that the memory subsystem can supply

5



thesis March 11, 2013 15:54 Page 6 �
�	

�
�	 �
�	

�
�	

1. Introduction

. .P .P
.C$

.Bus I/F

.P .P
.C$

.Bus I/F

.MC . Main
Mem.

.Bus

(a) Symmetric shared memory.
. .P .P
.C$
.MC

.P .P
.C$
.MC

. Mem.
Node 0

. Mem.
Node 1

(b)NUMA.

Figure 1.2: e two current trends in modern multicore architectures: symmetric
shared memory and non-uniformmemory access (NUMA) architectures.

data, making the ‘memory-wall’ problem [Wulf andMcKee, 1995] even tenser.
Symmetric shared memory multicore architectures are affected the most

from the memory-processor speed gap. In these architectures, all the mem-
ory and interprocessor communication requests are routed through the same
front-end bus to the central, off-chip memory controller and the peer proces-
sors (Figure 1.2a). Apparently, this centralized logic, in conjunction with the
low bandwidth and high latency that the off-chip communication carries with,
can easily become the hotspot of a memory-intensive application. Large and
complex cache hierarchies, unfortunately, can limit this effect in the short term
only.

e need to extract more parallelism from the hardware, given the slow
DRAM speed evolution pace, demands a more decentralized approach. e
Non-UniformMemoryAccess (NUMA) architectures ‘move’ thememory con-
troller inside the processor chip and use dedicated hardware for the interpro-
cessor communication (Figure 1.2b). emainmemory, though still shared, is
nomore uniformly accessible from every processor in the system: it is split into
multiple nodes, each one assigned to a single processor. e available band-
width is now ample for the communication between a processor and its local
memory node, but accessing remote nodes requires multiple and costly hops.
Two more challenges arise with the NUMA architectures for the memory-in-
tensive kernels:

(a) e increase in the available memory bandwidthmay reveal weaknesses in
the computational part of the kernel, that where otherwise hidden by the
very slow access to the main memory.

(b) e kernel’s performance can be now very sensitive to the correct place-
ment of its data on the different memory nodes.

6
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e latter challenge poses an additional burden for the programmer, whomight
need to explicitly alter her kernel to fully exploit the NUMA capabilities of a
system.

ese challenges must be successfully addressed in order to implement
high-performance iterative solvers for the future computer architectures. We
believe that the communicationƬ versus computation tradeoff will become in-
creasingly important in the next decade, as advances in the hardware technol-
ogy will allow a merger of the now special-purpose high-performance archi-
tectures (e.g., GPUs) and the Ęexible high-performance general-purpose pro-
cessors.

1.3.1 Energy consumption considerations

e power dissipation of modern processors has been of increasing concern
in the last decade. e shrinking of the integration scale and the accompany-
ing increase in the operating frequency of the circuit would have led to such a
power density that could render the processor cooling at least impractical, if not
problematic. e realization of this problem has brought the processor clock
frequency scaling to an abrupt halt, against the ambitious predictions back in
the early 2000’s [ITRS, 2001]. e performance, however, was not compro-
mised as more processor cores are now integrated in the same chip offering
increasingly higher performance levels by exploiting parallelism. Nonetheless,
as the integration scale is still constantly shrinking toward a few nanometers,
leakage or ‘idle’ power has started to dominate the total power dissipation of
modern processors [Ahmed and Schuegraf, 2011]. Resource sharing in the
hardware and frequency scaling can help in controlling the power dissipation
of modern processors and increase their energy efficiency.

Modern multicore processors share hardware resources in different lev-
els ranging from pipeline resources to high-level caches and the memory con-
troller. Efficient resource sharing among the threads of a multithreaded appli-
cation can be beneĕcial in terms of overall power dissipation, since ‘unused’
parts of the chip can be shut down, saving considerable amount of wasted en-
ergy [Kaxiras et al., 2001]. Similarly, the effect of scaling down the CPU fre-
quency in the total power dissipation of the processor can be signiĕcant, due
to the their superlinear relation [Brooks et al., 2000; Kaxiras and Martonosi,
2008]. e consequent loss in the overall performance can beminimized, while
maintaining a high energy efficiency, by dynamically scaling down the fre-
quency in nonperformance-critical parts [Kaxiras andMartonosi, 2008;Curtis-
Maury et al., 2008]. Unfortunately, there is nomagic recipe that maximizes the

Ƭ With the term communication, we denote all the off-chip communication traffic, incl. the mem-
ory operations.

7
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performance and minimizes the energy consumption at the same time. ere
exists a set of optimal tradeoffs, instead, that must be balanced depending on
the speciĕc needs of each application and the underlying system [Karakasis
et al., 2011]. Finding an optimal performance-energy tradeoff is not an easy
task and must involve both the hardware and the soware. e hardware must
become more Ęexible offering facilities for monitoring the power dissipation
of the different components and for dynamically switching on and off ‘power-
hungry’ parts of the processor. e soware, on the other hand, must be able to
utilize these features efficiently either at the operating system level or through
a power-aware runtime environment, in order to provide the means for high-
performance energy-efficient computing.

1.3.2 The algorithmic nature of the SpMV kernel

ematrix-vectormultiplication kernels, both dense and sparse, can be viewed
as a sequence of dot product operations between each row vector of the matrix
and the input vector. Algorithm 1.1 shows this high-level approach. e algo-
rithm sweeps once through the whole matrix and performs a constant number
of Ęoating point operations per element. is automatically leads to a Θ(1)
Ęop:byte ratio compared to the Θ(n) (n being the dimension of the matrix) of
the matrix-matrix multiplication kernels. In practice, this means that in or-
der to avoid bottlenecks, the memory hierarchy must be able to provide data
to the processor at a comparable speed, which is hardly ever the case for any
modern mainstream microarchitecture. e situation gets worse with sparse
matrices, where the kernel must ĕrst retrieve the non-zero element’s location
information, before accessing it.

1: procedureMV(A::in, x::in, y::out)
2: foreach row vector ai∗ in A do
3: yi ← aTi∗x
4: end for

Algorithm 1.1: High-level representation of the matrix-vector multiplication.

Figure 1.3 shows the speedup of a multithreaded SpMV baseline imple-
mentation and the consumed main memory bandwidth in GB/s in a two-way
quad-core symmetric shared memory system. Despite exhibiting ample paral-
lelism [Buluç et al., 2009], the SpMV kernel fails to scale beyond four threads
due to the saturation of the system’s memory bandwidth. An 85% of the avail-
able memory bandwidth is already consumed by the two threads and it is to-

8



thesis March 11, 2013 15:54 Page 9 �
�	

�
�	 �
�	

�
�	

1.3. Challenges of multicore architectures

1 2 4 8

Threads

0

0.5

1.0

1.5

2.0

S
pe

ed
up

0%
  (0.00 GB/s)

25%
  (1.61 GB/s)

50%
  (3.22 GB/s)

75%
  (4.83 GB/s)

100%
  (6.44 GB/s)

M
em

or
y 

B
an

dw
id

th

Speedup
Consumed B/W

Figure 1.3: Demonstration of the SpMV kernel speedup in relation to the memory
bandwidth consumption in a two-way quad-core symmetric sharedmem-
ory system.

tally saturated from four threads onward. e minimization of the memory
footprint of the sparse matrix, therefore, becomes of vital importance for the
optimization of the SpMV kernel, especially for the symmetric sharedmemory
architectures.

Despite being the most prominent, memory intensity is not the sole prob-
lem of the SpMV kernel. Even more challenging is that the performance of the
kernel depends heavily on the sparsity structure of the input matrix, leading
to dramatic performance variations. For example, matrices with a very irreg-
ular structure can lead to a considerable amount of cache misses and a signiĕ-
cant load imbalance that will ruin performance. Conversely, regular ones may
expose more the computational part of the kernel and require a less memory-
centric approach. It is therefore imperative for a successful SpMVoptimization
to adapt to the speciĕcities of the unknown input matrices during the runtime,
and this is probably one of the greatest challenges in optimizing this particular
kernel.

1.3.3 The energy efficiency of the SpMV kernel

e streaming nature of the SpMV kernel renders its performance very sen-
sitive to the sharing of the levels of the cache hierarchy among the threads.
Multiple threads executing the SpMV kernel and sharing the same cache level
contend for cache space, causing an increase in capacity misses, thus deterio-
rating signiĕcantly the performance of the kernel. On the other hand, ‘spread-
ing’ the threads across different caches, it is not a power-friendly conĕguration,
despite the increase in performance, since caches take up a signiĕcant amount
of the total power dissipation of the processor [Kaxiras and Martonosi, 2008].

9
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1. Introduction

is increase in power dissipation, however, can be compensated with the use
of multiple threads running at a lower frequency, without compromising the
kernel’s performance. Selecting the appropriate thread placement and proces-
sor frequency for obtaining an optimal compromise between performance and
energy consumption is very challenging for the SpMV kernel, since its perfor-
mance is highly dependent on the structure of the input matrix. Examining
the structure of the matrix beforehand and using an advanced classiĕcation
scheme might be necessary for selecting an execution conĕguration for the
kernel, in order to achieve an optimal performance-energy tradeoff.

1.4 Contribution of this thesis

In this thesis we focus on the optimization of the SpMV kernel inmodernmul-
ticore architectures as being themost time-consuming kernel in iterativemeth-
ods for the solution of sparse linear systems. Despite being an integral part
of successful iterative methods and possibly very time-consuming under cer-
tain circumstances, we do not focus in optimizing preconditioner operations.
ese operations are actually direct solutionmethods and can be therefore con-
sidered not to be directly related to the iterative solution process itself. Con-
versely, they belong to the intriguing problem of direct methods for sparse ma-
trices and their optimization can be considered as another important, though
distinct, computational problem [Davis, 2006; Asanovic et al., 2006].

1.4.1 In-depth performance analysis and prediction models

e performance of the SpMV kernel has been of signiĕcant concern in the
past; however, a robust performance analysis that would quantify the impact of
the alleged performance bottlenecks has not been conducted. As a result, there
has not been a clear conclusion as of what are themajor performance problems
of the SpMV kernel. In this thesis, we take an in-depth look at the algorithmic
characteristics of the SpMV kernel and perform a quantitative analysis on a
wide range of sparse matrices and modern multicore architectures, in order to
assess the exact impact on the performance of the kernel. e conducted anal-
ysis offers a clear understanding of the performance of the SpMV kernel and
serves as a guide for efficient implementations. Indeed, the identiĕcation of the
memory bandwidth bottleneck as the key and inherent performance problem
of SpMV in a multithreaded context has guided us to the adoption of explicit
compression techniques in optimizing the kernel. Additionally, based on this
analysis, we have developed performance models for the prediction of the op-
timal block for ĕxed size blocking methods.

10
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1.4.2 The CSX storage format for sparse matrices

emajor contribution of this thesis is theCompressed Sparse eXtended (CSX)
storage format for sparse matrices. Based on the idea of explicitly compressing
the indexing structure of a sparse matrix storage format, in order to minimize
the memory footprint of the matrix [Willcock and Lumsdaine, 2006; Kourtis
et al., 2010], CSX incorporates the notion of blocking in order to achieve even
higher compression rates and better computational characteristics [Karaka-
sis et al., 2009a,b]. e idea of explicitly compressing the data involved in a
memory-intensive application, such as the SpMV kernel, aims at reducing the
pressure to the memory subsystem at the expense of the decompression com-
putations. However, if the memory intensity of an application is mitigated by a
higher available memory bandwidth, the decompression computations might
be exposed and should be therefore reduced. In such a case, the computational
part of the SpMV is also further exposed, an issue that must be addressed suc-
cessfully in order to achieve high performance.

CSX is a compact storage format for sparse matrices that is able to detect
and encode in a single representation a diverse set of matrix substructures. A
substructure is any regular one- or two-dimensional sequence of non-zero el-
ements inside the sparse matrix. e number of all the possible substructures
detected from CSX is indeĕnitely large and a priori unknown for a speciĕc
sparse matrix. For this reason, CSX employs runtime code generation in order
to provide high-performance SpMV implementations adapted to the speciĕci-
ties of every matrix. Compared to other storage formats that exploit a single
substructure type, e.g., the BCSR format that exploits only dense block sub-
structures [Im and Yelick, 2001], CSX is able to achieve consistent high perfor-
mance by successfully adapting to a great variety of sparse matrices, ranging
from regular ones to those with a rather irregular structure. e CSX format
can accelerate the SpMVkernelmore than 50%on average in symmetric shared
memory systems, where thememory intensity of the kernel ismore prominent.
NUMA architectures are also supported efficiently by the CSX format, which
is adapted to employ a less aggressive compression scheme, in order to miti-
gate the cost of decompression; in these architectures, CSX is able to provide a
nearly 20% performance improvement over typical SpMV implementations.

A key design goal for the CSX format was to be practical for use within ex-
isting iterative solution methods. For this reason, we have spent considerable
effort in minimizing the preprocessing cost of CSX, which consists of the cost
of mining the matrix for substructures and the cost of constructing the ĕnal
CSX format. Using a combination of statistical sampling for the input matrix,
careful memory management and parallelization, we were able to shrink the
full preprocessing cost to a few dozens of serial SpMV operations. Indeed, de-

11
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spite its preprocessing cost, CSX is able to accelerate the SpMV component of
the Bi-CG Stabilized solver of the Elmer multiphysics soware nearly 40% and
offers a 15% average performance improvement to the overall solver.

An early version of CSX was initially conceived and presented by Kourtis
[2010] as a ĕrst attempt to achieve higher compression ratios by exploiting lin-
ear substructures of the sparse matrix (horizontal, vertical, diagonal and anti-
diagonal). In this thesis, CSX was substantially extended in order to become
a viable high-performance approach for the optimization of SpMV in modern
multicore architectures. A set of new features were implemented that allowed
CSX to become one of the state-of-the-art storage formats for sparse matrices:
(a) Support for two-dimensional substructures. Two-dimensional substructures

allow CSX to achieve compression ratios close to the theoretical maximum
and also exhibit better computational characteristics.

(b) Adaptive compression scheme. is scheme allows the relaxation of com-
pression in NUMA architectures, where the memory bottleneck is not so
intense, by sparing processor cycles from the decompression cost.

(c) Advanced substructure selection heuristic. e new heuristic allows an ef-
ĕcient balancing of the compression beneĕt and the decompression over-
head depending on the underlying architecture. In conjunction with the
adaptive compression scheme, CSX is able to provide considerable perfor-
mance beneĕts also in NUMA architectures.

(d) Optimized preprocessing. e preprocessing of the matrix needed to detect
and encode the CSX substructures has been considerably reduced, allow-
ing CSX to be used ‘as-is’ in the Elmer multiphysics soware [Lyly et al.,
1999–2000] and speedup the solver.

(e) Enhanced runtime code generation. e code generation module has been
substantially revised in order to allow more straightforward and efficient
implementations of the substructure-speciĕc SpMV routines.

(f) Support for symmetric matrices. CSX supports also symmetric matrices
leading to considerable gains in SpMV performance, due to the signiĕcant
reduction of the matrix’s memory footprint.

Efficient implementation for symmetric matrices

We introduce a variantCSX for symmetricmatrices, capable of achieving nearly
3× reduction in thematrix representation size. Multithreaded symmetric SpMV
implementations, however, must cope with a RAW dependency on the output
vector. In order to avoid the prohibitive cost of locking, the dependency is typ-
ically solved with the use of per-thread local vectors, which are reduced to the

12
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ĕnal output vector at the end of the SpMV computation. However, this reduc-
tion phase entails a signiĕcant performance overhead that increases linearly
with the thread count, preventing SpMV from scaling. We address this prob-
lem by building an indexing scheme for local vectors that allows the selective
reduction of the conĘicting elements only, while all other update operations are
pushed directly to the output vector. Our scheme effectively decouples the re-
duction overhead from the thread count, since the local vectors become sparser
as the number of participating threads increases and, therefore, the index size
is reduced. As a result, symmetric SpMV kernel scales as expected. Symmetric
CSX in conjunction with our low-overhead reduction scheme, symmetric CSX
was able to accelerate more than 2× the performance of the SpMV kernel.

Data compression beyond SpMV

e notion of data compression employed by CSX for the optimization of the
SpMV kernel has broader repercussions in the modern multicore era. Ev-
ery new processor generation not only augments the memory-processor speed
gap, but also increases the memory-processor ‘power gap’. Main memories
are major contributors to the overall power dissipation of a computer system
and memory-intensive applications tend to consume more energy than CPU-
intensive ones [Kamil et al., 2008]. As a result, explicit data compression tech-
niques are likely to become more mainstream in the future, as a means not
only for mitigating the memory contention problem, but also for reducing the
energy footprint of future HPC applications.

1.4.3 Toward an energy-efficient SpMV implementation

In this thesis, we take a ĕrst step in investigating the performance-energy trade-
offs of the SpMVkernel and propose amethodology for selecting the processor
frequency and the thread placement that lead to optimal tradeoffs for the SpMV
kernel. Based on the notion of the Pareto optimality, we show that there ex-
ist a set of optimal performance-energy tradeoffs and that the commonly used
energy-delay products are indeed optimal solutions in the Pareto sense. e
key goal of our methodology is not only to predict the best energy-delay con-
ĕgurations, but also provide a representative set of optimal tradeoffs. Based
on the observation that matrices with similar structural characteristics have a
similar performance and energy consumption behavior, we build our method
on matrix clustering techniques and construct a representative set of optimal
conĕgurations for each cluster. Our prediction method is able to provide near-
optimal sets of execution conĕgurations for the SpMV kernel for a wide range
of sparse matrices.

13
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1.5 Outline

e rest of the thesis proceeds with a detailed and in-depth analysis of the in-
volved subjects and our contribution.

Chapter 2 is a review of the storage formats for sparse matrices proposed
in the literature. Starting from conventional and widely used formats, we pass
through the multiple blocking storage variants to microarchitecture-speciĕc
formats and formats relying on explicit compression techniques. We present
also symmetric matrix storage formats and discuss the major challenges of the
symmetric SpMV kernel.

Chapter 3 presents an in-depth performance analysis of the SpMV ker-
nel in modern multicore architectures. We highlight the possible performance
impediments from an algorithmic perspective and proceed in studying thor-
oughly their impact in modern multicore architectures in single- and multi-
threaded contexts. In this chapter, we present also the matrix suite and the
experimental platforms and methodology we use throughout this thesis.

Chapter 4 focuses speciĕcally on blocking storage formats and investigates
their optimization opportunities. We study the compression capabilities and
computational characteristics of each format and investigate their impact on
modern multicore architectures. Based on this analysis, we propose two al-
ternative and simple performance models for predicting the optimal block of
BCSR.

Chapter 5 presents in detail the Compressed Sparse eXtended format. e
presentation of the data structures and the matrix construction process is fol-
lowed by a thorough performance evaluation, which conĕrms the superiority
of CSX compared to other alternative storage formats in terms of absolute per-
formance and performance stability across a variety of sparse matrices and ar-
chitectures. e chapter closes with the benchmark results of the integration
of CSX into the Elmer multiphysics simulation solver.

Chapter 6 presents our approach for optimizing the symmetric SpMV ker-
nel. We start with a presentation and evaluation of the impact of the reduction
phase optimization that allows SpMV to scale and continue with the CSX vari-
ant for symmetric sparse matrices. e chapter closes with an evaluation of
our optimizations in the context of the CG iterative algorithm.

Chapter 7 departs from the purely performance-oriented view of the SpMV
kernel and inserts the dimension of energy-efficiency. Starting with an intro-
ductory section on the fundamentals of processor power dissipation, we then
investigate the performance-energy tradeoffs of the SpMV kernel in relation
to the input matrix, the processor frequency and the thread placement. We
ĕnally propose a machine learning based approach for predicting the execu-
tion conĕgurations (core frequency, thread placement) that lead to the optimal
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tradeoffs.
Chapter 8 concludes this thesis, summarizing its contribution and achieve-

ments, and discusses a future research orientation in the ĕeld of SpMV opti-
mizations and HPC applications in general.
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2

Storing Sparse Matrices

e density of a typical large sparse matrix, i.e., the ratio of its non-zero ele-
ments over the product of its dimensions, is well below 1% inmost of the cases.
Storing efficiently a sparse matrix in terms of storage space, therefore, requires
to store only its non-zero values along with some location information for iter-
ating over them. However, building a storage format for the efficient execution
of the SpMV kernel is not a trivial task. e distribution of the non-zero ele-
ments and the underlying computer architecture play a signiĕcant role in the
performance of this kernel, and an efficient storage format must adapt success-
fully to these requirements. Several storage formats for sparse matrices have
been proposed for favoring the execution of the SpMV kernel, each one with
own advantages and disadvantages.

In this chapter, we attempt a comprehensive description of the most widely
used storage formats for sparse matrices and also present the most recent ap-
proaches to the optimization of the SpMV kernel through the use of advanced
sparse matrix storage formats. We focus speciĕcally on static generic formats,
i.e., formats that can be used to store sparsematriceswith any non-zero element
structure, and do not take any particular measure for the dynamic insertion of
new non-zero elements. Finally, although we present brieĘy two approaches
that compress the non-zero values of the matrix, we focus mainly on storage
formats that target the minimization of the non-zero element indexing struc-
tures.

2.1 Conventional storage formats

emost straightforward way to store a sparse matrix is to represent it as a se-
quence of (i, j, v) tuples, where v is the non-zero element’s value and i, j are the
corresponding row and column indices. is format is known as the Coordi-
nate (COO) format [Tewarson, 1973; Pooch and Nieder, 1973; Duff and Reid,
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.

.

..7.5 ..2.9 ..2.8 ..2.7 ..0 ..0

..6.8 ..5.7 ..3.8 ..0 ..0 ..0

..2.4 ..6.2 ..3.2 ..0 ..0 ..0

..9.7 ..0 ..0 ..2.3 ..0 ..0

..0 ..0 ..0 ..0 ..5.8 ..5.0

..0 ..0 ..0 ..0 ..6.6 ..8.1

.


.


.A =

.

..rowind: ..( ..0 ..0 ..0 ..0 ..1 ..1 ..1 ..2 ..2 ..2 ..3 ..3 ..4 ..4 ..5 ..5 ..)

..colind: ..( ..0 ..1 ..2 ..3 ..0 ..1 ..2 ..0 ..1 ..2 ..0 ..3 ..4 ..5 ..4 ..5 ..)

..values: ..( ..7.5 ..2.9 ..2.8 ..2.7 ..6.8 ..5.7 ..3.8 ..2.4 ..6.2 ..3.2 ..9.7 ..2.3 ..5.8 ..5.0 ..6.6 ..8.1 ..)

Figure 2.1: e Coordinate sparse matrix storage format.

1979; Saad, 1992]Ƭ. Figure 2.1 shows a typical implementation of the COO
format. e rowind and colind data structures are typically 32-bit integers,
while the non-zero values are double precision Ęoating point numbers. Algo-
rithm 2.1 shows an SpMV kernel implementation using this format. e main
advantage of this format is its Ęexibility in inserting and deleting non-zero el-
ements, since there is no restriction in the order of the elements. However,
its key disadvantage for use in the SpMV kernel is its large memory footprint
(≈ 16NNZ bytes) and the abundance of indirect, and possibly irregular, refer-
ences in both the input and output vectors during the execution of the kernel.

1: procedureMVC(A::in, x::in, y::out)
A: matrix in COO format
x: input vector
y: output vector

2: for i← 0 to NNZ do
3: yi← rowind[i]
4: y[yi]← y[yi] + values[i] · x[colind[i]]
5: end for

Algorithm 2.1: Implementation of the SpMV kernel using the COO format.

emost widely used storage format for sparse matrices is the Compressed
Sparse Row (CSR) format [Tinney and Walker, 1967; Pooch and Nieder, 1973;
Duff and Reid, 1979; Saad, 1992]. is format eliminates the rowind data

Ƭ For the completeness of our description, we should note here that the early sparse matrix stor-
age format nomenclature was ‘standardized’ by Saad [1992]. Earlier research works or surveys
usually describe the different formats without coining speciĕc terms.
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.

.

..7.5 ..2.9 ..2.8 ..2.7 ..0 ..0

..6.8 ..5.7 ..3.8 ..0 ..0 ..0

..2.4 ..6.2 ..3.2 ..0 ..0 ..0

..9.7 ..0 ..0 ..2.3 ..0 ..0

..0 ..0 ..0 ..0 ..5.8 ..5.0

..0 ..0 ..0 ..0 ..6.6 ..8.1

.


.


.A =

.

..rowptr: . . . . ..( ..0 ..4 ..7 ..10 ..12 ..14 ..16 ..) . . . . .

..colind: ..( ..0 ..1 ..2 ..3 ..0 ..1 ..2 ..0 ..1 ..2 ..0 ..3 ..4 ..5 ..4 ..5 ..)

..values: ..( ..7.5 ..2.9 ..2.8 ..2.7 ..6.8 ..5.7 ..3.8 ..2.4 ..6.2 ..3.2 ..9.7 ..2.3 ..5.8 ..5.0 ..6.6 ..8.1 ..)

Figure 2.2: e Compressed Sparse Row storage format.

structure of the COO format, which stores the row indices explicitly, and re-
places it with a set of pointers to the start of each row of the matrix. Figure 2.2
shows schematically a typical implementation of the CSR format. e colind
and values arrays remain the same as in the COO format, while the rowind
array is replaced by the rowptr, which stores the position of the ĕrst element
of each row inside the colind and values arrays. For an N ×M sparse ma-
trix, the size of the rowptr array is N+ 1 and its last element points always to
the end of the colind and values arrays. Since N ≪ NNZ for the majority
of the sparse matrices, the memory footprint of the CSR format is consider-
ably reduced compared to the COO format (≈ 12NNZ), while its construc-
tion is also straightforward. is also constitutes the main advantage of CSR
that has largely promoted its ubiquity: it is a compact and easy to use format.
Nonetheless, CSR imposes a row-wise iteration order of the non-zero elements
of the matrix, which implies a lexicographic sort of the elements based on their
coordinates. e row indexing of CSR facilitates the random access of non-
zero elements (O(N) complexity), but complicates the insertion and deletion
of non-zero elements. e column-wise counterpart of CSR is the Compressed
Sparse Column (CSC) format. CSC stores the non-zero elements column-wise
and keeps the row indices explicitly, while indexing the columns of the matrix.

Algorithm 2.2 shows a typical implementation of the SpMV kernel using
the CSR format. e performance characteristics of this kernel and its opti-
mization opportunities will be discussed in detail in subsequent chapters.
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1: procedureMVC(A::in, x::in, y::out)
A: matrix in CSR format
x: input vector
y: output vector

2: for i← 0 to N do
3: for j← rowptr[i] to rowptr[i+ 1] do
4: y[i]← y[i] + values[j] · x[colind[j]]
5: end for
6: end for

Algorithm 2.2: Implementation of the SpMV kernel using the CSR format.

2.2 Exploiting the density structure of the matrix

Despite being relatively compact, the CSR format has a lot of redundant infor-
mation in its colind structure, which stores the column indices of the non-
zero elements. e non-zero elements of sparse matrices arising in real-life
applications expose some regularities in their structure. For example, some el-
ements might be arranged in horizontal, vertical or diagonal sequences, while
others might form small dense two-dimensional blocks. We will call each of
these regularities in the structure of the matrix a substructure. Since the se-
quence of elements inside a substructure is known by default, one could keep a
single column index per substructure for decsribing all its elements, therefore
reducing the size of the colind array. is technique of grouping together
neighboring non-zero elements and representing them by a single column in-
dex is also known as blocking. Apart from the apparent advantage of reducing
the column indexing structure of thematrix, blocking comeswith an important
side-effect: it provides themeans for further optimizing the computational part
of the SpMV kernel [Im and Yelick, 2001; Karakasis et al., 2009b]. e inner
loop of the SpMVkernel which computes the dot product between a row vector
and the input vector (Algorithm 2.2, lines 3–5) does not proceed element-by-
element, but rather substructure-by-substructure, exposing further the com-
putational part of the kernel and allowing speciĕc optimizations.

ere has been proposed several types of blocking formats, each one ex-
ploiting a different type of substructures. However, we could distinguish two
large categories of blocking: ĕxed and variable size blocking. In the following,
we will describe these categories in more detail and present the most repre-
sentative formats from each category. We will also present brieĘy some more
specialized approaches.
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.

. .

. .

.
.

..7.5 ..2.9 ..2.8 ..2.7 ..0 ..0

..6.8 ..5.7 ..3.8 ..0 ..0 ..0

..2.4 ..6.2 ..3.2 ..0 ..0 ..0

..9.7 ..0 ..0 ..2.3 ..0 ..0

..0 ..0 ..0 ..0 ..5.8 ..5.0

..0 ..0 ..0 ..0 ..6.6 ..8.1

.


.


.A =

.r = 2, c = 2

. .

. .

.

.

.

.

.

..browptr: . . . . . . ..( ..0 ..2 ..4 ..6 ..)

..bcolind: . . . . . . ..( ..0 ..2 ..0 ..2 ..3 ..)

..bvalues: ..( ..7.5 ..2.9 ..6.8 ..5.7 ..2.8 ..2.7 ..3.8 ..0 ..2.4 ..6.2 ..9.7 ..0 ..3.2 ..0 ..0 ..2.3 ..5.8 ..5.0 ..6.6 ..8.1 ..). . . . .

Figure 2.3: e Blocked Compressed Sparse Row storage format.

2.2.1 Fixed size blocking

Fixed size blocking methods exploit one- or two-dimensional substructures by
trying to construct full ĕxed size blocks. e size and the dimensions of the
blocks are ĕxed throughout the matrix, while padding with explicit zeros is
used to construct full blocks. ese methods involve an initial preprocessing
step, during which the matrix is scanned for dense blocks and a decision is
drawn as to what block size to utilize. is decision is based mainly on the
minimization of the padding elements [Im and Yelick, 2001; Im et al., 2004],
but other approaches consider furthermore the computational characteristics
of the resulting code [Karakasis et al., 2009c].

e most representative storage format from this category is the Blocked
Compressed Sparse Row (BCSR) format [Pooch and Nieder, 1973; Saad, 1992;
Im and Yelick, 2001]. BCSR is essentially the blocked version of the standard
CSR format, storing ĕxed size blocks instead of simple non-zero elements. Fig-
ure 2.3 shows an example implementation of the BCSR format. e bcolind
structure stores the column index of the upper le element of each block, while
the browptr now splits thematrix into block-rows. e non-zero elements are
stored block-wise following a row-major order. BCSR imposes a strict align-
ment on the its blocks, requiring an r×c block to start at r-rows and c-columns
boundaries. Although this alignment requirement contributes to a faster pre-
processing, it usually introduces unnecessary padding. Alternatives to BCSR
that relax these requirements have been proposed by Vuduc andMoon [2005].

Algorithm 2.3 shows a typical implementation of the SpMV kernel using
the BCSR format. e double loop in lines 7–11 computes the matrix-vector
product for an r × c block. In practice, the block dimensions (r, c) are ĕxed
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and known during the compilation time, thus, the aforementioned loop can be
optimized signiĕcantly with the use of common compiler optimization tech-
niques, such as loop unrolling, vectorization etc. Indeed, the OSKI sparse
matrix optimization library, which is an ‘out-of-the-box’ BCSR implementa-
tion, implements speciĕc optimized versions for all block sizes up to 8 × 8,
falling back to the generic implementation shown in Algorithm 2.3 for larger
blocks [Vuduc et al., 2005].

1: procedureMVB(A::in, x::in, y::out, r::in, c::out)
A: matrix in BCSR format
x: input vector
y: output vector
r, c: block dimensions

2: ir ← 0
3: for i← 0 to N step by r do
4: for j← browptr[ir] to browptr[ir + 1] step by r · c do
5: jb ←

j
r · c

6: x0 ← bcolind[jb]
7: for k← 0 to r do
8: for l← 0 to c do
9: y[i+ k] = y[i+ k] + bvalues[j+ k · c+ l] · x[x0 + l]
10: end for
11: end for
12: end for
13: ir ← ir + 1
14: end for

Algorithm 2.3: Implementation of the SpMV kernel using the BCSR format.

Acommon substructure encountered inmany sparsematrices are sequences
of diagonal elements that do not necessarily lie on the main diagonal of the
matrix. Due to its nature, BCSR cannot handle these substructures at all and
inserts excessive padding. A common approach for applying blocking in such
matrices is to segment the matrix into ĕxed size bands and try to construct di-
agonal full blocks using zero-padding. is format is known as Row Segmented
Diagonal (RSDIAG) or Blocked Compressed Sparse Diagonal (BCSD), similarly
to BCSR [Agarwal et al., 1992; Vuduc, 2003; Karakasis et al., 2009a]. Figure 2.4
shows an example implementation of the RSDIAG format.

Despite a simple representation and a straightforward implementationwith
enough optimization opportunities, ĕxed size blocking methods fall victim of
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..7.5 ..2.9 ..2.8 ..2.7 ..0 ..0

..6.8 ..5.7 ..3.8 ..0 ..0 ..0

..2.4 ..6.2 ..3.2 ..0 ..0 ..0

..9.7 ..0 ..0 ..2.3 ..0 ..0

..0 ..0 ..0 ..0 ..5.8 ..5.0

..0 ..0 ..0 ..0 ..6.6 ..8.1

.


.


.b = 2

.A =

. .

. .

Figure 2.4: e Row Segmented Diagonal storage format.

the zero-padding they employ to construct full blocks. It is oen the case with
matrices without the desired non-zero element pattern, e.g., matrices with a
lot of diagonal elements in the case of BCSR, that the ĕnal memory footprint
of the matrix exceeds considerably that of the baseline CSR format, leading
even to considerable performance degradation. e size and the orientation
of the constructed blocks play a signiĕcant role in reducing the ĕnal matrix
size. It is therefore imperative that a preprocessing step exists for scanning the
matrix and deciding on the best block to use. e use of heuristics is a common
approach for selecting the most appropriate block size for the input matrix. Im
and Yelick [2001] estimate the padding overhead of each candidate block by
applying randomuniform sampling of thematrix and combine thismetric with
an estimation of the performance of each candidate block, obtained aer an
offline benchmarking process. Vuduc et al. [2002] ĕne-tune this heuristic and
provide upper and lower bounds on BCSR performance bymodeling the cache
behavior. In the next chapter, wewill present our approach on selecting the best
block size for BCSR, which apart from an estimation of the resulting memory
footprint of the matrix, takes into account the computational characteristics of
the candidate blocks.

Storage space requirements

Although ĕxed size blocking can reduce signiĕcantly the matrix footprint in
case of matrices with a rather regular non-zero element structure, the com-
pression potential of these methods remains limited. Suppose a N × N sparse
matrix with NNZ non-zero elements that can be perfectly grouped in r × c
blocks without padding (r, c≪ N) using BCSR. e size of the bcolind struc-
ture will then be 4NNZ

r×c = Θ(NNZ) bytes, still remaining in the order of NNZ,
as is the case of CSR.

2.2.2 Variable size blocking

e variable size blocking methods avoid the insertion of padding elements
by constructing blocks with variable size. To achieve this, they introduce ad-
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.

.
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.
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..7.5 ..2.9 ..2.8 ..2.7 ..0 ..0

..6.8 ..5.7 ..3.8 ..0 ..0 ..0

..2.4 ..6.2 ..3.2 ..0 ..0 ..0

..9.7 ..0 ..0 ..2.3 ..0 ..0

..0 ..0 ..0 ..0 ..5.8 ..5.0

..0 ..0 ..0 ..0 ..6.6 ..8.1

.


.


.A =

.

.. rowptr: . . . ..( ..0 ..4 ..7 ..10 ..12 ..14 ..16 ..) . . . . .

..bcolind: . . . ..( ..0 ..0 ..0 ..0 ..3 ..4 ..4 ..)

.. bsize: . . . ..( ..4 ..3 ..3 ..1 ..1 ..2 ..2 ..)

..bvalues: ..( ..7.5 ..2.9 ..2.8 ..2.7 ..6.8 ..5.7 ..3.8 ..2.4 ..6.2 ..3.2 ..9.7 ..2.3 ..5.8 ..5.0 ..6.6 ..8.1 ..). . . . . . .

Figure 2.5: e Variable Block Length storage format.

ditional data structures that store either the size of each block or the starting
column and row indices of each block. e total size of these additional data
structures can be kept low with the use of short, one- or two-byte, integers.

e most representative formats in this category are the Variable Block
Length (VBL) format, which exploits one-dimensional horizontal blocks, and
the Variable Block Row (VBR) format, which exploits two-dimensional blocks
[Saad, 1994; Pinar and Heath, 1999; Vuduc and Moon, 2005].

Figure 2.5 shows a typical implementation of the VBL format. e values
and rowptr arrays are exactly the same as in the CSR format, since VBL con-
structs one-dimensional horizontal blocks only. e bcolind array holds the
column index of the ĕrst element of each block, while bsize stores the size
of each block. Since very large blocks are not a frequent encounter in sparse
matrices, using a single byte to represent the block size in the bsize array is
enough for most of the cases; in the case of a very large block, though, this
is split into 255-element chunks. A characteristic of the VBL format is that
all non-zero elements of the matrix are grouped into blocks; even strain non-
zero elements form degenerate size-one blocks. It is obvious that for matrices
with an irregular or non horizontally oriented non-zero element structure, the
overhead of the block size structure can be signiĕcant for VBL, reducing its
compression capability.

Algorithm2.4 shows an implementation of the SpMVkernel using theVBL
format. e algorithm is very similar to the CSR implementation, but it also
keeps track on the block currently being traversed. Since the block size is not
ĕxed, the algorithm must also keep track of the size of the current block. is
adds additional operations to the algorithm and increases the inner loop over-
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head, a problem that becomesmore prominent in the case of very small blocks.

1: procedureMVV(A::in, x::in, y::out)
A: matrix in VBL format
x: input vector
y: output vector

2: ib ← 0
3: for i← 0 to N do
4: j← rowptr[i]
5: s← bsize[ib]
6: while j < rowptr[i+ 1] do
7: b0 ← bcolind[ib]
8: for k← 0 to s do
9: y[i]← y[i] + values[j+ k] ∗ x[b0 + k]
10: end for
11: j← j+ s
12: ib ← ib + 1
13: s← bsize[ib]
14: end for

Algorithm 2.4: Implementation of the SpMV kernel using the VBL format.

A step further from VBL is the VBR format, depicted in Figure 2.6, which
is able to exploit variable size two-dimensional substructures. VBR splits the
matrix into block rows and block columns with varying dimensions. e non-
zero values are stored in the bvalues array in row-major block-wise order,
while the rowind and colind arrays store the starting indices of each block
row and block column, respectively. e bvalptrmarks the start of each block
in the bvalues array, while the bcolind stores the block column index by
referencing the colind array. Finally, the browptr array marks the start of
block rows by indexing the bcolind and bvalptr arrays.

Although VBR can detect arbitrary block substructures in the sparse ma-
trix, the space and computational overhead of the supporting data structures
can be excessive. For large sparse matrices, all the required indexing informa-
tion will most probably require 32-bit integers, diminishing to a large extent
the advantage of grouping non-zero elements into blocks. A compression of
the VBR data structures would be achieved if the rowind and colind arrays
stored the dimensions of the formed blocks, in which case, one-byte integers
would be enough for these data structures. Even in this case, however, VBR has
two more additional indexing data structures compared to the much simpler
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..0

..1

..3

..4

..6

.

.rowind

...0 ..1 ..3 ..4 ..6..colind

.

..browptr: . . . . ..( ..0 ..3 ..5 ..7 ..8 ..)

..bcolind: . . . ..( ..0 ..1 ..2 ..0 ..1 ..0 ..3 ..4 ..)

..bvalptr: . . . ..( ..0 ..1 ..3 ..4 ..6 ..10 ..11 ..12 ..16 ..)

..bvalues: ..( ..7.5 ..2.9 ..2.8 ..2.7 ..6.8 ..2.4 ..5.7 ..3.8 ..6.2 ..3.2 ..9.7 ..2.3 ..5.8 ..5.0 ..6.6 ..8.1 ..). . . . . . . .

Figure 2.6: e Variable Block Row storage format.

VBL format. Futhermore, all this indexing metadata adds additional compu-
tational overhead, since multiple hops are needed to reach the actual non-zero
values.

Storage space requirements

ecompression potential of variable size blockingmethods is higher than that
of their ĕxed size counterparts, especially formethodswithoutmany additional
data structures. Considering the case of VBL, suppose anN×N sparse matrix
withNNZr elements per row and that k, k≪ NNZr, blocks are formed on aver-
age per row. Since in a typical sparse matrix, NNZr ≪ N, k can be considered
as constant. erefore, the size of the compressed bcolind data structure will
be 4kN and the required size for holding the block sizes will be kN (assuming
one-byte size representations). ese sum up to a size of 5kN = Ω(N) bytes,
which brings the total matrix size very close to the theoretical lower boundƭ.
However, in sparsematrices with a non-horizontal non-zero element structure,
VBL will form degenerate size-one blocks, and thus, the number of blocks per

ƭ e theoretical lower bound for the size of a sparse matrix can be obtained if the indexing struc-
tures are completely eliminated. For example, suppose a ĕctional matrix that the location of its
non-zero elements could be computed in the runtime. SinceN ≪ NNZ formostmatrices, com-
pressing the indexing structures to the order of N can lead to sizes very close to the theoretical
lower bound.
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row cannot be decoupled from the non-zero elements per row. In this case,
the size of bcolind will be in the order of NNZ. Nonetheless, this cannot
overshadow the higher compression potential of the variable size block meth-
ods over their ĕxed size counterparts, which are restricted mainly by the large
number of resulting blocks. In practice, VBL achieves almost always higher
compression ratios than BCSR.

2.2.3 Other approches

e approaches we have already discussed exploit a single type of substruc-
tures in the sparse matrix leaving outside other types, leading to a performance
degradation for ‘unsuitable’ matrices. A common approach for exploitingmul-
tiple substructures is to decompose the input matrix into multiple matrices,
such that each one exploits a different substructure and their sum produces the
initial matrix [Agarwal et al., 1992; Geus and Röllin, 2001]. e last addend is
always a matrix in CSR format, containing the remainder elements that could
not be grouped in a substructure. ese formats avoid padding and therefore
their memory footprint can be kept low. e matrix-vector multiplication us-
ing these formats consists of running the SpMV kernel for every addend and
then accumulating the intermediate results to the ĕnal output vector. ere
are two possible performance problems with the decomposed formats, how-
ever. First, the accumulation of the intermediate results may introduce addi-
tional overhead and limit parallelism, second, the large segmentation of the
non-zero elements among the multiple addends increases the sparsity of the
involved matrices and can possibly lead to a deterioration of the SpMV perfor-
mance.

e most recent approach to use the decomposition technique is the Pat-
tern Block Row (PBR) format [Belgin et al., 2009]. PBR partitions the matrix
into square blocks up to 8×8 and encodes the non-zero pattern in every block
using a 64-bit bit vector. It then splits the matrix into multiple addends, each
one storing a different block pattern; the remainder elements are stored in the
last addend using the CSR format. Since the pattern structure is not known a
priori, PBR generates in the runtime pattern-speciĕc SpMV routines.

Another interesting approach in blocking storage formats is theCompressed
Sparse Block (CSB) format [Buluç et al., 2009]. e motivation behind this for-
mat is the efficient support of both Ax and ATx matrix operations, the sec-
ond being less efficient with the row-oriented common storage formats. For
this reason, CSB divides the matrix into large sparse square blocks, which are
stored with the Coordinate format using small integers for the row and column
indices. In the runtime, it employs task parallelism to schedule the execution
of the resulting blocks.
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Condensing the non-zero values

e non-zero values consume 2/3 of the overall matrix size in the CSR for-
mat. e straightforward approach of using single-precision arithmetic is not
an option in most real-life application, since 64-bit accuracy is important for
the stability and the convergence of the iterative methods. e most common
approach currently for compressing the non-zero values is to index them, i.e.,
store only the unique values and use an index for accessing them. e idea
behind this technique is that the non-zero elements of the system’s coefficient
matrix oen have the same value. Two approaches that exploit this property
are the Super-Sparse (SS) storage format of Escudero [1984] and the CSR Value
Indexed (CSR-VI) of Kourtis et al. [2008b]. e downside of non-zero value
indexing is that the value index must be rebuilt every time a non-zero element
is changed, thus rendering these formats less Ęexible.

Microarchitecture-speciöc formats

Although matrix- or architecture-speciĕc formats are beyond the scope of this
presentation, it is relevant to present brieĘy the Ellpack-Itpack (ELL, ELLPACK
or ITPACK) storage format [Saad, 1992]. is format was initially conceived
for vector processors [Oppe and Kincaid, 1987], but has come recently into the
foreplay with the emergence of general-purpose GPU architectures. e ELL-
PACK format stores anN×M sparse matrix using two two-dimensional arrays
(Figure 2.7). e values array is an N × K matrix storing the non-zero ele-
ments row-by-row with K being the maximum number of non-zero elements
per row; rows with less elements are padded with zeros. e colind stores the
corresponding column indices with irrelevant values in the place of inexistent
elements. e advantage of the ELLPACK format is that it favors the stream-
ing fetches of vector processors. On the other hand, matrices with an irregular
non-zero element structure might add considerable amount of padding. Bell
and Garland [2009] use a combination of the ELLPACK and COO formats for
accelerating the performance of the SpMV kernel in modern GPU architec-
tures, while Choi et al. [2010], inspired from BCSR, extend ELLPACK to store
block rows.

Relevant to the ELLPACK format is, to some extent, the Streaming CSR
(S-CSR) and Streaming BCSR (S-BCSR) formats proposed by Guo and Gropp
[2011]. e motivation behind these formats is to allow the efficient use of the
prefetch data stream hardware component of the IBM POWER processors. S-
CSR splits the matrix into n streams and stores its rows in a cyclic way, such
that row i is stored in stream imod n. Each stream of rows is stored using the
ELLPACK format. is S-CSR format and its blocked counterpart, S-BCSR,
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
.


.values:

.

..0 ..1 ..2 ..3

..0 ..1 ..2 ..∗

..0 ..1 ..2 ..∗

..0 ..3 ..∗ ..∗

..4 ..5 ..∗ ..∗

..4 ..5 ..∗ ..∗

.


.


.colind:

Figure 2.7: eEllpack-Itpack storage format, suitable for vector processors andmod-
ern GPU architectures.

have the advantage of being able to trigger n independent prefetching streams,
leading to a better utilization of the available memory bandwidth and a higher
SpMV performance in this speciĕc computer architecture.

2.3 Explicit compression of the matrix indices

An alternative approach for minimizing the memory footprint of a sparse ma-
trix is the explicit compression of the CSR’s colind data structure. Contrary to
blocking, explicit compression techniques do not rely on the matrix structure
directly, but treat the colind array as a common sequence of 32-bit integers
and try to minimize its size. Due to the accentuation of the ‘memory-wall’
problem in modern multicore computer architectures, such approaches have
gained an increasing interest recently [Willcock and Lumsdaine, 2006; Kourtis
et al., 2008b].

e most common approach in explicitly compressing the colind data
structure is the delta indexing or delta encoding of the non-zero elements col-
umn indices. Instead of storing the full column index of a non-zero element,
delta indexing stores the delta distance from the column index of the pre-
vious element and keeps the full column index of the ĕrst element per row
only [Pooch and Nieder, 1973]. e idea behind delta indexing for sparse ma-
trices is that a delta distance is much more likely to ĕt in a small integer, allow-
ing therefore a signiĕcant reduction in the size of colind.

A step further from delta indexing is the run-length encoding of the column
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.
.

..col. indices: ..1 ..10 ..11 ..12 ..13 ..14 ..21 ..41 ..61 ..81 ..…

..delta values: ..1 ..9 ..1 ..1 ..1 ..1 ..7 ..20 ..20 ..20 ..…
.

.d = 1

.

.d = 20
Figure 2.8: Run-length encoding of the matrix column indices.

indices. Run-length encoding compresses delta value sequences by grouping
together the same delta values and representing them as a two-element tuple
containing the common delta value and the size of the sequence. Figure 2.8
shows schematically the notion of run-length encoding of the column indices.

Although delta encoding of the column indices has been discussed several
years ago [Pooch and Nieder, 1973], it is not until recently that this technique
has been utilized for the optimization of the SpMVkernel. Willcock and Lums-
daine [2006] apply delta encoding in the column indices and propose theDelta-
Coded Sparse Row (DCSR) format. DCSR encodes the indexing information
of the matrix (rowptr and colind) as a sequence of (command, argument)
tuples. e argument is always a single byte and the commands—six in to-
tal—are responsible for regenerating the row and column index of the current
non-zero element. e decompression process consists of reading and apply-
ing the command and then performing the appropriate computation with the
corresponding non-zero value. e authors also propose a variation of DCSR
that employs run-length encoding for detecting up to four contiguous non-
zero elements. e downside of DCSR, however, is that the decompression
cost is large, requiring non-portable implementations in order to amortize the
cost and achieve high performance.

A simpler and more portable approach for delta encoding the column in-
dices of a sparse matrix is the CSR Delta Units (CSR-DU) format of Kourtis
et al. [2008b]. CSR-DU views the matrix as a sequence of delta units, deĕning
three types of units depending on the bytes required to store a column delta
distance (one-, two- or four-byte units). CSR-DU replaces both the rowptr
and colind data structures with a byte sequence encoding the type, the ini-
tial column index and the delta distances of each unit. During the runtime,
the CSR-DU code switches on the unit type in order to decompress correctly
the delta distances and proceeds with the SpMV operations. CSR-DU is easily
extended to encode horizontal sequences of non-zero elements of an arbitrary
delta distance by applying run-length encoding [Kourtis et al., 2010]. With this
extension CSR-DU can be viewed as a generalization of the VBL format, but in
a more compact form.
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.. rowptr: ..( ..0 ..1 ..3 ..3 ..4 ..5 ..)

.. colind: ..( ..0 ..0 ..1 ..0 ..4 ..)

.. values: ..( ..6.8 ..2.4 ..6.2 ..9.7 ..6.6 ..)

..dvalues: ..( ..7.5 ..5.7 ..3.2 ..2.3 ..5.8 ..8.1 ..)

Figure 2.9: e Symmetric Sparse Skyline format.

2.4 Exploiting symmetry in sparse matrices

Finite element methods oen involve the solution of large linear systems with
sparse, structured, symmetric coefficientmatrices. Exploiting the symmetry in
non-zero element structure and values can reduce the memory footprint of the
matrix to the half, alleviating signiĕcantly the pressure to the memory hierar-
chy of the underlying architecture. Several approaches have been proposed in
the past targeting the optimization of the symmetric SpMV kernel.

e most common approach in storing a symmetric sparse matrix is the
Symmetric Sparse Skyline (SSS) format [Eisenstat et al., 1982; Saad, 1992]. SSS
is essentially the symmetric version of the CSR format; Figure 2.9 shows an
example implementation. e values of the main diagonal, which is full in a
well-deĕned symmetric problem, are stored separately in the dvalues array,
while the strictly lower triangular matrix is stored using the standard CSR for-
mat.

e SpMVkernel for symmetricmatrices consists of iterating once over the
elements of the lower triangular matrix and performing the computations of
both the lower and upper triangular elements at the same time. Algorithm 2.5
shows a typical SpMV implementation using the SSS storage format. e key
issue in the performance of this kernel are the write operations in the output
vector that are performed for every element of the upper triangular matrix (Al-
gorithm 2.5, line 7). Despite being somewhat irregular, there is not a signiĕcant
problem with the write operations in the serial execution of the kernel. How-
ever, the parallel execution of the kernel becomes problematic, because these
operations insert RAW dependencies on speciĕc output vector elements; Fig-
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Figure 2.10: e RAW dependency on the output vector in a parallel execution of the
symmetric SpMV kernel. e different thread partitions are shown in
distinct colors.

ure 2.10 depicts this problem schematically.

1: procedureMVS(A::in, x::in, y::out)
A: matrix in SSS format
x: input vector
y: output vector

2: for i← 0 to N do
3: y[i]← dvalues[i] · x[i]
4: for j← rowptr[i] to rowptr[i+ 1] do
5: k← colind[j]
6: y[i]← y[i] + values[j] · x[k]
7: y[k]← y[k] + values[j] · x[i]
8: end for
9: end for

Algorithm 2.5: Implementation of the SpMV kernel using the SSS symmetric storage
format.

e cost of protecting the access in the output vector with the use of locks
can be prohibitive and it is not adopted in practice. e most common ap-
proaches in optimizing the symmetric SpMV kernel reside in local, per-thread
output buffers, which are then reduced into the resulting output vector. e
overhead of this reduction phase can also be signiĕcant, especially as the num-
ber of threads increases, and it becomes crucial to exchange the least possible
information among the threads. e ‘conĘicting’ elements of the output vec-
tor depend on the structure of the matrix and, more particularly, on the matrix
bandwidth. e bandwidth a of sparse matrix is the maximum distance of its
non-zero elements from the main diagonal; if the most distant element of the
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2.4. Exploiting symmetry in sparse matrices

lower triangular matrix lies in the l-th diagonal and the most distant of the
upper triangular lies in the u-th diagonal, then the bandwidth b of the matrix
is deĕned as b = l + u + 1. It is easy to see that the higher the bandwidth,
the higher the interaction between the threads of the symmetric SpMV kernel.
Several algorithms have been proposed for reducing the matrix bandwidth,
based chieĘy on the permutation of the matrix rows and columns [Cuthill
and McKee, 1969; George, 1971; Gibbs et al., 1976; Karypis and Kumar, 1995;
Çatalyürek andAykanat, 1999]. ese algorithmsutilize heuristics for selecting
the best matrix reordering, since the matrix bandwidth minimization problem
has been proved to be NP-complete [Papadimitriou, 1976].

Despite the reduction in the matrix bandwidth achieved by the reordering
techniques, the execution of the SpMV parallel threads is not completely de-
coupled. ere are also matrices with large bandwith, which cannot be signif-
icantly reduced with any reordering technique, keeping the thread interaction
high. It is therefore necessary to overcome these interactions without limit-
ing parallelism. e most common approach is to use local output vectors for
each thread, which will then be reduced into the ĕnal output vector. Although
this approach exhibits Θ(N) parallelism for an N × N matrix, in practice this
method is limited mainly by the interaction of the ĕnal vector reduction op-
eration with the memory hierarchy, especially for large vectors that do not ĕt
in the system’s cache. is problem becomes even more prominent if the vec-
tor data must be communicated over an interconnection network. Geus and
Röllin [2001] examine ways for minimizing this cost by communicating only a
small region of the local vector and overlapping the communication with use-
ful computations. Similar is the approach of Batista et al. [2010] with their
Compressed Sparse Row-Column (CSRC) format. e CSRC format is a hy-
brid of CSR and CSC for storing structurally symmetric matrices; the lower-
triangular non-zeros are stored row-wise, while the upper-triangular ones are
stored column-wise. e authors examine a number of techniques based on
local vectors for solving the output vector dependency problem and also des-
ignate a solution for splitting the matrix in conĘict-free partitions based on
graph coloring.

An interesting approach for the parallelization of the symmetric SpMV
kernel is that of Buluç et al. [2011]. e authors build on the CSB format (see
Section 2.2.3) and provide an efficient parallel algorithm for the symmetric
SpMV kernel that exhibits a lot of parallelism. e key idea is not to use a static
thread partitioning scheme, but to employ task parallelism at the granularity
of the CSB blocks instead. Aer having reduced the bandwidth with a reorder-
ing algorithm, the authors split the matrix in three block diagonals and then
proceed to compute the matrix-vector product. Each of the three block diag-
onals is assigned a local vector on which it computes the partial matrix-vector
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2. Storing Sparse Matrices

product in two distinct parallel phases. Since each block diagonal is assigned a
private vector, the SpMV computation can proceed in parallel for all the block
diagonals, while the remainder elements, i.e., elements not contained in the
three block diagonals, use atomic operations for updating directly the output
vector. Finally, the private vectors are accumulated in parallel to the output
vector. Apart from the use of task parallelism, which can offer a better load
balancing, the key advantage of this method is that it decouples the number of
intermediate vectors from the number of threads, therefore stabilizing the cost
of the ĕnal reduction step.

34



thesis March 11, 2013 15:54 Page 35 �
�	

�
�	 �
�	

�
�	

3

The Performance of the
Sparse Matrix-Vector Kernel

e Sparse Matrix-Vector Multiplication kernel (SpMV) lies at the core of it-
erative solution methods for sparse linear systems. As discussed in Chapter 1,
the SpMV kernel dominates the execution time of these methods in modern
multicore architectures and its efficient implementation and optimization has
been of key concern in the high-performance computing community. e key
performance problem of the SpMVkernel stems primarily from its algorithmic
nature that imposes a very low arithmetic intensity. Unfortunately, this is not
the sole problem of this kernel as other factors, relating mostly to the structure
of the input sparse matrix, can be of deĕnite importance.

In this chapter, we investigate the different performance problems of the
SpMV kernel that have been reported in the literature and provide a quanti-
tave evaluation, in order to better characterize the importance of each possible
performance-limiting factor. We examine both symmetric sharedmemory and
NUMA architectures and propose a simple and efficient technique for building
NUMA-aware versions of the SpMV kernel.

3.1 An algorithmic view

e SpMV kernel poses a variety of possible performance bottlenecks that we
will ĕrst present and discuss from a more theoretical point of view. For the
completeness of our presentation and in order for the reader to easily follow
the subsequent discussion, we repeat here the SpMV algorithm using the CSR
storage format (Algorithm 3.1), presented in detail in Chapter 2. CSR is the
most widely adopted storage format for sparse matrices and we will use this
format as a baseline reference throughout the text. We have deliberately al-
tered slightly the SpMV algorithm presented here to better match a real im-
plementation, where the computed products in a matrix row are not directly
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3. e Performance of the Sparse Matrix-Vector Kernel

accumulated in the corresponding output vector element, but in a local vari-
able, typically kept in a register.

1: procedureMVC(A::in, x::in, y::out)
A: matrix in CSR format
x: input vector
y: output vector

2: for i← 0 to N do
3: yi ← 0
4: for j← rowptr[i] to rowptr[i+ 1] do
5: yi ← yi + values[j] · x[colind[j]]
6: end for
7: y[i]← yi
8: end for

Algorithm 3.1: Implementation of the SpMV kernel using the CSR format (see Chap-
ter 2, Section 2.1 for a detailed description).

A number of algorithmic characteristics of the SpMV kernel have been
identiĕed as possible performance bottleneks in the literature. In the following,
we discuss these characteristics from a theoretical standpoint.

Lowarithmetic intensity e term arithmetic intensity, also known as Ęop:byte
ratio, is a an algorithmic metric for denoting the amount of useful arithmetic
operations performed by the processor per the amount of data necessary for
performing these operations [Harris, 2005; Williams et al., 2009]. is metric
is purely algorithmic in the sense that it does not account for hardware side ef-
fects, such as cache line evictions, which might incur additional memory traf-
ĕc. With the advent of multicore and manycore architectures the arithmetic
intensity metric is becoming increasingly important, as the speed gap between
the processor and the main memory is continuously growing. e higher the
Ęop:byte ratio of a computational kernel, the higher is the potential of an effi-
cient utilization of the processor. Conversely, a low Ęop:byte ratio denotes that
the kernel will be most likely bound from the memory subsystem.

Matrix-vector products, either dense or sparse, exhibit a rather lowĘop:byte
ratio due to their streaming nature: the algorithms proceed in fetch and com-
pute phases exhibiting no temporal locality in the accesses of the matrix ele-
ments. Assuming the typical layout of using 8-byte double precision Ęoating
point values for the non-zero elements, the Ęop:byte ratio rdense of the matrix-
vector product for an N × N dense matrix stored in the typical dense format
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can be easily calculated as

rdense =
2N2

8N2 + 16N
=

1
4+ 8

N
≈ 0.25 (3.1)

is is a fairly low ratio, since four bytes must be fetched for every Ęoating
point operation. Assuming an architecture with 64-bit words, this ratio implies
that the memory hierarchy must be able to provide data to the processor at the
half of its speed, which is hardly ever the case for modern high-performance
mutlicore architectures.

e case with the sparse matrix-vector product becomes worse, since the
additional indexing datamust also be fetched in order to access the actual non-
zero element information. Assuming 4-byte integers for the indexing informa-
tion, the Ęop:byte ratio rsparse for an N × N sparse matrix with NNZ non-zero
elements stored in CSR can be calculated as follows:

rsparse =
2NNZ

8NNZ︸ ︷︷ ︸
values

+ 4NNZ︸ ︷︷ ︸
colind

+ 4N︸︷︷︸
rowptr

+ 16N︸︷︷︸
x+y

=
1

6+ 10 N
NNZ
≈ 0.167 (3.2)

is ratio deteriorates further for very sparse matrices, where N is at the order
ofNNZ, since the size of the rowptr array becomes also signiĕcant. As a com-
parison, the arithmetic intensity of a multigrid PDE stencil kernel ranges be-
tween 0.33 and 0.50, that of a 3D FFT reaches 1.64 [Williams et al., 2009], while
the arithmetic intensity of thematrix-matrixmultiplication is at the order ofN.
It is clear from this analysis that the performance of the SpMV kernel in mod-
ern multicore architectures is expected to be bound from the performance of
the memory subsystem, and especially the main memory bandwidth [Mellor-
Crummey and Garvin, 2004; Buttari et al., 2007;Williams et al., 2007; Goumas
et al., 2008].

Irregular accesses in the inputvector Akeydifference betweendense and sparse
matrix-vector kernels is that in the latter case, the access pattern in the input
vector is not sequential, but it depends on the non-zero element structure of
thematrix. ismay result in an increased amount of cachemisses in the input
vector for matrices with a rather irregular non-zero structure [Im, 2000; Geus
and Röllin, 2001; Pichel et al., 2004].

Indirect references e need to save space in the matrix storage dictates the
use of additional data structures for storing the location metadata of the non-
zero elements. ese data structures not only decrease the arithmetic inten-
sity of the kernel (see equation (3.2)), but also introduce additional operations,
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3. e Performance of the Sparse Matrix-Vector Kernel

unrelated to the actual computation, and add considerable interference to the
cache hierarchy [Pinar and Heath, 1999].

ShortRows etrip count of the inner loopof the SpMVkernel (Algorithm3.1,
lines 4–6) depends on the size of the corresponding row. erefore, smaller
rows are likely to incur a signiĕcant loop overhead that can overwhelm the use-
ful computations [White and Sadayappan, 1997; Buttari et al., 2007]. Worse,
the remedy of unrolling cannot be applied to the inner loop without an in-
trospection of the matrix structure, since the trip count is unknown during
compilation.

Another subtle implication on the performance of the SpMV kernel is that
very short rows affect negatively the arithmetic intensity of the kernel. e
N

NNZ ratio in the denominator of equation (3.2) is actually the inverse of the
average row size of thematrix. is leads to amonotonically increasing relation
between the average row size and the Ęop:byte ratio, meaning that smaller row
sizes lead to a lower arithmetic intensity of the kernel, therefore accentuating
the bottleneck in the memory hierarchy.

Load imbalance e SpMV kernel can be parallelized easily across the rows
of the matrix. Each thread takes a band of the matrix and proceeds inde-
pendently with the matrix-vector computation. A suitable static partitioning
schemewould split thematrix into partitions with roughly the same number of
non-zero elements, in order to achieve a fair distribution of the computational
load. For matrices with an irregular non-zero element distribution, however,
this scheme may still lead to load imbalances, since the computational charac-
teristics of the partitions may be quite different. For example, a thread operat-
ing on a denser partition is expected to be faster compared to a thread operating
on a rather sparse one, which may suffer from a lower Ęop:byte ratio or from
cache misses due to irregular accesses in the input vector.

3.2 Experimental preliminaries

Before proceeding with the quantitave evaluation of the SpMV kernel, it is es-
sential to present thematrices, the test platforms and the experimentalmethod-
ology we used for our benchmarking. We dedicate a separate section for this
description, since we use this experimental setup throughout the thesis. If not
stated differently, references to speciĕc matrices and platforms will be resolved
in this section and descriptions of performancemeasurements andmetrics will
refer to the material presented hereaer.
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3.2.1 Matrix suite

ematrix suite used in our experiments consists of 30 matrices selected from
the University of Florida sparse matrix collection [Davis and Hu, 2011]. is
collection contains thousands of sparse matrices that arise in real applications
from a variety of scientiĕc domains. It has become the standard source for
sparse matrices in the numerical linear algebra community for the develop-
ment and performance evaluation of sparse matrix algorithms. We have se-
lected matrices for our experimental suite based on a number of criteria:

• Variety: e selectedmatrices are derived from a large variety of applica-
tions, including problems without an underlying 2D/3D geometry. Such
problems usually lead tomatrices with amore irregular structure and we
expect to stress different aspects of the SpMV kernel.

• Size: Since SpMV is a bottleneck for the solution of large sparse linear
systems, the selected matrices are large enough so as not to ĕt in the
aggregate cache of a typical high-end multiprocessor system.

• Algebraic criteria: Half of the selected matrices are symmetric and posi-
tive deĕnite. ese matrix characteristics are required for the CG itera-
tive method, which we use in later chapters for benchmarking purposes.

Table 3.1 details the characteristics of the matrices in our experimental matrix
suite. Two thirds of thematrices are derived from problemswith an underlying
2D/3D, since these are more frequently encountered in the solution of sparse
linear systems. Nine matrices have rather short rows, exhibiting a very low
arithmetic intensity with a Ęop:byte ratio ranging below 1.5. e most sparse
matrix is Hamrle3, which has only four non-zeros per row on average, while the
denser is TSOPF_RS_b2383 with 424 elements per row.

3.2.2 Hardware platforms

e hardware platforms we use for our quantitative analysis comprise of two
symmetric sharedmemory (SMP) and one cache-coherent non-uniformmem-
ory access (cc-NUMA) multiprocessor systems. e SMP systems are a two-
way quad-core Intel Xeon E5405 (codename Harpertown) and a four-way six-
core Intel Xeon X7460 (codename Dunnington) multiprocessors. e NUMA
system is a two-way quad-core Intel XeonW5580 (codenameGainestown)mul-
tiprocessor. In the following, we will refer to each platform using its codename.
Table 3.2 lists the technical speciĕcations of our experimental platforms, while
Figure 3.1 presents their block diagrams.

From an architectural point of view, theDunnington system is an extension
of Harpertown, not only system-wise but also within the socket. eDunning-
ton socket contains another dual core processor module, reaching a total of six
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Matrix Rows Non-zeros Size
(MiB)

f:b
ratio P. D. Problem 2D/3D

xenon2 157,464 3,866,688 44.85 0.156 No Materials Yes
ASIC_680k 682,862 3,871,773 46.91 0.129 No Circuit Sim. No
torso3 259,156 4,429,042 51.67 0.152 No Other Yes
Chebyshev4 68,121 5,377,761 61.80 0.163 No Structural Yes
Hamrle3 1,447,360 5,514,242 68.63 0.116 No Circuit Sim. No
pre2 659,033 5,959,282 70.71 0.141 No Circuit Sim. No
cage13 445,315 7,479,343 87.29 0.152 No Graph No
atmosmodj 1,270,432 8,814,880 105.72 0.135 No C.F.D. Yes
ohne2 181,343 11,063,545 127.30 0.162 No Semiconductor Yes
kkt_power 2,063,494 14,612,663 175.10 0.135 No Optimization No
TSOPF_RS_b2383 38,120 16,171,169 185.21 0.166 No Power No
Ga41As41H72 268,096 18,488,476 212.61 0.163 No Chemistry No
Freescale1 3,428,755 18,920,347 229.61 0.128 No Circuit Sim. No
rajat31 4,690,002 20,316,253 250.39 0.120 No Circuit Sim. No
F1 3,428,755 26,837,113 308.44 0.163 No Structural Yes
parabolic_fem 525,825 3,674,625 44.06 0.135 Yes C.F.D. Yes
offshore 259,789 4,242,673 49.54 0.151 Yes Electromagnetics Yes
consph 83,334 6,010,480 69.10 0.163 Yes F.E.M. Yes
bmw7st_1 141,347 7,339,667 84.54 0.161 Yes Structural Yes
G3_circuit 1,585,478 7,660,826 93.72 0.124 Yes Circuit Sim. No
thermal2 1,228,045 8,580,313 102.88 0.135 Yes ermal Yes
m_t1 97,578 9,753,570 111.99 0.164 Yes Structural Yes
bmwcra_1 148,770 10,644,002 122.38 0.163 Yes Structural Yes
hood 220,542 10,768,436 124.08 0.161 Yes Structural Yes
crankseg_2 63,838 14,148,858 162.16 0.165 Yes Structural Yes
nd12k 36,000 14,220,946 162.88 0.166 Yes Other Yes
af_5_k101 503,625 17,550,675 202.77 0.159 Yes Structural Yes
inline_1 503,712 36,816,342 423.25 0.163 Yes Structural Yes
ldoor 952,203 46,522,475 536.04 0.161 Yes Structural Yes
boneS10 914,898 55,468,422 638.28 0.162 Yes Model Reduction Yes

Table 3.1: e matrix suite used for experimental evaluation. For each matrix, it is
shown the row count (square matrices only), non-zero elements, size and
arithmetic intensity (Ęop:byte ratio) in CSR format, positive-deĕniteness
(P. D.), problem category and whether it is derived from a problem with
an underlying 2D/3D geometry. For further matrix-speciĕc properties,
the reader is referred to the University of Florida Sparse Matrix Collec-
tion [Davis and Hu, 2011].
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(b)Dunnington: four-way six-core SMP system; four memory channels.

Figure 3.1: eblock diagrams of themultiprocessor systems used for the experimen-
tal evaluations in this thesis (continues at page 42).

cores, and a very large 16MiB L3 cache, in order to reduce the contention in the
front-end bus incurred by the plethora of cores. Indeed, thanks to its huge L3
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Figure 3.1 (Cont.): e block diagrams of the multiprocessor systems used for the ex-
perimental evaluations in this thesis.

cache, Dunnington can sustain a memory bandwidth very close to the theoret-
ical peak. Nonetheless, the four Dunnington sockets are all using the common
bus to communicate with the main memory and with each other, a layout that
can become a serious bottleneck for very memory-intensive multithreaded ap-
plications, like the SpMV kernel.

e Gainestown system departs from the centralized SMP logic by moving
the memory controller inside the socket and splitting, as a result, the physi-
cal memory into per-processor nodes. Each memory controller can serve up
to three DDR3 memory channels leading to a sustained memory bandwidth
of 15.5GB/s, being almost three times faster than the one offered by the SMP
architectures. Interprocessor communication, as well as remote memory ac-
cesses, are routed through a dedicated interconnection network (Intel Quick-
Path Interconnect – QPI [Kurd et al., 2008]) with a sustained bandwidth of
9.4GB/s, being almost 40% less than the available memory bandwidth. ere-
fore, the interconnection link is likely to become a bottleneck if a signiĕcant
amount of main memory traffic is routed through it due to remote memory
accesses.
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Harpertown Dunnington Gainestown

Model Intel Xeon E5405 Intel Xeon X7460 Intel Xeon W5580
Microarchitecture Intel Core Intel Core Intel Nehalem
Clock freq. 2.00GHz 2.66GHz 3.20GHz
L1 cache (D/I) 32KiB/32KiB 32KiB/32KiB 32KiB/32KiB

L2 cache 6MiB
(per 2 cores)

3MiB
(per 2 cores)

256KiB
(per core)

L3 cache – 16MiB 8MiB
Cores/reads 4/4 6/6 4/8
Peak Front-end b/w 10.7GB/s 8.5GB/s 2× 30GB/s
Interconnection b/w – – 25.6GB/s

Sustained Mem. b/w 5.8GB/s 8.1GB/s 2× 15.5GB/s
Sustained i/c b/w – – 9.4GB/s

Multiprocessor Conĕgurations

Sockets 2 4 2
Cores/reads 8/8 24/24 8/16

Table 3.2: Technical characteristics of the hardware platforms used for the experimen-
tal evaluations. e sustainedmemory bandwidth ĕgures are obtainedwith
the STREAM benchmark [McCalpin, 1995] utilizing the full system. e
sustained interconnection (i/c) bandwidth for Gainestown was measured
with a modiĕed version of STREAM, where all the memory traffic was
routed through the remote memory controller.

Software setup

All systems run a 64-bit version of the Linux OS (kernel version 2.6.30.5 or
higher) and the GNU Compiler Collection (gcc, g++ etc.), version 4.6, is used
for the compilation of every project, unless stated otherwise. Multithreaded
versions of the code arewritten using explicit, native threadingwith thePthreads
userspace library (NPTL, version 2.7). Finally, NUMA-aware versions are built
with the numactl library (version 2.0.7), which is a wrapper userspace library
of the low-level memory allocation system call interface of the Linux kernel.

3.2.3 Measurements procedures and policies

In order to guarantee reliable and fair measurements, we have built a common
measurements framework for all the experiments. is framework communi-
cates with the storage format implementations through a well-deĕned sparse
matrix-vector multiplication interface. We measure the performance of 128
consecutive SpMV operations with randomly created input vectors. We make
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no attempt to artiĕcially pollute the cache aer each iteration, in order to better
simulate the behavior of iterative scientiĕc applications, where matrix and vec-
tor data are present in the cache hierarchy, either because they have just been
produced or they have been recently accessed. We repeat every experiment
three or ĕve times and keep the median performance values.

To simulate the typical sparse matrix storage case, we use 32-bit integers
for indexing and 64-bit, double precision Ęoating point values for the non-zero
elements. For formats with additional data structures, e.g., VBL, wewill specify
their size in the corresponding discussion inside the text.

Modern multicore processors have their resources (pipeline, cache hierar-
chy, bus/memory interfaces) shared at different levels among the threads of a
multithreaded application. For example, two threads in Gainestownmay share
all the preprocessor resources from the pipeline up to the memory controllerƬ,
but they may share nothing, if they are placed on different sockets. Depend-
ing on the application’s workload, different assignments of threads to the cores
may lead to considerable performance variations. It is therefore essential not
only to pin threads to speciĕc cores during measurements, but also deĕne a
policy for assigning threads to cores. We perform the thread pinning using
the sched_setaffinity() Linux kernel system call, which allows to pin the
calling thread to an arbitrary set of logical CPUs. For the assignment of threads
to cores, we deĕne two different policies:
Share-all: is policy assigns threads to cores so that the maximum sharing of

resources is achieved, with the exception of pipeline resources (Hyper-
threading featureƭ). In Dunnington, for example, the cores sharing the
L2 cache will be ĕlled ĕrst, followed by the cores sharing the L3, and so
forth for the rest of the sockets. e advantage of this policy is that it
provides more insight of the performance behavior as we scale a system
by adding more sockets.

Share-nothing: is is the exact opposite policy: it assigns threads to cores so
that the least resource sharing is achieved. Taking on the example of
Dunnington, the threads will be ĕrst spread across the sockets, then
across the L2 caches, and ĕnally start to share. e advantage of this
policy is that it utilizes the full system’s potential right from the conĕg-
urations with a small number of threads.

In our evaluation and experiments, we routinely use the ‘share-all’ policy, un-
less otherwise stated.

Ƭ is technology is known as Simultaneous Multithreading (SMT) [Tullsen et al., 1995] and has
been initially commercialized asHyperthreading by Intel in its Netburst microarchitecture [Ko-
ufaty and Marr, 2003].

ƭ We do not use the Hyperthreading feature by default, except for the 16-threaded conĕguration
in Gainestown.
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3.3 A quantitative evaluation

In Section 3.1, we have discussed a series of SpMV characteristics that can pose
a performance overhead in the execution of the kernel. In the following sec-
tions, we perform a quantitave evaluation of these characteristics, in order to
assess their real impact on the kernel’s performance on a variety of matrices
and modern mainstream computer architectures.

3.3.1 Single-threaded performance

In order to quantify the effect of the possible performance problems, we im-
plement a series of microbenchmarks, each one alleviating an alleged perfor-
mance problem. esemicrobenchmarks are actually ‘stripped-down’ versions
of the CSR SpMV kernel, where we have eliminated the source of a problem, by
applying simple code transformations. We apply these transformations incre-
mentally and expect the performance of SpMV to increase, until it reaches the
performance of dense matrix-vector (DMV) multiplication kernel, which is a
straightforward upper bound of the SpMV performance. e more the per-
formance of the transformed CSR is increased, the higher is the impact of the
alleviated problem on the original SpMV kernel. e key requirement for all
the microbenchmarks is that they must access all the non-zero elements and
rows of the original matrix. ere is no restriction on the order the elements
are accessed or how many elements are accessed in a row. is allows to relax
successively the performance limiting factors (e.g., accesses in the input vec-
tor, additional data structures etc.), while keeping the required data structure
(non-zero elements) within the working set of the algorithm.

Table 3.3 presents a summary of the microbenchmarks implemented and
theirmain goal. e noxmissmicrobenchmark eliminates the irregular accesses
in the input vector by serializing the access pattern. is microbenchmark
does not transform the SpMV code; it only serializes the column indices in
the colind data structure. e norowptr microbenchmark eliminates the use
of the rowptr data structure by assuming each row has the same number of
non-zero elements (equal to the average row size of the matrix), whereas the
nocolind microbenchmark eliminates the use of the colind data structure by
assuming a serial access pattern of the input vector within each row. Applying
incrementally all these transformations eliminates every major performance
problem related to the serial execution of the SpMV kernel. e transformed
code can be considered as if it assumes a sparsematrix with a perfect access pat-
tern for the input vector and a known arrangement of the non-zero elements,
that eliminates the need of keeping additional data structures. e only dif-
ference of such a ĕctional matrix to a dense one is that it might contain short
rows, since the row size remains the same with the original matrix’s. We ex-
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Benchmark Goal Action

noxmiss Irregular accesses in
the input vector

Serialize access pattern in colind

norowptr Effect of the rowptr
data structure

Rows with the same number of
non-zero elements with a size
equal to the average row size of the
original matrix

nocolind Effect of the colind
data structure

Serial access pattern within each
matrix row

Table 3.3: Microbenchmarks for assessing the performance problems of the SpMV
kernel. Applying incrementally all the microbenchmarks gives also a mea-
sure for the effect of very short rows on the performance of the kernel (see
discussion in text).

pect, therefore, the performance of the transformed code to approach that of
the DMV kernel; any differences can be attributed to loop overheads due to
very short rows of the original matrix.

Figure 3.2 shows the performance overheads incurred by the special na-
ture of the SpMV kernel. e very ĕrst observation is that the overhead of
the colind data structure is quite important in SMP architectures exceed-
ing 20% in most of the cases, being more prominent in Dunnington, due to
its faster clock and lower memory bandwidth compared to Harpertown. e
overhead of the rowptr structure is rather small, since it accounts for a very
small amount of the total matrix size in most of the cases. e situation be-
comes more interesting with the unknown access pattern of the input vector.
In fact, this pattern seems to be quite regular in most of the cases, especially
for matrices with an underlying 2D/3D geometry (e.g., xenon2, boneS10 etc.).
ese regular accesses facilitate the hardware prefetching mechanism of mod-
ern microarchitectures, allowing it fetch the correct future data into the last
level cache, increasing signiĕcantly the cache hit ratio. However, there exist
a certain number of sparse matrices (e.g., Hamrle3, parabolic_fem) exhibiting
a rather irregular access pattern. e SpMV computation proceeds back and
forth in the input vector using rather large strides, not only ruining spatial lo-
cality, but also rendering impossible a successful prediction by the hardware
prefetcher. For example, the accesses for the matrix Hamrle3 consist of non-
constant strides of 4,480 up to 755,520 elements. We have also observed an im-
portant correlation betweenmatrices with very short rows and an irregular ac-
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cess pattern. Matrices with very short rows usually come from non-structural
problems (see Table 3.1) and their elements are scattered in small groups over
the whole span of the row, leading to an irregular access pattern in the input
vector. Finally, the loop overhead due to very short rows (4–9 elements) can
be quite important in some cases, surpassing 20% (e.g., Hamrle3, pre2, rajat31
etc.), since only a few operations are performed inside the loop. e down-
side for such cases in SpMV is that it is not straightforward to apply common
techniques, such as loop unrolling, in order to decrease the overhead, since the
trip count of the loop is not only unknown, but may also vary within a single
matrix.

ebenchmark results inNUMAarchitectures (Figure 3.2c) exhibit a some-
what different behavior. e key observation here is that the colind over-
head is not so prominent, due to the ample memory bandwidth offered by the
integrated memory controller. In fact, the more regular matrices manage to
achieve almost 80% of the DMV performance. Conversely, the rowptr over-
head is rather important surpassing 10% for irregularmatrices. Despite being a
small data structure, the unknown loop bounds and the indirect references for
accessing them restrain the compiler from generating highly optimized code
for the inner loop. Given the high memory bandwidth available, this compu-
tational overhead is more exposed, while the loop overheads for matrices with
very short rows are also more acute.

3.3.2 Multithreaded performance

e SpMV kernel exhibits ample parallelism [Buluç et al., 2011]. Indeed, if
the sparse matrix is split row-wise and each thread is assigned a set of rows,
the participating threads can proceed completely independently without any
communication. e only concern is a well-balanced distribution of the work
among the threads. Apparently, assigning each thread the same number of
rows, as is the case for a dense matrix, is not an option for sparse matrices,
since the distribution of non-zero elements is not always uniform. e best
static load-balancing scheme, therefore, is to split the matrix row-wise so that
each thread is assigned roughly the same number of non-zero elements. Un-
fortunately, despite the ample parallelism and a fair load-balancing scheme,
SpMV does not scale.

Figure 3.3 shows the speedup of the SpMV kernel using the CSR format in
the Harpertown and Dunnington systems using a ‘share-nothing’ core-ĕlling
policy (see Section 3.2.3). In Harpertown, SpMV stops to scale at four cores
reaching a mere 1.8 speedup. e scaling in Dunnington is favored by the
large L3 cache of each socket, which provide a total of 64MiB system-wide
aggregate cache. SpMV scales linearly up to two cores and continues to scale
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(b)Dunnington.

Figure 3.2: Performance overheads of the SpMV kernel due to its additional data
structures and the unknown access pattern in the input vector (contin-
ues at page 49). [e bars are produced by incrementally applying the
microbenchmarks described in Table 3.3: “Irregular accesses” → noxmiss,
“Rowptr overhead”→ norowptr, “Colind overhead”→ nocolind, “Loop over-
head”→ the remainder from 100%].
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Figure 3.2 (Cont.): Performance overheads of the SpMV kernel due to its additional
data structures and the unknown access pattern in the input vector.
[e bars are produced by incrementally applying the microbench-
marks described in Table 3.3: “Irregular accesses”→ noxmiss, “Row-
ptr overhead” → norowptr, “Colind overhead” → nocolind, “Loop
overhead”→ the remainder from 100%].

at almost half the rate up to 12 cores, where scaling stops abruptly, and SpMV
experiences a performance slowdown as we move to the 24-threaded conĕgu-
ration. e key bottleneck in SMP architectures for the majority of matrices is
the limited main memory bandwidth. All threads must contend for the shared
front-end bus resources and the algorithm is implicitly ‘serialized’ at this point,
since the threads must wait to be served. e inherently low Ęop:byte ratio of
SpMV renders this problem inevitable and the kernel will eventually hit the
‘memory-wall’ sooner or later. Indeed, 85% of the available memory band-
width in Harpertown is consumed at the two-threaded conĕguration and it is
completely saturated from the four-threaded conĕguration onward. Similarly
inDunnington, large regularmatrices consume 75%of the available bandwidth
at the six-threaded conĕguration and saturate it at 12 cores.

In order to further demonstrate the effect ofmemory bandwidth, we present
in Figure 3.4 the speedup achieved inDunnington using a ‘share-all’ core-ĕlling
policy. According to this policy, we assign threads to cores so that the avail-

49



thesis March 11, 2013 15:54 Page 50 �
�	

�
�	 �
�	

�
�	

3. e Performance of the Sparse Matrix-Vector Kernel

1 2 4 8

Threads

1

1.5

2

S
pe

ed
up

 o
ve

r 
se

ria
l C

S
R

CSR

(a)Harpertown.

1 2 6 12 24

Threads

1

2

4

6

S
pe

ed
up

 o
ve

r 
se

ria
l C

S
R

CSR

(b)Dunnington.

Figure 3.3: e speedup of the SpMV kernel in two SMP systems using the ‘share-
nothing’ core-ĕlling policy that maximizes the utilization of the available
memory bandwidth.

able sockets are ĕlled successively. For example, the six-threaded conĕgura-
tion uses a single socket, while the 12-threaded uses only two. e difference
in performance between the two policies is tremendous up to the 12-threaded
conĕguration, since the threads not only contend for cache space (now only
16MiB and 32MiB are available, respectively), but also for access to the com-
mon front-end bus controller. e sustained bandwidth through a single FSB
controller was measured at 2.6GB/s and is almost completely consumed by a
single thread, eliminating any possibility for scaling. Whenmoving to the next
socket, both the available aggregate cache andmemory bandwidth are doubled,
so does the speedup, which continues to increase rapidly up to the 24-threaded
conĕguration.

It might has become clear already that the contention for memory band-
width is a key scalability issue for the SpMV kernel in SMP architectures. Due
to its streaming nature and very low arithmetic intensity, the kernel tends to
saturate rapidly the available resources as we addmore threads to the computa-
tion. is behavior results in an almost direct relation between SpMV perfor-
mance and the matrix representation size, as it is depicted in Figure 3.5. In this
ĕgure, it is displayed the performance of BCSR for a variety of blocks for the
relatively dense and block-dominated TSOPF_RS_b2383 matrix. While there is
a tendency in the single-threaded conĕguration toward lower performance as
the matrix representation size increases, the relation becomes completely lin-
ear as we add more threads stressing the common front-end bus. Matrix-wise,
this relation is better depicted in Figure 3.6, where we have plotted the SpMV
performance for every matrix in our suite against its corresponding arithmetic
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Figure 3.4: SpMV speedup in Dunnington using the ‘share-all’ core-ĕlling policy: the
memory bandwidth saturation is clear within a single socket (up to six
threads), where almost no speedup is encountered.

intensity (Ęop:byte ratio) for the single- and eight-threaded conĕgurations in
Harpertown. e trend toward higher performance as the Ęop:byte ratio in-
creases, especially in multithreaded conĕgurations, is a clear indication of the
memory bandwidth contention in the SpMV kernelƮ. In fact, we can easily
separate twodistinct groups ofmatrices: ‘low-performing’ oneswith a Ęop:byte
ratio < 1.5 and ‘high-performing’ ones with a ratio≥ 1.5. e variation in per-
formance at the low-end is greater, since these matrices not only suffer from
additional overheads (irregular accesses, short rows), but are also more likely
to exhibit signiĕcant load imbalances, due to an irregular distribution of their
non-zero elements.

Load balancing issues Splitting the input matrix statically based on the non-
zero elements is a reasonable load balancing scheme for SpMV and can provide
a fair distribution of the work among the threads. Nonetheless, as depicted in
Figure 3.7, this scheme seems to be inadequate for some matrices with a very
irregular non-zero element structure. e key reason for such behavior is that
this scheme does not take into account the distribution of the non-zero ele-
ment within a thread partition. For example, two partitionsmay have the same
number of non-zero elements, but different access patterns in the input vector
with one being very irregular; SpMVwill be rather slow in this partition, ham-
pering the whole multithreaded execution. e most typical examples of this
situation are the Hamrle3 and G3_circuit matrices. Figure 3.8 shows the varia-
tion of the Ęop:byte ratio across these matrices. In both cases the distribution
of non-zero elements is rather irregular with Hamrle3 being very sparse at the

Ʈ Williams et al. [2009] also indicate this behavior in their RooĘine performance model, where
the performance of memory bandwidth bound applications increases with the Ęop:byte ratio.
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Figure 3.5: e contention in the memory bus of SMP architectures, as more threads
are added to the computation, renders the performance of the SpMV ker-
nel very sensitive to thematrix representation size. Results shown are from
the BCSR format using different block sizes for matrix TSOPF_RS_b2383.
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Figure 3.6: Performance of the SpMV kernel in relation to the arithmetic intensity
(Ęop:byte ratio). e tendency toward higher performance as the Ęop:byte
ratio increases becomesmore prominent in multithreaded conĕgurations,
indicating the bottleneck in memory subsystem.
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Figure 3.7: Load imbalance in the SpMV kernel. Matrices with an irregular distribu-
tion of non-zero elements suffer from signiĕcant load imbalances, despite
the ‘fair’ non-zeros-based static balancing scheme. Results shown are from
a single socket (four threads) in Gainestown.

latter partitions. A closer inspection at the structure of Hamrle3 reveals that the
ĕrst half of the matrix is quite regular, while the rest is very irregular with large
and variable distances between the non-zero elements of a row. G3_circuit has
more uniform non-zero structure; however, the ĕrst partition is burdened with
a more sparse structure leading to lower arithmetic intensities and increased
loop overheads.

Matrix bandwidthminimization techniques (see Section 2.4) provide a com-
mon way for homogenizing the non-zero element distribution of a sparse ma-
trix. ese techniques try to bring all the non-zero elements as close to the
main diagonal as possible by reordering the matrix rows and columns. While
initially conceived for balancing the amount of communication data (input and
output vector) in distributed memory SpMV implementations, they prove to
be beneĕcial also in modern multicore architectures. Moving the non-zero el-
ements toward the main diagonal generates a more regular access pattern in
the input vector with smaller and more predictable strides, while the objective
of a balanced communication creates a more homogeneous non-zero element
distribution across the matrix. Figure 3.8 shows the Ęop:byte ratio variation
for the G3_circuit before and aer the application of the reverse Cuthill-McKee
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Figure 3.8: Variation of Ęop:byte ratio across the matrix. Partitions are marked with
the vertical dashed lines. e different arithmetic intensity across the par-
titions leads to considerable load imbalances. Matrix reordering tech-
niques homogenize the matrix structure and balance the computations,
but they operate only on structurally symmetric matrices; Hamrle3 is not.

(RCM) matrix reordering algorithm [Cuthill and McKee, 1969]⁴; the distri-
bution of the non-zero elements is now completely homogenized across the
matrix and the load imbalance has been eliminated, as depicted in Figure 3.9.
Another important aspect of matrix reordering illustrated in this ĕgure is that
the gain in performance is not only due to the better balanced computations;
the more regular access pattern in the input vector, as a result of the lower ma-
trix bandwidth, provides also a signiĕcant performance beneĕt to the SpMV
computation.

⁴ RCM, as well as other matrix reordering algorithms, e.g., METIS [Karypis and Kumar, 1995],
operates on structurally symmetric matrices. erefore, it is not possible to reorder the Hamrle3
matrix in our example.
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Figure 3.9: e beneĕt of matrix reordering. e balanced computations and the
more regular matrix structure, allowing a better reuse of the input vector,
lead to a signiĕcant increase in the SpMV performance.

NUMA architectures

ebehavior of themultithreaded SpMV kernel in NUMA architectures stems
also from the streaming nature and the very large working set of the algorithm.
In a NUMA system (Figure 3.1c), each processor has its own integrated mem-
ory controller, which is responsible for accessing a speciĕc partition (node) of
themainmemory. All memory accesses originated from a processor to its local
memory node are served by its dedicatedmemory controller, while all accesses
to remote nodes are routed through the memory controller of a peer proces-
sor, using a high-speed processor interconnection network or link. In the case
of Gainestown, the sustained bandwidth of the interconnection link is signiĕ-
cantly lower than the memory bandwidth sustained by an integrated memory
controller (see Table 3.2). Remote accesses, therefore, are likely to saturate the
interconnection network, limiting the speedup of a parallel application.

e key in achieving high performance for a streaming application in a
NUMA system is the correct placement of the involved data on the available
memory nodes, in order to minimize the remote memory accesses and avoid
any bottlenecks in the interconnection link. is is better illustrated in Fig-
ure 3.10 that shows the scaling of the SpMVkernel inGainestownusing our two
core-ĕlling policies for the typical and NUMA-aware implementations. e
typical implementation does not care about the placement of the SpMV data
on the memory nodes and relies on the operating system for the correct place-
ment. Linux uses a copy-on-write allocation of physical pages and will allocate
a physical page on the memory node where the thread that writes ĕrst to the
corresponding virtual page is running. erefore, in the typical SpMV imple-
mentation, the allocation of the required physical pages will take place during
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(b) Share-nothing policy.

Figure 3.10: e speedup of the SpMV kernel in the Gainestown NUMA system. e
effect of data placement is very important, since remotememory accesses
can easily saturate the interconnection link of the processors. e ‘-numa’
suffix denotes a NUMA-aware data placement, while ‘HT’ in the thread
conĕgurations denotes the activation of the Hyperthreading feature.

the algorithm’s initialization, where the matrix and the associated vectors are
constructed and initialized. is phase is usually single-threaded, therefore all
SpMV data will lie on a single memory node. As a result, if an SpMV compu-
tation thread is assigned to a different node, all of its memory accesses will be
routed through the interconnection link, possibly saturating it.

Using the ‘share-all’ policy (Figure 3.10a), threads are assigned to a sin-
gle memory node (socket) up to the four-threaded conĕguration, while the
eight- and 16-threaded conĕgurations use both memory nodes. e substan-
tial memory bandwidth offered by the integrated memory controller allows
SpMV to scale well in the single-socket conĕguration, achieving a 2.1 speedup,
signiĕcantly overwhelming not only the single-socket SMP conĕgurations, but
also the full system speedup in Harpertown. e two-threaded conĕgura-
tion consumes 70% of the available memory bandwidth, whereas the four-
threaded saturates the controller. When starting using the second socket, how-
ever, the data placement plays a signiĕcant role in the performance of the ker-
nel. e typical SpMV implementation encounters a signiĕcant performance
slowdown reaching 14% when the full system is utilized, while the NUMA-
aware version continues to scale signiĕcantly up to the eight-threaded conĕg-
uration, where the both memory controllers are saturated. Examining closer
the individual thread execution times in the typical SpMV implementation for
the eight-threaded conĕguration (Figure 3.11) reveals a signiĕcant load imbal-
ance between the threads assigned to the local and remote sockets. In fact, a
performance difference of approximately 45% is observed, matching the differ-
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Figure 3.11: e saturation of the interconnection link in NUMA architectures in-
creases the execution times of threads performing remote accesses, lead-
ing to considerable load imbalance. e SpMV performance is therefore
determined by the link bandwidth. Results shown are for the xenon2ma-
trix, but are similar for all other regular matrices.

ence in sustained bandwidth of thememory controller and the interconnection
link, denoting the contention in this link.

e speedupdiagramof the ‘share-nothing’ core-ĕlling policy (Figure 3.10b)
reveals better the difference in the bandwidth between the memory controller
and the interconnection link. e behavior of the typical CSR implementation
resembles that of an SMP system. Half of the memory traffic in the multi-
threaded conĕgurations must pass through the interconnection link, 80% of
which is already consumed from the four-threaded conĕguration, leading to a
less than 2× maximum speedup at the eight-threaded conĕguration. e be-
havior of the NUMA-aware implementation is completely opposite: the ample
memory bandwidth (≈30GB/s) offered by the two integrated memory con-
trollers allows SpMV to scale signiĕcantly up to the eight-threaded conĕgura-
tion, achieving even linear speedup for the two-threaded conĕguration, where
contention is not encountered at all.

Transparent data placement in NUMA architectures

e discussion on the performance results of SpMV in NUMA architectures
has revealed the correct placement of the SpMVdata as a key issue in achieving
high performance. Such placement requires each thread to allocate its owndata
(matrix and output vector partitions, input vector) to its local node. However,
such allocation needs to modify the SpMV algorithm itself. Essentially, the
matrix must be split into individual submatrices per thread, and the SpMV
computationmust bemodiĕed to operate on these. Similarly, the output vector
must be either split in subvectors or allocated as a whole on a single memory
node. esemodiĕcations for converting toNUMA-aware an SMP-based code
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require a signiĕcant code refactoring and impose an important programming
burden, although only the placement of the algorithm’s data must be changed.

We address the data placement problem by developing a custom low-level
allocation scheme. is scheme allows to maintain the SMP ‘look-and-feel’
of the SpMV kernel by keeping the data placement completely transparent to
the application code. In order to keep the SMP ‘look-and-feel’, one needs to
assure a contiguous allocation for the matrix structures in the virtual address
space, while the NUMA-aware placement is achieved transparently to the user
by mapping the virtual memory pages to the correct physical memory node
(see Figure 3.12). is can be easily achieved in Linux, using the low-level
Linux memory management system calls. More speciĕcally, we allocate the
whole data structure contiguously in the virtual address space with a single call
to mmap() and then bind every partition on its local nodewith subsequent calls
to mbind(), rounding the partition sizes to the nearest multiple of the system’s
page size⁵. is mechanism relies on the copy-on-write physical page alloca-
tion scheme on Linux. e mmap() call creates only a virtual memorymapping
for the calling thread and does not allocate any physical page, while the call to
mbind()marks the mapped region to be physically allocated on the speciĕed
memory node; this allocation will not take place until a thread writes on this
region. is user-deĕned interleaved allocation scheme allows the transparent
conversion of SMP-based code to NUMA-aware, by just replacing the calls to
standard memory allocation routines by calls to our interleaved allocator; the
rest of the algorithm remains untouched. All the NUMA-aware SpMV kernels
presented and discussed in this thesis are implemented using this technique
with a minimal programming effort.

While the matrix data and the output vector can be allocated across the
physical memory nodes using the interleaved allocator presented previously,
the input vector, ideally, must be replicated across thememory nodes, since the
access pattern is not known a priori. However, this is not practical in the con-
text of a ‘real-life’ application, where the input vector changes during the SpMV
iterations. For this reason, placing it on a single node is a more reasonable
choice. Nonetheless, as depicted in Figure 3.13, this shared copy does not con-
stitute a performance bottleneck. e average performance overhead amounts
to 2.5% and can reach up to 7% in more irregular matrices, e.g., parabolic_fem,
offshore etc. Based on our previous discussion on the SpMV performance, this
behavior is quite expected, since the accesses in the input vector do not gen-
erate signiĕcant memory traffic for the majority of the sparse matrices and,
therefore, the impact of the shared copy on the SpMV performance in NUMA
systems is minimal.

⁵ Linux allocates andmanagesmemory at the granularity of a page, usually 4 KiB in 64-bit systems.
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Figure 3.12: Transparent data placement in NUMA architectures on Linux. e space
required for a data structure is allocated contiguously in the virtual ad-
dress space, while individual partitions are then bound to speciĕc phys-
ical nodes. User code is agnostic of the placement of the physical pages
and ‘sees’ only the contiguous address space through the addr pointer,
as expected.
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Figure 3.13: e effect of sharing the input vector in NUMA architectures is minimal,
since SpMV is chieĘy memory bandwidth bound and the accesses in the
input vector do not constitute a performance problem for the majority of
sparse matrices.
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3.4 Related work

For several years, the irregular access pattern on the input vector has been char-
acterized as the major performance problem of the SpMV kernel. Temam and
Jalby [1992] perform a thorough analysis of the cache behavior due to the ir-
regular access pattern in the input vector and discuss optimization techniques,
such as matrix reordering and blocking. Under the same assumption, Toledo
[1997] proposes a number of optimization techniques for improving themem-
ory performance of the kernel, including reordering, blocking and soware
prefetching for the non-zero values and the column indices. Geus and Röllin
[2001] focus on symmetric matrices and propose soware pipelining tech-
niques for optimizing instruction parallelism, matrix reordering for increasing
cache reuse and blocking for minimizing indirect references. Im and Yelick
[2001] focus speciĕcally on ĕxed size blockingmethods as a means for increas-
ing register reuse and propose techniques for automatically selecting the opti-
mal block size. In the same direction, Vuduc et al. [2002] study the interaction
of blocked kernels with the cache hierarchy and investigates the performance
bounds of the SpMVkernel, while Pinar andHeath [1999] investigate variable-
size blocking as an alternative for reducing the indirect references in the kernel.
e computational overhead of short rows has been highlighted by White and
Sadayappan [1997], characterizing it as more crucial performance issue than
the irregular access pattern, since it limits considerably instruction-level par-
allelism. Mellor-Crummey and Garvin [2004] insist further on this problem
and propose compiler optimization techniques for attacking it.

It is not until recently that the memory bandwidth bottleneck has started
to be considered explicitly as the most crucial problem of the SpMV execution.
Indeed, previous work took a rather implicit approach. A typical example are
blocking methods, whose increased performance was attributed to the reduc-
tion of the indirect references. In fact, this is a by-product of the real beneĕt,
which is the considerable reduction of the size of the column indexing struc-
ture. Williams et al. [2007] and Goumas et al. [2008] are the ĕrst to highlight
the important role of memory bandwidth in the execution of the SpMV kernel
in modernmulticore architectures, whileWillcock and Lumsdaine [2006] take
a ĕrst approach in directly tackling this problem through explicit compression
of the matrix representation.

3.5 Summary

In this chapter, we have presented an in-depth performance analysis of the
SpMV kernel in modern multicore architectures, identifying the key perfor-
mance problems. ebehavior of the SpMVkernel inmodern SMPandNUMA
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architectures is determined by the streaming algorithmic nature of the kernel,
which exhibits an extremely low Ęop:byte ratio. e lack of temporal and spa-
tial reuse requires the memory subsystem to be able to supply the requested
data at a CPU-comparable speed. e memory datapath, in terms of available
memory bandwidth, becomes therefore the performance hotspot of the kernel,
especially in multithreaded conĕgurations, where multiple threads share this
path. is problem is more pronounced in SMP architectures, where all mem-
ory and interprocessor traffic passes through a low-bandwidth common bus.
NUMA architectures, on the other hand, offer signiĕcantly higher bandwidth
through their integrated memory controller, which can easily accommodate
the traffic produced by the cores of the socket. e downside of this type of
architectures, however, is that the main memory is segmented into multiple
physical nodes and the performance of the kernel becomes very sensitive to
the placement of the involved data, since remote memory accesses tend to sat-
urate the processor interconnection links. Overcoming this problem requires a
correct placement of the algorithm’s working data in the memory nodes, a task
that is achieved effortlessly and transparently to the application code using the
proposed NUMA-aware Linux-based interleaved allocator.

eperformance of the SpMVkernel depends heavily on the sparsity struc-
ture of the input matrix. We can identify two large categories of sparse matri-
ces: (a) matrices with a rather regular non-zero element structure and (b) very
sparse matrices with an irregular non-zero structure. e ĕrst category com-
prises mostly matrices arising from PDE problems with an underlying 2D/3D
geometry and is the typical case of sparse matrices encountered in practice.
e key performance problem for these matrices is the contention for mem-
ory bandwidth and their performance is almost directly related to the matrix
representation size. e second category consists of matrices that do not satu-
rate the memory bandwidth of the system, since they suffer from a diverse set
of performance problems, including irregular memory accesses in the input
vector, large loop overheads due to very short rows and load imbalances.

We conclude this chapter with a note on the optimization directions for the
SpMV kernel, as these were revealed from the performance analysis conducted
in this chapter. e goal for a successful optimization of the SpMV kernel must
be the minimization of the memory footprint of the matrix, since contention
for memory bandwidth is the key performance problem in modern multicore
architectures. Performance problems related to very irregular matrices are of
secondary importance and can be treated orthogonally to the minimization
of the matrix size. For instance, matrix reordering techniques not only treat
successfully the load imbalance problem of matrices with an irregular non-
zero element distribution, but also manage to optimize the access pattern in
the input vector.
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Optimization opportunities of blocking

Blocking storage formats for sparse matrices exploit the regular non-zero ele-
ment structure of certain sparse matrices, in order to form one- or two-dimen-
sional dense blocks by grouping together neighboring non-zero elements. By
keeping a single column index per block, blocking formats manage to reduce
signiĕcantly the matrix size and alleviate the pressure to the memory hierar-
chy of the system. Additionally, the known and regular structure of the blocks,
especially in ĕxed size blocking storage formats, allows the optimization of the
SpMV computations, which now become more exposed.

In this chapter, we examine the optimization opportunities of a variety
of blocking methods in terms of their compression capabilities and compu-
tational characteristics. Based on this knowledge, we propose a simple perfor-
mance model for selecting the optimal block for BCSR, taking into consider-
ation both the memory and the computational part of the SpMV kernel. e
proposed model is able not only to detect the best block, but also the most
efficient implementation.

4.1 The effect of compression

InChapter 2, we have presented in detail themost representative types of block-
ing for sparsematrices, namely ĕxed-size, variable-size anddecomposed block-
ing storage formats. e common characteristic of these formats is the com-
pression of the colind CSR’s data structure (Chapter 2, Figure 2.2) by keep-
ing a single column index per formed block. eir key difference lies on the
way the blocks are formed and, as we shall see in this chapter, characterizes
their compression and computational capabilities. Fixed-size blocking meth-
ods form ĕxed-size one- or two-dimensional blocks and either employ zero-
padding for forming full blocks or decompose the original matrix into a full-
block submatrix and a CSR remainder. Variable-size blocking methods, on the
other hand, store arbitrary one- or two-dimensional blocks and employ addi-
tional data structures to keep track of their blocks.

63



thesis March 11, 2013 15:54 Page 64 �
�	

�
�	 �
�	

�
�	

4. Optimization opportunities of blocking

Figure 4.1 shows the correlation between the compression ratio and the
performance improvement for a diverse set of blocking storage formats, includ-
ing ĕxed-size blocking with zero-padding (BCSR, RSDIAG), ĕxed-size block-
ing with decomposition (BCSR-dec, RSDIAG-dec) and variable-size blocking
(VBL). We show the results for the Harpertown and Gainestown systems in
single- and multithreaded conĕgurations for the 30 matrices of our matrix
suite. e marked lower le region of the diagrams denotes matrices that a
storage format could not offer a performance improvement over CSR, despite
compressing its memory footprint. e ĕrst clear observation is that there is
a tendency, becoming very pronounced in the multithreaded conĕgurations,
toward higher performance as the matrix size decreases. is is quite expected
according to the quantitative analysis of the SpMV kernel in the previous chap-
ter. It is remarkable that no storage format with a larger than CSR matrix
representation did achieve a better performance, even in the single-threaded
conĕgurations, where the memory contention is not so intense. e inverse,
however, is true for the majority of formats, revealing signiĕcant performance
overheads unrelated to thematrix size. emost characteristic example isVBL,
which, in single-threaded conĕgurations, incurs more than 20% performance
degradation, despite its rather compressed representation. is is due to the in-
creased computational overhead of accessing the additional data structure for
fetching the block sizesƬ. is situation is reversed as the number of threads
increases and the memory contention becomes apparent: the signiĕcant com-
pression achieved by VBL relaxes the memory bandwidth requirements and
offers a higher performance potential.

e case of diagonal storage formats is interesting. First, as expected, their
compression capability is lower than BCSR’s, since they detect only one-dimen-
sional blocks. However, even in cases where they achieve comparable com-
pression, their performance is lower, especially in the Gainestown system. is
behavior can be explained by examining closer the access pattern of diagonal
blocks: for each block of size b, the kernel must fetch 16b+ 4 bytes (8b for the
values, 8b for the input vector elements and four bytes for the block column
index) and write back into main memory 8b bytes per block rowƭ. For a 4× 1
block, however, the BCSR kernel reads only 8b + 12 bytes per block (a single
input vector element is needed) and writes back again 8b bytes per block row.

Ƭ VBL must fetch the block size for every block encountered; therefore, the smaller the block, the
higher the overhead. Additionally, compared to BCSR, it is not easy for a compiler to emit highly
optimized code for the block traversal in VBL, since the loop bounds (block size) are unknown.

ƭ e typical implementation of a blocked SpMV kernel unrolls the block computations and de-
lays the output vector writes until the end of the matrix’s block row, by accumulating the inter-
mediate results into registers. is is done in order to minimize the demands on memory-write
bandwidth, a resource that is more restricted.
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(a)Harpertown, single-threaded.
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(b)Harpertown, single socket (four threads).
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(c)Gainestown, single-threaded.
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(d)Gainestown, single socket (four threads).

Figure 4.1: Correlation of the compression ratio and the performance improvement
over CSR achieved by the different blocking storage formats in a set of 30
sparse matrices. e performance results for ĕxed-size blocking methods
correspond to the best block.

e arithmetic intensity for diagonal blocks is therefore signiĕcantly lower, ex-
plaining their performance deĕciency compared to BCSR blocks.

e decomposed formats solve the zero-padding problem of the ĕxed-size
blocking formats, having their size barely exceeding CSR in the worst case,
whereas padding in BCSR can lead up to a 60% increase in the matrix size,
even for the best performing block. Nonetheless, decomposed formats have to
pay the cost of the multiple SpMV operations, leading to a slightly lower per-
formance than their zero-padded counterparts in cases of comparable com-
pression. In cases where almost no compression is achieved, this overhead be-
comes more visible and can lead to a more than 10% performance degradation
compared to CSR.
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Figure 4.2: e speedup achieved by a variety of blocking storage formats. e perfor-
mance slowdown in Gainestown from the eight-threaded conĕguration is
due to the non-NUMA-aware implementation used.

e superiority of BCSR in the computations compared to the other block-
ing formats is depicted clearly in the single-threaded conĕguration in Gaines-
town, where it achieves the best performance at the samematrix sizes. is ad-
vantage is still preserved in the single-socket conĕguration in Gainestown, but
it is completely overshadowed by the memory bottleneck in the single-socket
conĕguration in Harpertown. Nonetheless, despite being very performant in
matrices where it achieves high compression, BCSR’s compression capabilities
are limited; in almost half of the matrices in our suite, it increased the matrix
size, deteriorating SpMV’s performance.

e effect of compression as the memory bandwidth contention becomes
visible is depicted in the speedup diagrams of Figure 4.2. VBL pays the cost
of its additional ‘decompression’ operations in the few-threaded conĕgura-
tions, but it manages to successfully compensate it as the number of threads
increases. From the four-threaded conĕguration onward in Harpertown, VBL
manages to achieve the best SpMV performance on average, while in Gaines-
town (non-NUMA implementations), takes the lead from the eight-threaded
conĕguration, where the second socket is used and the SpMV computation is
now bound from the processor interconnection link. is behavior, depicted
visually in Figure 4.3, is typical of highly compressed formats [Kourtis et al.,
2008a], where the limitedmemory bandwidth inmultithreaded conĕgurations
can easily hide the decompression cost. Finally, the decomposed formats man-
age to achieve a 5–8% better performance on average compared to their zero-
padded counterparts, due to their more compact representation.
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Figure 4.3: eeffect of compression. Highly compressed storage formats suffer in the
single-threaded conĕguration from the increased decompression over-
head. In multithreaded conĕgurations, however, this cost is hidden by
the contention in the memory subsystem and the performance beneĕt be-
comes evident.

4.2 The effect of the computations

e previous discussion on the compression capabilities of the different block-
ing storage formats has revealed the signiĕcance of the computational part of
the kernel in conĕgurations where the available main memory bandwidth is
not yet saturated. In this section, we focus more on the computational part of
BCSR, which is the most computationally friendly blocking storage format, in
order to obtain further insight into the intricacies of the SpMV kernel.

4.2.1 Vectorization and the block shape

e ĕxed size blocks of BCSR provide a signiĕcant computational advantage
compared to variable size blocking methods by allowing a number of perfor-
mance optimizations. Not only modern compilers can provide highly opti-
mized code for loops with ĕxed bounds, but ‘manual’ optimizations are also
possible. One such optimization is vectorization, a technique that increases the
throughput of Ęoating point operations by executing the same instruction on
multiple Ęoating point data (Single Instruction Multiple Data – SIMD). Origi-
nated from the vector processors of the 1970’s [Russell, 1978], SIMD instruc-
tions have been part ofmodernmicroprocessors for several years [Raman et al.,
2000] and have come into the foreplay recently with the advent of general pur-
pose GPU architectures [Lindholm et al., 2008]. e experimental platforms
we use for the performance evaluations in this thesis support a set of SIMD in-
structions (Streaming SIMD Extensions – SSE) that operate on a separate regis-
ter ĕle comprising 16 ‘wide’, 128-bit Ęoating point registers. A dedicated arith-
metic unit is responsible for implementing the SIMD extensions, accompanied
by a special shuffle unit; this unit is responsible for moving individual SIMD
vector elements either across multiple SIMD registers or within the same regis-
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ter. Instructions that engage the shuffle unit for their execution may encounter
high latency and low throughput, due to the rather complex circuit logic of this
unit.

Algorithms 4.1 and 4.2 show the SIMD implementations for the 1× 2 and
2 × 1 BCSR blocks, respectively, indicating the instructions that involve the
shuffle unit. e computation of a 1 × 2 block starts by loading the two input
vector values and the corresponding two non-zero elements into two SIMD
registers. It then proceeds with the actual SpMV computation on the SIMD
registers. At this point, the typical implementation would add the two ele-
ments of the y0 register using an horizontal add instruction. However, this
instruction engages the shuffle unit and can be quite expensive, especially in
older architectures; therefore, we delay its execution until the end of the block
row, when the actual result must be written back to the output vector. e
computation of 2×1 blocks starts by loading the two non-zero elements in the
y0 SIMD register, while the single input vector element is stored at the lower 64
bits of the y1 register. is value is then duplicated (using the shuffle unit) at
the upper 64 bits, in order for the SpMV to proceed in a vectorized fashion. e
implementations shown for these two types of blocks can be expanded to larger
one-dimensional and two-dimensional blocks in a straightforward manner.

SIMD vector loads ere are two kinds of instructions for loading full SIMD
vectors: aligned and unaligned loads. An aligned SIMD load is as fast as a nor-
mal load, but requires the loading address to be aligned at 16-byte boundaries.
is restriction is lied for the unaligned SIMD loads, but the shuffle unit is
employed for properly aligning the vector elements inside the SIMD register.
As a result, unaligned loads experience a performance overhead. Due to their
strict alignment requirements, aligned SIMD loads cannot be used in BCSR
blocks with odd dimensions, e.g., 3× 1, 5× 1 blocks etc., since the individual
blocks cannot be properly aligned. Conversely, the correct alignment require-
ment can be achieved easily for blocks with even dimensions.

e vectorization of the BCSR blocks has introduced a new set of factors
that inĘuence the SpMV performance. Figures 4.5 and 4.4 show the effect of
vectorization in the Harpertown and Gainestown, respectively, for the single-
and multithreaded conĕgurations. We show results only for the 15 symmetric
matrices of our matrix suite, so that symmetric blocks (e.g., 1 × 2 and 2 × 1)
lead to the same matrix sizes. e impact of vectorization in Harpertown is
minimal reaching a maximum of 5% improvement for the 1 × 8 blocks. e
low memory bandwidth of SMP architectures does not leave enough space for
computational optimizations, such as vectorization. Additionally, the SIMD
implementations for any block make use of the shuffle unit and cannot com-
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1: procedureMVB(A::in, x::in, y::out)
A: matrix in BCSR format
x: input vector
y: output vector

2: for i← 0 to N do
3: y0 ← 0
4: for j← browptr[i] to browptr[i+ 1] step by 2 do
5: jb ←

j
2

6: xc ← bcolind[jb]
7: x0 ← x[xc]
8: v0 ← bvalues[j]
9: y0 ← y0 + v0 · x0
10: end for
11: y0 ← y0 ⊕ y0 ◃ Shuffle unit
12: y[i]← lower64(y0) ◃ Shuffle unit
13: end for

Algorithm 4.1: SIMD implementation of the BCSR kernel for 1 × 2 blocks. Vector
registers are in bold typeface; the ⊕ operator performs the addition
of the individual register elements (horizontal add), while the lower64
gets the 64 lower bits of a vector register.

pensate the overhead, since the blocks are quite small and the unit is not very
optimized. is overhead becomes more obvious in cases where unaligned
loads are used, where vectorization even degrades performanceƮ. In Gaines-
town, on the other hand, the gain of vectorization is signiĕcant, reaching 58%
on average for the 1×8 block. is behavior is due chieĘy to the amplememory
bandwidth available and the optimized shuffle unit of the Nehalem microar-
chitecture [Int, 2009; Fog, 2012].

A closer look at the Gainestown results (Figure 4.5) reveals some impor-
tant characteristics of the BCSR blocks. First, the vertically oriented blocks
(standard version) exhibit higher performance than their horizontally oriented
counterparts, although both lead to the same matrix size. Horizontally ori-
ented blocks resemble the case of diagonal blocks (Section 4.1), since for each
block the kernel must fetch a series of input vector elements, leading to a low
local arithmetic intensity. e performance differences are attenuated in the
vectorized versions due to the increased overhead of the shuffle operations

Ʈ e performance of 3 × 1, 5 × 1 blocks etc. is not degraded, since their unaligned store is not
the in the critical path.
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1: procedureMVB(A::in, x::in, y::out)
A: matrix in BCSR format
x: input vector
y: output vector

2: ir ← 0
3: for i← 0 to N step by 2 do
4: y0 ← 0
5: for j← browptr[ir] to browptr[ir + 1] step by 2 do
6: jb ←

j
2

7: xc ← bcolind[jb]
8: lower64(x0)← x[xc] ◃ Shuffle unit
9: upper64(x0)← lower64(x0) ◃ Shuffle unit
10: v0 ← bvalues[j]
11: y0 ← y0 + v0 · x0
12: end for
13: y[i]← y0
14: ir ← ir + 1
15: end for

Algorithm 4.2: SIMD implementation of the BCSR kernel for 2 × 1 blocks. Vector
registers are in bold typeface; the lower64 and upper64 operators get
the 64 lower or upper bits of a vector register, respectively.

in the vertically oriented blocks. e second key observation is that the per-
formance of the SIMD versions is more loosely coupled with the matrix size,
due to the various overheads introduced by the strict SIMD implementation
requirements. For example, one-dimensional blocks with an odd dimension
perform worse that ones with an even dimension, despite leading to a smaller
matrix representation and, similarly, 3 × 2 blocks are 17% faster than 2 × 3
blocks. Selecting the optimal BCSR block, therefore, is not a straightforward
task and the computational part of the kernel must also be considered.

Closing the discussion on the vectorization of the BCSR blocks, we should
highlight themultithreaded case in bothHarpertown andGainestown systems.
e contention for memory bandwidth resources leaves almost no headroom
for computational optimizations, such as vectorization. In Harpertown, which
suffers more from the memory bottleneck, the gain of vectorization is negli-
gible, while in Gainestown, it falls below 5%. In these cases, the criterion of
matrix size seems rather safe for predicting the SpMV performance.
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Figure 4.4: e effect of vectorization of BCSR in the Harpertown SMP platform.

4.3 Predicting the optimal block size

e discussion on the performance characteristics of BCSR blocks has raised
the need for formulating a performance model for the SpMV kernel that will
guide us through the selection of the correct optimization. is performance
model must consider also the computational part of the kernel, since it can
considerably inĘuence the overall performance. In this section, we propose
and evaluate the accuracy of two simple performance models for the BCSR
storage format, namely the MC and O models. ese models
consider also the computational part of the kernel and ‘decide’ on the optimal
block and implementation (standard or vectorized). We focus speciĕcally on
the single-threaded performance, since the computational part of the kernel is
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Figure 4.5: e effect of vectorization of BCSR in the Gainestown NUMA platform.

more signiĕcant in this case, rendering the optimal selection more difficult.

4.3.1 The Memmodel

eMmodel is the most straightforward performancemodel for the SpMV
kernel. Proposed by Gropp et al. [1999], this model is based solely on the algo-
rithm’s working set (matrix representation and input/output vectors sizes) and,
therefore, it is not strictly focused on any storage format. Based on the stream-
ing nature of the SpMV kernel, this model assumes that the sole performance-
critical parameter is the effectivememory bandwidth of the underlying system.
erefore, given a system with bandwidth B and a matrix with a working set S,
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the SpMV execution time according to the M model will be

tM =
S
B

(4.1)

e effective bandwidth of a system can be obtained through microbench-
marks, such as STREAM [McCalpin, 1995], BenchIT [Juckenland et al., 2004]
etc.

4.3.2 The Sparsity model

Im et al. [2004] and Buttari et al. [2007] focus speciĕcally on BCSR and pro-
pose a performance model for selecting the best block. is model, employed
also by the OSKI sparse matrix optimization framework [Vuduc et al., 2005],
considers both the memory and the computational part of the kernel, but in a
more implicit manner. According to the S model, an estimate of the
execution time for a sparse matrix A can be computed as follows:

tA ∝
fillA(r, c)
perfA(r, c)

(4.2)

e fillA(r, c) parameter is the ĕll-in ratio of the r×c block and denotes the zero
padding needed to construct the full BCSR blocks. e ĕll-in ratio is an indica-
tion of the computational overhead of padding (redundant Ęoating-point op-
erations) and the resulting matrix size. e perfA(r, c) is the actual SpMV per-
formance for the r × c block. is parameter is microarchitecture-dependent
and captures the performance variation for the different blocks leading to the
same ĕll-in ratio, i.e., the same matrix size. Since computing perfA(r, c) for an
arbitrarymatrixA is irrational, these values are obtained by proĕling the SpMV
execution of a large dense matrix, exceeding the last level cache size of the tar-
get system. erefore, the execution time estimate of the S model for
an r× c block is calculated as follows:

tr,cS = fillA(r, c)tr,cdense (4.3)

e ĕll-in ratio is the ratio of the BCSR non-zeros, including padding elements,
over the non-zero elements of the original matrix. Computing the ĕll-in ratio
for every relevant block can still be time-consuming⁴. For this reason, in prac-
tice, an estimate of the ĕll-in ratios is computed by sampling the sparse matrix.

e S model can be applied also to CSR, where fillA(r, c) = 1 and
tr,cdense is the SpMV execution time for the proĕled dense matrix stored in CSR
format.

⁴ e cost of converting a sparse matrix into the BCSR format is an order of magnitude higher
than a single SpMV operation.
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4.3.3 The MemCompmodel

eMCmodel is a generalization of theMmodel that considers also
the computational part of the kernel. It regards SpMVas a two-phase operation
consisting of thememory and the computational parts. ememory part is the
one computed by the M model (equation (4.1)), while the computational
part is computed explicitly using an estimate of the execution time of a single
BCSR block. Assuming a sparse matrix of size S in BCSR format, using Nb
r× c blocks, the SpMV execution time, according to the MC model, is
computed as follows:

tr,cMC =
S
B
+ Nr,c

b · t
r,c
b (4.4)

eĕrst termof the equation corresponds to thememory part of the kernel and
B is the effective memory bandwidth of the underlying system. e second
term is the computational part and corresponds to the execution time of all
Nb blocks. e execution time tb of a single block is obtained by proĕling the
execution of a very small dense matrix, ĕtting in the L1 cache of the system, for
all r× c blocks under consideration.

e MC model can be applied also to decomposed formats, where
the formula (4.4) is computed for each submatrix. e case of CSR is treated
as a degenerate BCSR with 1 × 1 blocks; therefore, Nr,c

b = NNZ and tr,cb is the
execution time of the proĕled small dense matrix stored in CSR.

4.3.4 The Overlap model

e MC model treats the memory and the computational parts of the
SpMV kernel separately, as if they were two completely distinct phases. How-
ever, according to the quantitative analysis presented in Chapter 3, the compu-
tations of the SpMV kernel are not very exposed, due to its streaming nature,
which tends to saturate the availablememory bandwidth. eOmodel
assumes an overlapping of the memory and computational parts of the kernel
and only a fraction of the computational part is eventually visible in the overall
SpMV execution time. is behavior is possible inmodernmicroarchitectures,
even in a single-threaded conĕguration, thanks to hardware prefetching. Hard-
ware prefetching is amechanism for fetching into the processor’s cache the data
that is likely to be accessed by a program shortly, based on its current memory
reference pattern. is mechanism not only hides the main memory access la-
tency, but also allows streaming applications, such as SpMV, to fully utilize the
available memory bandwidth of the system [Goumas et al., 2009].

e O model adjusts the computational part term of the M-
Cmodel bymultiplying it by a factor, calledNon-Overlapping Factor (NOF),
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indicating the percentage of SpMV computations exposed to the overall exe-
cution time. e NOF factor is deĕned for every r× c block as

NOFr,c =
tr,creal − tr,cM
Nr,c
b · t

r,c
b

(4.5)

is factor is obtained by proĕling the execution of a large dense sparse ma-
trix, exceeding the last level cache of the system under consideration. It can
be viewed as a correction factor of the computational part of the MC
model, since it actually compares the real computations time (nominator) ver-
sus the theoretical time of the MC model (denominator). Given the
NOF factor, the SpMV execution time according to the O model is
computed by the following formula:

tr,cO =
S
B
+ NOFr,c ·Nr,c

b · t
r,c
b (4.6)

Similarly to MC, the O model can be applied also to both de-
composed formats and CSR, by considering it as a degenerate BCSR with 1×1
blocks.

4.3.5 Assessing the accuracy of the models

e main purpose of the performance models presented in this chapter is the
selection of the optimal block for BCSR. However, with the exception of the
S model, the rest three models, namely M and the proposed M-
C and O models, take a more explicit approach in determining
also the kernel’s execution time. We could distinguish, therefore, two metrics
for assessing the prediction quality of the considered models:
Selection accuracy: is metric determines how accurate is the performance

model in determining the optimal BCSR block for a speciĕc matrix.
Quantitatively, the quality of the prediction can be assessed by how
close to the optimal block’s performance is the performance of the block
selected by the model under consideration.

Execution time prediction accuracy: is metric determines how accurate the
performancemodel at hand canpredict the execution timeof the SpMV
kernel in absolute terms.

ere exist an one-way relation between the two accuracy metrics described.
If a performance model is fairly accurate in predicting the absolute execution
time of the SpMV kernel using different blocks, it will also exhibit a high se-
lection accuracy. e inverse, however, is not true; providing accurate block
selections does not prescribe an accurate execution time prediction, since it
requires only a good ranking of the candidate blocks.
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Harpertown Gainestown

Correct Dist. C.I. Correct Dist. C.I.

M 27/30 1.81% ±2.05% 10/30 8.50% ±1.86%
S 26/30 3.33% ±4.54% 26/30 5.89% ±4.90%
MC 22/30 5.61% ±2.88% 28/30 3.63% ±0.34%
O 26/30 3.53% ±4.54% 26/30 5.89% ±4.90%

Table 4.1: Selection accuracy of the considered performance models. It is shown the
total number of correct predictions, the average distance of mispredicted
cases from the optimal performance (Dist.) and a 95% conĕdence interval
(C.I.). In cases with a few mispredictions, the conĕdence intervals may ex-
ceed the averagemisprediction distance; this is due to the very small sample
of mispredictions available.

e key concern in this chapter is providing high selection accuracy, since
we are interested in selecting the best SpMV optimization. e performance
models must be able select the best option among the baseline CSR and the
standard and SIMD BCSR implementations. Apparently, the Mmodel can-
not differentiate between the simple and vectorized BCSR implementations,
since it considers only the memory part of the kernel. For this reason, we em-
pirically select the standard implementation for SMP systems and the SIMD
version forNUMAones. Figure 4.6 shows schematically the selection accuracy
of the four performance models considered in the Harpertown and Gaines-
town systems, while Table 4.1 summarizes the accuracy results. e compe-
tence of the M model is clear in Harpertown, where it provides the cor-
rect selection for 27 out of the 30 matrices (90%) in our suite. is is more or
less expected, since the SpMV kernel is bound from the low memory band-
width of the Harpertown system. e MC model, on the other hand,
overestimates the impact of the computations in this system, missing the cor-
rect prediction in eight cases. e S and O models are clearly
more adapted and manage an 87% accuracy (26 correct predictions). In case
of a misprediction, all models, exceptMC, are within 5% of the optimal
performance, which reveals a rather high prediction quality. e MC
model falls victim of its overestimation of the computations and its prediction
can lead up to 10% performance degradation.

e situation is completely reversed in the Gainestown system. e com-
putations play a rather signiĕcant role in this case and the MC model
excels, providing the correct predictions in almost all the matrices (28 cor-
rect predictions, 93%). e performance of the M model is disappointing,
managing only 10 correct predictions (33%). is is quite expected, according
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(b)Gainestown.

Figure 4.6: Selection accuracy of the considered performance models. e M
model achieves a high selection accuracy in Harpertown, where the mem-
ory bandwidth contention is more pronounced, but it falls short in its pre-
dictions in Gainestown, where the computational part of the kernel plays
a signiĕcant role in the overall SpMV performance. e inverse is true
for the MC model, while O and S balance better
the memory and computational parts, achieving good predictions in both
cases.
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Harpertown Gainestown

Dist. (R) Dist. (A) Dist. (R) Dist. (A)

M 12.94± 2.71% 18.22± 3.78% 43.05± 3.35% 45.32± 2.85%
MC 28.41± 3.93% 23.13± 4.36% 23.98± 3.35% 19.76± 3.75%
O 5.28± 1.99% 12.04± 4.20% 9.06± 5.71% 15.81± 5.12%

Table 4.2: Execution time prediction accuracy of the considered SpMV performance
models. It is shown the average distance between the predicted and the real
performance for regular matrices (Dist. (R), 15 matrices) and for the whole
matrix suite (Dist. (A)). e corresponding 95% conĕdence intervals are
also presented.

to our earlier performance analysis, since the SpMV performance in Gaines-
town is not directly related to the matrix representation size. e S
and O models exhibit a rather stable behavior, providing a correct pre-
diction in 26 matrices (87%). However, the cost of misprediction is higher in
Gainestown, leading to an average 5.9% degradation for S and O-
 and 8.5% for the M model.

Although the key purpose of the performance models presented in this
chapter is the correct prediction of the optimal BCSR block, the M, M-
C and O models are derived from an abstraction of the execution
time of the SpMV kernel. For this reason, we provide in Table 4.2 some statis-
tics on the execution time prediction accuracy of the proposed models. Since
the proposed models assume a streaming behavior of the SpMV kernel, we
provide speciĕc results for matrices with a high Ęop:byte ratio (≥ 1.6), as these
matrices do not suffer from collateral problems, such loop overheads, irregu-
lar memory accesses etc. (see Chapter 3 for a detailed analysis) and are typ-
ical of SpMV applications. e O model manages the most accurate
execution time prediction, leading to an average 5.3% absolute performance
difference in Harpertown for regular matrices. In Gainestown, this difference
increases, but still remains below 10%. When the irregular matrices are also
considered, the prediction accuracy deteriorates, reaching a 12% distance in
Harpertown and 15.8% in Gainestown. e M and MC models are
less accurate, though, the ĕrst being more suitable for Harpertown and the lat-
ter for Gainestown, but still stay considerably lower than O. We should
note here, that the accuracy of MC model seems to be favored by the
more irregular matrices. Due to the irregular memory reference pattern, these
matrices tend to underutilize the available memory bandwidth and their com-
putations are more exposed, allowing the MC model to perform better
predictions.
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4.3. Predicting the optimal block size

Finally, Figure 4.7 shows the predicted execution time by the three consid-
ered models for the more regular matrices. e M model tends to overesti-
mate the SpMV performance, since it considers solely the memory part of the
kernel. On the other hand, the MC model underestimates the perfor-
mance, as it completely decouples the memory and the computational parts.
e O model, however, balances the two parts and manages a better
approximation of the SpMV performance. Its performance line for our two
architectures exhibits its better adaptability: in Harpertown, it is closer to the
M’s line, revealing that the memory part is more signiĕcant in this archi-
tecture; the inverse is true for Gainestown, where O is closer to the
MC’s line.

4.3.6 Extensions

e performance models presented in this chapter are focused on the single-
threaded SpMVperformance. Our previous performance analysis of the SpMV
kernel has revealed that the memory part of the kernel becomes more signiĕ-
cant in multithreaded conĕgurations, producing an almost linear relation be-
tween the matrix size representation and the SpMV performance. For this rea-
son, we expect theMmodel to accurately predict not only the optimal block
size, but also the actual execution time, provided no other performance im-
peding factors are present (e.g. load imbalances). Determining correctly the
non-overlapping factor will allow the O model to match the M’s ac-
curacy, since it has been proved to be rather adaptable. Similarly, the S
model has also been proved to be adaptable. e MC model, on the
other hand, is more monolithic and we expect it to be less accurate in a multi-
threaded context.

Achieving a total performance prediction for the SpMV kernel is not a very
straightforward task. All presented models made the assumption of a stream-
ing behavior of the kernel, which is a standard for the majority of matrices in-
volved in sparse matrix computations. However, a more general performance
model should take into account parameters such as the Ęop:byte ratio (or aver-
age non-zero elements per row⁵) and load imbalance inmultithreaded conĕgu-
rations. eOmodels showed considerable adaptability andwe believe
it will be able to ‘catch’ also these corner-cases, with a suitable tweaking of its
control parameters.

⁵ Buttari et al. [2007] present a performance model that also considers the average row elements
per row, but the authors do not elaborate on multithreaded conĕgurations and in a large variety
of sparse matrices.
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(a)Harpertown.
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Figure 4.7: Execution time prediction accuracy of the considered performance mod-
els for regular matrices (Ęop:byte ratio ≥ 1.6). e M model tends to
overestimate performance, while theMCmodel underestimates it.
e O manages to balance the memory and computational parts
of the kernel and achieves high accuracy. e F1matrix can be considered
as an outlier, since it exhibits a rather irregular structure, despite the high
Ęop:byte ratio.
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4.4. Summary

4.4 Summary

In this chapter, we have discussed and evaluated the performance optimiza-
tion opportunities of the blocking storage formats. We showed that single-
threaded conĕgurations do not saturate the memory bandwidth of the system
and leave headroom for computational optimizations, especially in NUMA ar-
chitectures. Indeed, employing the SIMD extensions of modern processors,
we were able to accelerate the SpMV performance more than 50% for certain
BCSR blocks. Motivated by this behavior, we proposed and evaluated two per-
formance models (namely, MC and O) for selection of the op-
timal BCSR block; these model consider both the memory and computational
part of the kernel. In addition, the O model was able to adapt success-
fully to the different architectures and predict quite accurately the actual SpMV
performance in more regular matrices.

In amultithreaded context, the saturation of thememory bandwidth elimi-
nates almost any beneĕt from a computational optimization. e compression
capability of a storage format becomes of vital importance and formats that lead
to the most compact matrix representation exhibit a high performance poten-
tial. A key conclusion of the analysis in this chapter is that there exists a clear
tradeoff between the high compression capability and the computational ad-
vantage of a storage format. e most compressed formats, such as VBL, have
to pay a high cost of decompression in single-threaded conĕgurations (e.g.,
accessing additional data structures, performing time-consuming operations
etc), but compensate it in a highly multithreaded context. In such a context,
their performance advantage is clear, since the execution time is almost solely
determined by the available memory bandwidth.
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5

The Compressed Sparse eXtended Format

e performance analysis of the SpMV kernel and blocked storage formats in
the previous chapters has revealed the contention formainmemory bandwidth
resources as the major performance bottleneck of the SpMV kernel in mod-
ern multicore architectures. As the number of SpMV threads is increasing,
the memory bandwidth is quickly saturated, leaving no room for computa-
tional optimizations. is behavior is especially apparent in SMP architec-
tures, where the sole performance-critical parameter in multithreaded conĕg-
urations is the matrix size representation; the lower the representation size of
a speciĕc matrix, the higher its SpMV performance. Due to the a priori un-
known distribution of the non-zero elements of a sparse matrix, a highly com-
pressed storage format must rely on special data structures and decompres-
sion operations, in order to avoid zero padding. ese operations may incur a
signiĕcant computational overhead, which is, however, completely hidden in
multithreaded conĕgurations, where thememory bandwidth bottleneck leaves
considerable slack for time-consuming operations.

Motivated by this inherent SpMV behavior, we propose in this chapter the
Compressed Sparse eXtended (CSX) format, a highly compressed storage for-
mat for sparse matrices, that is able to detect and encode simultaneously a
multitude of matrix substructures. CSX employs explicit compression tech-
niques, such as delta and run-length encoding, in order to compress efficiently
the colind data structure of the original CSR. In conjunction with the use of
matrix coordinate transformations, CSX is able to detect a wide variety of non-
zero elements substructures, including horizontal, vertical, diagonal and two-
dimensional blocks. is feature not only increases its compression capability,
but also allows CSX to successfully adapt to the speciĕcities of every matrix
without sacriĕcing performance. Indeed, CSX is able to accelerate the SpMV
performance more than 60% on average in SMP systems and approximately
20% in NUMA architectures. Additionally, the ability to adapt to the non-zero
element structure of eachmatrix provides a considerable performance stability,
a merit lacking from the majority of CSR alternatives.
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5. e Compressed Sparse eXtended Format

Format Substructures Padding Loop
overheads

Decompression
overheads

CSR None No No No
BCSR ĕxed 2-D Yes No No
RSDIAG ĕxed diagonal Yes No No
Decomposed ĕxed 1-D No Yes No
VBL variable horiz. No No Yes
CSX variable 1-D, 2-D No No Yes

Table 5.1: Key features of the most important CSR alternatives.

CSX is a relatively complex storage format. In this chapter, we describe
in detail every aspect of it and evaluate its performance on our computational
testbed. We take particularly care of the preprocessing cost of CSX and evaluate
its overall performance impact on a multiphysics simulation soware.

5.1 The need for an integrated storage format

Sparse matrices arising from the discretization of partial differential equations
have their non-zero elements arranged in substructures either extending to
some one-dimensional direction (e.g., horizontal, vertical, diagonal) or ex-
panding to two-dimensional blocks. e exact nature of these substructures
depends chieĘy on the underlying application domain and any preprocessing
performed in the original matrix (e.g., bandwidth minimization techniques)
that alters the distribution of the non-zero elements. As already discussed in
Chapter 2, exploiting these substructures can result in a reduction of thematrix
size. However, restraining a storage format to detect a single type of substruc-
tures may have diminishing returns in cases where such substructures do not
exist in adequate quantities inside the sparse matrix, leading even to an in-
crease in matrix size compared to the standard CSR. An example is shown in
Figure 5.1, where a sample matrix with a variety of substructures is shown;
trying to construct simply BCSR blocks results in excessive padding, while
applying VBL incurs signiĕcant overhead for diagonally arranged elements.
Other alternatives, such as decomposed matrices that split the original matrix
intomultiple submatrices, each one storing a different substructure, experience
additional performance overheads, due to the multiple SpMV operations (see
Chapter 4, Section 4.1). e need for an integrated storage format that could
incorporate amultitude of substructures is seemingly themost viable approach
to a performant CSR alternative. Table 5.1 summarizes the basic features of the
most important alternatives.
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5.1. e need for an integrated storage format
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Figure 5.1: e advantage of detecting multiple substructures inside a sparse matrix
(gray dots are non-zero elements, white dots are padding elements). e
use of padding in ĕxed size blocking (BCSR) can be excessive for matri-
ces with irregular non-zero element structure, while detecting only one
substructure type (VBL) cannot exploit substructures in different direc-
tions. e proposed CSX format can detect a great variety of substruc-
tures without the need of padding. e annotations beside or below the
detected substructures by CSX denote their exact instantiation (see text).
[CSX substructure legend – h(X): horizontal, v(X): vertical, d(X): diagonal,
ad(X): anti-diagonal, bc(X,X): block column-aligned; numbers inside paren-
theses are the delta distances or the block dimensions; numbers in delta units
denote their representation size in bits.]

e proposed Compressed Sparse eXtended (CSX) format is a highly com-
pressed storage format that integrates ĕve different substructure categories and
can be easily expanded to supportmore. When designingCSXwe set a number
of goals for the new format:
(a) it should speciĕcally target on the minimization of the memory footprint

of the matrix, since SpMV is a memory bandwidth bound kernel,
(b) it should cover a wide range of substructures inside the matrix, including

horizontal, diagonal and 2-D blocks,
(c) it should expose a stable high performance behavior across different ma-

trices and symmetric shared memory and NUMA architectures,
(d) it should be extensible and adaptive in the sense of supporting new sub-

structures or implementing variations of the existing ones.
In order to meet the two ĕrst design goals, we employ an aggressive compres-
sion scheme for CSX. We believe that data compression techniques will play a
more signiĕcant role in future multicore and manycore chips as a means not
only for minimizing the communication cost in different levels (processor-to-
memory, processor-to-processor etc.), but also for increasing energy-efficiency.
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5. e Compressed Sparse eXtended Format

CSX builds on top of the CSR-DU format [Kourtis et al., 2008b] (see Chapter 2,
Section 2.3), by adding run-length encoding to the delta encoding of the col-
umn indices performed by CSR-DU, in order to detect sequences of non-zero
elements either continuous or separated by some constant delta distance. To
detect non-horizontal substructures, we employ the notion of coordinate trans-
formations to transform the elements of the matrix according to the desired it-
eration order (e.g., vertical, diagonal, block-wise etc.) and then reuse the very
same detection process that we use for the horizontal substructures. is tech-
nique adds also to the design goal of the extendibility, since it suffices to deĕne
a ‘1-1’ coordinate transformation in order to detect any substructure inside the
matrix. e third goal is assured in SMP systems by the highly compressed rep-
resentation of CSX, which leads to maximal compression ratios. For NUMA
systems, we take particular care in optimizing the computations by generat-
ing optimized code at the runtime and relaxing the compression scheme. e
runtime code generation employed in CSX not only allows a high performance
SpMV implementation, but also facilitates the task of uniformly supporting
multiple substructures.

5.2 CSX data structures

CSX replaces both the rowptr and colind arrays of the standard CSR with
a single control byte-array containing all the required information, called ctl
(Figure 5.2). Similar to CSR-DU, CSX divides the matrix into units. In CSX’s
terminology, aunit represents a sequence of non-zero elements inside the sparse
matrix, either a substructure (substructure unit) or a sequence of column index
delta distances represented by the same number of bytes (delta unit). A CSX
unit is comprised of two parts: the head and the body. e head contains a two-
byte descriptor of the unit and its initial column index (ucol ĕeld) encoded as
a variable-size integer. e two byte descriptor stores a 6-bit ID of the unit (id
ĕeld) and its size in non-zero elements. e nr bit denotes the start of a new
row. Finally, the body part is present only in delta units and stores the column
index delta distances as ĕxed-size integers.

e rjmp bit and the ujmp ĕeld serve a special purpose. Since CSX encodes
non-horizontal substructures, it is possible for substructures to group together
all the elements of subsequent rows. For example, the anti-diagonal substruc-
ture in Figure 5.1c starting at position (1, 9) contains also the sole element of
the second row, leaving it empty. ese rows must be skipped when comput-
ing the SpMV. erefore, the rjmp bit denotes the existence of empty rows,
while the ujmp ĕeld stores the number of empty rows to skip in a variable-size
integer.
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Figure 5.2: e ctl byte-array used by CSX to encode the location information of the
non-zero elements of a sparse matrix. Optional ĕelds are denoted with a
dotted bounding box.
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Figure 5.3: e resulting ctl sequence for the sample matrix of Figure 5.1c. e extra
ujmp ĕeld for row jumps, present only when the rjmp bit is set, is shaded.
e column delta distances are calculated between the upper lemost el-
ements of substructures, with the exception of horizontal substructures,
fromwhich the delta distances are calculated from their rightmost element
(see ucol of the ad(1) substructure encoding). e total storage required
for storing the column and row index information is only 23 bytes, while
the colind and rowptr arrays of CSR would require 216 bytes.

Similar toCSR,CSX stores the non-zero elements of thematrix in avalues
array, but in a substructure row-wise order. For example, the substructures
in Figure 5.1c will be stored in the following order: h(1), ad(1), bc(4,2), v(1),
d(2), bc(4,2) and bc(3,2). Figure 5.3 shows the exact encoding of the ctl data
structure for the sample matrix of Figure 5.1c.

Encoding variable-size integers in CSX

In an attempt to be as compact as possible, the CSX format employs the use
of variable-size integers to encode the initial column indices of its units and
the row jumps. In this encoding, an arbitrary integer is stored in 7-bit chunks
reserving themost signiĕcant bit (bit 7) of each byte as a link between the differ-
ent chunks (Figure 5.4). e gain in the total matrix size by the use of variable-
size integers is 2–3% and has an almost direct impact on the performance of the
SpMV kernel in symmetric shared memory systems, where the memory band-
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..7 .
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.
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.b7 = 1

.b7 = 1

Figure 5.4: e variable-size integer encoding employed by CSX. Only the seven
lower bits are used for storing an integer; numbers larger 127 are stored
in 7-bit pieces with bit 8 serving as a continuation marker.

width saturation leaves enough space for the additional computational burden
of the decoding process.

5.3 Detection and encoding of substructures

5.3.1 Mining the matrix for substructures

CSX can detect a variety of non-horizontal substructures with the use of co-
ordinate transformations on the non-zero elements of the matrix. To facilitate
the detection process, CSX uses a special internal representation for the sparse
matrix, which is a hybrid of CSR and a generic version of the COO format.
Instead of simple non-zero elements, the CSX’s internal representation stores
generic elements; a generic element is either a single non-zero element or a sub-
structure. Similarly to the COO format, each generic element is stored as an
(i, j, v, t) tuple, lexicographically sorted on the (i, j). In the case of a substruc-
ture, (i, j) represents the coordinate of the ĕrst element in the substructure, v
is an array of its elements and t is its type. We also keep the CSR’s row pointers
for fast row accessing. is internal representation is constructed once during
the ‘loading’ of the original matrix, either from CSR or from the disk.

CSX detects substructures by applying run-length encoding on the column
indices of the matrix. e run-length encoding ĕrst computes the delta dis-
tances of the column indices and then assembles groups, called runs, from the
same distance values (Figure 5.5, Algorithm 5.1). Each run is identiĕed by the
common delta value and its length. Runs with length greater or equal to two
form a substructure. Nonetheless, we impose a restriction on the minimum
length of a run (currently set to four) to avoid a proliferation of very small
runs that could be more of an overhead than a beneĕt. ere is also another
subtle issue when mapping the detected runs into CSX units: all runs—except
those that start at the beginning of a row—miss the ĕrst element of the real
substructure. For example, in Figure 5.5, the length of the real units are 5 and
4, instead of the detected runs of 4 and 3, which miss the 10 and 21 column in-
dices, respectively. is can be crucial for the detection of 2-D substructures,
where additional alignment limitations exist. In our actual implementation,
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5.3. Detection and encoding of substructures

.
.

..col. indices: ..1 ..10 ..11 ..12 ..13 ..14 ..21 ..41 ..61 ..81 ..…

..delta values: ..1 ..9 ..1 ..1 ..1 ..1 ..7 ..20 ..20 ..20 ..…
.

.d = 1

.

.d = 20
Figure 5.5: Example of the run-length encoding of the column indices. Note the

missed element at the le of each run. is inherent issue of run-length
encoding is ĕxed in the CSX implementation and allows an even higher
compression of the input matrix.

1: function RLE(colind::in)
colind: sorted column indices

2: deltas← DE(colind)
3: d← deltas[0] ◃ current delta value
4: l← 1 ◃ current sequence length
5: rle← {(d, l)} ◃ set of column index runs
6: for i← 1 to N do
7: if deltas[i] = d then
8: l← l+ 1
9: else
10: if l ≥ min_run_length then
11: rle← rle ∪ (d, l)
12: d← deltas[i]
13: l← 1
14: end for
15: return rle

Algorithm 5.1: Run-length encoding of the column indices. is is the simple im-
plementation without the ĕx of CSX (see text). e DE()
function performs a delta encoding of the column indices and returns
the sequence of delta values.

we ĕx this issue and also split large runs into 255-element chunks, so as to ĕt
in the one-byte size ĕeld of a CSX unit.

e process of scanning the whole matrix for a speciĕc type of substruc-
tures is described in Algorithm 5.2. More speciĕcally, we iterate over the rows
of the matrix and for each row we gather all the column indices that are not
yet part of a substructure and apply run-length encoding. For all the detected
substructure instantiations (different delta values), we keep statistics (number
of units and number of non-zero elements covered) to guide us on the ĕnal
selection of the substructures to encode in CSX.
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5. e Compressed Sparse eXtended Format

1: procedure DS(matrix::in, stats::inout)
matrix: CSX’s internal repr., lexicographically sorted
stats: substructure statistics

2: colind← ∅ ◃ Column indices to encode
3: foreach row inmatrix do
4: foreach generic element e(i, j, v, t) in row do
5: if e.t = NONE then ◃ e is not a substructure
6: colind← colind ∪ e.j
7: continue
8: enc← RLE(colind)
9: CS(stats, enc) ◃ Collect statistics from this encoding
10: colind← ∅
11: end for
12: enc← RLE(colind)
13: CS(stats, enc) ◃ Collect statistics from this encoding
14: colind← ∅
15: end for

Algorithm 5.2: Detecting substructures in CSX’s internal representation. e C-
S() routine collects and keeps track of the statistics for each
substructure type and its instantiations. e information gathered in
stats will be used later for guiding the selection of the most suitable
substructure for encoding.

Detecting non-horizontal substructures

In our previous discussion on the detection process, we have not mentioned
about horizontal substructures speciĕcally. Indeed, the detection process ‘sees’
just column indices and the only requirement is that these indices must be
sorted. Detecting horizontal substructures is therefore straightforward, since
the matrix elements are arranged in row-wise (horizontal) order and are lexi-
cographically sorted by default. To detect non-horizontal substructures then, it
suffices to transform the matrix elements into the desired iteration order, sort
them lexicographically and use the DS() procedure described in
Algorithm 5.2. e case of one-dimensional, non-horizontal substructures is
straightforward and Table 5.2 shows the exact coordinate transformations that
we use for their detection. e case of 2-D substructures, though, is a bit more
complex, since we need to ‘linearize’ the coordinates of the elements.

Unfortunately, a simple space-ĕlling curve iterating over the non-zero ele-
ments is not an option for a sparse matrix for two major reasons: ĕrst, such a
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5.3. Detection and encoding of substructures

Substructure type Transformation

Horizontal (i′, j′) = (i, j)
Vertical (i′, j′) = (j, i)
Diagonal (i′, j′) = (N+ j− i,min(i, j))

Anti-diagonal (i′, j′) =

{
(i+ j− 1, i), i+ j− 1 ≥ N
(i+ j− 1, N+ 1− j), i+ j− 1 > N

Block (row aligned) (i′, j′) = (⌊ i−1
r ⌋+ 1,mod(i− 1, r) + r(j− 1) + 1)

Block (column aligned) (i′, j′) = (⌊ j−1
c ⌋+ 1, c(i− 1) +mod(j− 1, c))

Table 5.2: e coordinate transformations applied by CSX on the matrix elements for
enabling the detection of non-horizontal substructures (one-based index-
ing assumed).

curve would require an Θ(N2) linear index space, which is far larger than the
Θ(NNZ) original column index space, and, second, it would imply ĕxed size,
strictly aligned blocks, an option we wanted to avoid in the ĕrst place. e
approach we take for the 2-D substructures in CSX is depicted in Figure 5.6.
We segment thematrix into ĕxed-width bands, either row- or column-aligned,
and apply a space-ĕlling transformation inside every band, passing the result-
ing sequence to the DS() procedure. However, care must be taken
during the detection, since nownot all detected units are valid blocks; for a unit
to be valid, it must begin at a column index (in the transformed space), which
is a multiple of the band width. Using this segmentation technique, we have
managed to detect loosely aligned, variable-sized blocks, further increasing the
compression potential of CSX. We support two categories of block substruc-
ture types, namely row-aligned and column-aligned blocks, and each category
deĕnes seven different substructure types for different widths of the segmen-
tation bands (r, c ∈ [2, 8] in Table 5.2). In total, the use of coordinate transfor-
mations has allowed CSX to support seamlessly 18 different substructure types
and enables the straightforward expansion to other substructure families, e.g.,
diagonal blocks.

Figure 5.7 shows the substructures detected by CSX in ourmatrix suite and
is very characteristic of the capability of CSX in detecting a variety of substruc-
tures inside a sparse matrix. It is very interesting that CSX was able to detect
and encode even ‘weird’ substructures, such as the diagonal ones with delta
distances of 857 and 1714 in the pre2matrix. In matrices dominated by dense
blocks, CSXwas able to detect large blocks in signiĕcant amounts, as is the case
of the inline_1 and af_k_101 matrices. e detection of large dense blocks not
only has a positive impact on the overall compression ratio, but also provides
a performance advantage in the SpMV computations. Finally, the substruc-
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(b)Column-aligned block detection.

Figure 5.6: Detection of 2-D substructures in CSX (black dots denote non-zero el-
ements). e matrix is segmented in row- or column-boundaries and a
space-ĕlling transformation is applied inside every segment. Simple run-
length encoding of the resulting sequence suffices to detect variable-size,
loosely aligned blocks (caremust be taken only for truncating unnecessary
elements at the beginning and end of the sequence).

ture map of a sparse matrix produced by CSX can be very revealing for the
speciĕc performance behavior of SpMV. For example, the matrices Freescale1,
parabolic_fem and offshore are dominated by delta units with very large delta
distances meaning that they are quite sparse and rather random. Indeed, their
performance is poor using any format, suffering from irregular accesses in the
input vector and load imbalances.

Substructure types and their instantiations

In CSX we make a distinction between a substructure type and its instantia-
tion. In CSX’s terminology, a substructure instantiation denotes how exactly
a substructure type is encountered inside the sparse matrix. For example, the
horizontal substructures with d = 1 and d = 20 of Figure 5.5 belong to the
same substructure type (horizontal), but are different instantiations. Similarly,
the blocks 2× 10 and 2× 20 are instantiations of the same block, row-aligned,
r = 2 type. A substructure type, therefore, may have indeĕnitely many in-
stantiations in a sparse matrix, which adds great Ęexibility to the CSX format,
allowing it to detect almost every non-zero pattern inside a sparse matrix. e
6-bit id ĕeld in the ctl structure of CSX (Figure 5.2) refers to the exact sub-
structure instantiation being encoded by the related unit; it does not refer to an
abstract substructure type. is has the downside of limiting the total number
of substructure instantiations in a sparse matrix to 64, but, in practice, only
4–5 instantiations are selected for encoding (see Figure 5.7).
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Figure 5.7: e substructures detected and encoded by CSX in a diverse set of sparse
matrices. [Substructure legend – dXX: delta units, h(X): horizontal, v(X):
vertical, d(X): diagonal, ad(X): anti-diagonal, br(X,X): block row-aligned,
bc(X,X): block column-aligned; numbers inside parentheses are the delta dis-
tances or the block dimensions; numbers in delta units denote their represen-
tation size in bits.]

5.3.2 Selecting substructures for önal encoding

e full detection process and the selection of the substructures for the ĕnal
encoding is described in Algorithm 5.3, which is a typical local search opti-
mization algorithm. More speciĕcally, for each available substructure type, we
transform the matrix to the corresponding iteration order and scan it, collect-
ing statistics for the examined substructure type. Aer having collected statis-
tics for all the available substructure types, we ĕlter out all the instantiations
that fail to surpass a certain threshold in encoding the non-zero elements of the
matrix (in our current implementation, this is set to 5% of the total non-zero
elements) and proceed with the selection of the most suitable type for encod-
ing the matrix (ST()). e algorithm then proceeds by encoding the
matrix with the selected substructure type (ES()) and repeating
the same procedure until no type can be selected.

e criterion we use for selecting the substructures to encode is a rough
estimate of the achieved reduction in the size of the original CSR’s colind
structure. Assuming that we keep a single, full column index per detected sub-
structure (ignoring delta units), the size of the ctl structure will be

Sctl =
encoded︷ ︸︸ ︷
Nunits +

unencoded︷ ︸︸ ︷
NNZ− NNZenc, (5.1)
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5. e Compressed Sparse eXtended Format

1: procedure EM(matrix::inout)
matrix: CSX’s internal matrix in row-wise order

2: repeat
3: stats← ∅
4: for all available substructure types t do
5: T(matrix, t)
6: LS(matrix)
7: DS(matrix, stats)
8: T−1(matrix, t)
9: end for
10: FS(stats) ◃ Filter out instantiations that encode less

than 5% of the non-zero elements
11: s← ST(stats)
12: if s ̸= NONE then
13: T(matrix, s)
14: LS(matrix)
15: ES(matrix) ◃ Encode the selected substructure
16: until s = NONE

Algorithm 5.3: Detection, selection and encoding of the substructures in CSX. e
process is divided into two phases: (a) gathering of statistics and
(b) selection and encoding. Each time the matrix is transformed
(T()) to a speciĕc iteration order (see Table 5.2), a lexico-
graphic sort (LS()) of the non-zero elements is needed. e
T−1() function transforms back the matrix into the orig-
inal, horizontal iteration order.

where Nunits is the total number of encoded substructure units and NNZenc is
the number of the non-zero elements encoded by the substructure type. ere-
fore, the gain in the CSR’s colind size will be roughly

G = NNZ− Sctl = NNZenc − Nunits, (5.2)

which is the metric that a substructure type must maximize in order to be se-
lected for encoding.

5.3.3 Building the CSX data structures

eĕnal step in the CSXmatrix construction is the build of the actual CSX data
structures, namely the ctl and values arrays (see Section 5.2). e process,
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depicted in Algorithm 5.4, is straightforward. We iterate the encoded inter-
nal matrix representation and for each encountered unit, either substructure
or delta, we emit the appropriate ĕelds of ctl. e delta units are constructed
from stray elements not belonging to a speciĕc substructure. ese elements
are collected during the iteration of the encoded internal representation and
are “dumped” to the ctl and values arrays when either a new substructure
is encountered or a new row starts. During construction, we also keep track of
empty rows (not shown in Algorithm 5.4 for simplicity), in order to set appro-
priately the rjmp and ujmp ĕelds of ctl, while at the start of each non-empty
row we set the new row bit for the next encoded unit.

Responsible for constructing the ctl ĕelds and emitting the non-zero val-
ues from the CSX units of the internal matrix representation is the set of the
E*() functions. e EV() function is quite straightforward: it
simply copies the non-zero values of its generic element(s) argument to the
values array of the ĕnal CSX matrix structure. e ES()
and EDU() functions perform similar operations: they both ĕll
the id, size and ucol ĕelds of the ctl byte array (see Figure 5.2), whereas
EDU() emits also the delta values of the encoded delta unit. ese
functions take also care for setting unique IDs for every new substructure or
delta unit instantiation encountered.

5.4 Generating the SpMV code

e indeĕnitely large and a priori unknown number of substructure instanti-
ations inside a sparse matrix dictates the use of runtime code generation for
the substructure-speciĕc SpMV routines. We have built a new Just-In-Time
(JIT) compilation framework for CSX based on Clang and LLVM [Lattner and
Adve, 2004; Lattner, 2011]. LLVM is a low-level compiler infrastructure that
provides a collection of modular and reusable compiler and toolchain tech-
nologies. Clang is a C language family front-end for the LLVM infrastruc-
ture. Its main purpose is to parse normal C/C++ source code, convert it to
the LLVM’s Intermediate Representation (IR) and pass it to the LLVM back-
end for the generation of the ĕnal native code. e great advantage of Clang
and LLVM is that they provide a very rich programming interface that allows
the development of efficient JIT code and its easy integration into an existing
application.

InCSX,we generate simpleC code for the substructure-speciĕc SpMVrou-
tines and use Clang to generate optimized LLVM IR. e overhead of parsing
the resulting C source (one translation unit, less than 150 l.o.c.) and generat-
ing the optimized LLVM IR is negligible compared to thematrix preprocessing
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1: function CC(matrix::in)
matrix: CSX’s internal encoded matrix representation

2: ctl← ∅ ◃ CSX’s control byte sequence
3: values← ∅ ◃ CSX’s non-zero values
4: stray← ∅ ◃ Stray elements, not in substructures
5: foreach row inmatrix do
6: ctl← ctl⊕ ENR( ) ◃ Set new row bit
7: foreach generic element e(i, j, v, t) in row do
8: if e.t ̸= NONE then
9: ED(stray, ctl, values) ◃ Dump and empty

stray elements
10: ctl← ctl⊕ ES(e)
11: values← values⊕ EV(e)
12: else
13: stray← stray ∪ e
14: end for
15: ED(stray, ctl, values) ◃ Dump and empty stray elements
16: end for
17: ED(stray, ctl, values) ◃ Dump and empty stray elements
18: return (ctl, values)

Algorithm 5.4: Construction of the CSX data structures. e ĕnal matrix is built in-
crementally by iterating over the encoded internal representation. e
E*() routines are responsible for emitting the actual ctl ĕelds and
the non-zero values of the encoded substructure. Stray elements form
delta units (see Algorithm 5.5 for more details on the ED()
procedure). e ⊕ operator denotes sequence concatenation. Treat-
ment of empty rows is not shown for simplicity.

time to justify the extra pain of maintaining a pure LLVM IR codebase or even
an on-disk cache of precompiled SpMVroutines. An alternative strategywould
be to generate the LLVM IR directly through the related library interface. How-
ever, this is a tedious and error-prone task (also in terms of performance), since
not only a good understanding of the intermediate representation is required,
but also the actual SpMV code is ‘obfuscated’ by the complex calls needed to
construct the IR.

Figure 5.8 shows how the just-in-time compilation is organized in CSX.
CSX maintains a directory of C source templatesƬ, which deĕne a set of text

Ƭ Not to be confused with the C++ templates.
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1: procedure ED(elems::inout, ctl::inout, values::inout)
elems: set of generic elements
ctl: CSX’s ctl structure
values: CSX’s non-zero values

2: if elems ̸= ∅ then
3: ctl← ctl⊕ EDU(elems)
4: values← values⊕ EV(elems)
5: elems← ∅

Algorithm 5.5: Helper procedure for emitting delta units.

.
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Figure 5.8: e just-in-time compilation framework of CSX.

hooks to be ĕlled in the runtime. For each substructure type we maintain a
source template for performing the SpMV computation inside the substruc-
tureƭ, and we also have a ‘top-level’ template that is responsible for the execu-
tion of the full SpMV kernel in the CSX format. Aer we have selected the sub-
structures for encoding and have generated the CSX’s data structures, we pick
the suitable templates and generate the corresponding SpMVC code passing it
to the Clang front-end. We program the front-end to emit an optimized LLVM
IR module, from which we get a function pointer to the generated SpMV ker-
nel and, eventually, the LLVM back-end takes over to generate the ĕnal native
code for the host machine.

e SpMV kernel that we execute for CSX is shown in Algorithm 5.6. First,
we should note that inCSXwemust explicitly zero out the output vector (lines 4–
5), an artifact that is prescribed by the use ofmultiple non-horizontal substruc-
tures. However, the effect of this operation is very small, especially in multi-
threaded conĕgurations, where the initialization is performed in parallel. e
algorithm iterates over the ctl structure decoding a ĕeld at a time. If a new

ƭ For block substructures wemaintain just two generic templates: one for row-aligned blocks and
one for column-aligned ones.
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row is detected, we store the computed dot product (yr) in the output vector
and advance the current position (ycurr) with the ____(). If the
matrix does not contain row jumps, the generated code simply advances ycurr
by one. In the opposite case, it checks the rjmp bit and if there is a jump, it
advances ycurr with the value of the variable size integer containing the jump
size. e algorithm proceeds by decoding the variable size integer containing
the delta distance from the previous column index (DC()) and
computes the starting column index (xcurr) of the current CSX unit. It then
retrieves the ID of the unit and executes the unit-speciĕc SpMV code within
the ___(). e ___() is actually replaced by a C switch
statement, switching on the id variable. e unit-speciĕc SpMV routines are
responsible for correctly advancing the current position in the ctl structure
and the current column index, as well as updating the local accumulator yr, if
necessary.

1: procedure CS(ctl::in, values::in, x::in, y::out)
2: ycurr ← y ◃ Current position in y vector
3: xcurr ← x ◃ Current position in x vector
4: for i← 0 to N do ◃We must zero-out the output vector
5: ycurr[i]← 0
6: end for
7: yr← 0 ◃ Local accumulator
8: repeat
9: flags← ∗ctl
10: size← ∗(ctl+ 1)
11: ctl← ctl+ 2
12: if TB(flags, 7) then ◃ Check if nr bit is set
13: ∗ycurr ← ∗ycurr + yr
14: yr← 0
15: ____() ◃ Advances ycurr
16: xcurr ← x
17: xcurr ← xcurr+ DC(ctl)
18: id← GID(flags) ◃ Retrieve the ID of the next unit
19: ___() ◃ Unit-speciĕc SpMV code
20: until ctl ends

Algorithm 5.6: e SpMV kernel template used the CSX storage format. e hooks
are ĕlled in during the runtime. e ‘∗’ is a dereference operator.

Since we encode speciĕc substructure instantiations in CSX, we know dur-
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ing the compilation time the exact delta distances of the one-dimensional sub-
structures and the exact block dimensions of the 2-D ones. is allows us
to generate efficient code with hardcoded constant delta distances and con-
stant block dimensions, matching the computational advantage of the ĕxed-
size blocks of BCSR. Additionally, if only one substructure instantiation is en-
coded, we optimize out the switch statement completely.

Parallelization

CSX follows the parallelization pattern of CSR. During the construction of the
CSX’s internal representation, we split the input matrix row-wise maintain-
ing roughly the same number of non-zero elements per partition. From this
point on, the detection and encoding phases of CSX proceed independently,
producing different ĕnal CSX submatrices per partition. e SpMV kernel in
Algorithm 5.6 changes only in line 2, where we initialize ycurr to the beginning
of the partition and in line 4, where we iterate only within the bounds of the
partition.

5.5 Tackling the preprocessing cost

e preprocessing time of CSX is bounded by the multiple calls to the L-
S() routine, which performs a lexicographic sort on the transformed ma-
trix elements, during the scanning for substructures (Algorithm 5.3, lines 4–9).
We address this issue with a combination of partial sorting and sampling. More
speciĕcally, instead of scanning the matrix as a whole, we split it into constant
size preprocessing windows based on the non-zero elements and scan every
window separately. is modiĕcation reduces automatically the asymptotic
complexity of the scanning phase from Θ(NNZ lgNNZ) to Θ(NNZ) at the ex-
pense of missing the substructures that cross the boundaries of the windows.
To further reduce the preprocessing cost, we only examine a certain number
of windows uniformly distributed over the whole matrix covering only a small
amount of the total non-zero elements. In our experiments, sampling a mere
1% of the matrix non-zero elements using 48 sampling windows reached the
same SpMV performance levels as the full-Ęedged preprocessing at nearly an
order of magnitude less preprocessing time.

Havingminimized the substructure scanning phase, the preprocessing time
is now bound from the ĕnal encoding of the matrix (Algorithm 5.3, lines 13–
15), which is still in the order of Θ(NNZ lgNNZ). In this phase, unfortunately,
partitioning and, especially, sampling cannot be applied, since we need to en-
code the whole matrix, aer all. Nonetheless, the impact of this phase on the
overall preprocessing cost is not so crucial for two main reasons: in most of
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the cases a very small number of substructure types will be ĕnally encoded,
and the full cost of the sorting will be paid only during the encoding of the ĕrst
substructure type, since every time we sort only the unencoded elements.

In addition to the use of sampling and preprocessing windows, we further
reduce the preprocessing cost by parallelizing the whole preprocessing process.
e parallelization is straightforward: aer we have loaded the initial CSRma-
trix, we setup a new thread for every partition that proceeds independently
with the scanning and the construction of the ĕnal CSX matrix.

Finally, we take particularly care of the memory management during the
preprocessing, by avoiding completely memory reallocations that would result
in huge memory copies. For this reason, we try to infer the exact allocation
requirements for a data structure right from the beginning or, in case this is
not possible, we are generous with the initial allocation and then truncate the
extra space. is optimization has led to a considerable acceleration of the
preprocessing phase, reaching a 2× to 3× speedup. e preprocessing cost of
CSX for detecting all the supported substructure types ranges at the order of
100 serial CSR SpMVoperations, rendering it viable even for online processing
of the input matrix.

5.6 Porting to NUMA architectures

As discussed in Chapter 3, the key factor for the high performance of SpMV
in NUMA architectures is the correct placement of the involved data on the
system’s memory nodes. e data each thread accesses must lie on its local
memory node, in order to avoid the saturation of the interprocessor links and
also the increased latency incurred by the multiple hops required for a remote
access. A thread in the multithreaded SpMV kernel accesses the matrix data
structures of its own matrix partition, the corresponding parts of the output
vector and arbitrary parts of the input vector. e correct placement of the
matrix partitions in CSX is straightforward: since the construction of the CSX
matrix happens independently for every partition, we just need to make sure
that the CSX’s data structures are allocated on the correct node using calls to
a NUMA-aware memory allocator, e.g., the numa_alloc_onnode() of the
Linux numactl library. For the output vector, we use our low-level interleaved
NUMA-aware allocator described in Chapter 3, in order to place correctly the
different parts of the output vector. Finally, for the sake of our experimen-
tation, we place a copy of the input vector on every memory node. is ar-
rangement provides a better balancing of the overall memory operations and
exposes further the computational part of the kernel. Although in practical
applications this choice is less reasonable, the impact on performance of using
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a shared input vector copy is minimal on average (see Chapter 3, Figure 3.13).

5.6.1 Optimizing the computations

Modern NUMA architectures have an important side-effect on the execution
of the SpMV kernel: the increased memory bandwidth when accessing a local
memory node, exposes more the computational part of the kernel, which is
no longer negligible. CSX performs some heavy decompression operations in
decoding the variable size integers (see Figure 5.4) used to store the column
delta distances and the row jumps. e case of row jumps is not of considerable
concern, since we do not generate the decoding code at all for matrices that do
not have them, and in cases they do, the decoding is not in the critical path.
What stays in the critical path, though, is the decoding of the column delta
distance before computing every substructure (Algorithm 5.6, line 17). e
decoding is trivial if the delta distance is less than 128, but it demands hey bit
operations if it is larger. Unfortunately, when encoding substructures (and not
only delta unitsƮ) there is a proliferation of multi-byte column delta distances,
whose decoding can considerably hinder the overall SpMV performance. For
this reason, we replace the column delta distance with the full starting column
index of the substructure, stored in a standard 32-bit integer. is optimization
degrades the overall compression ratio 2–3%, but the gain in performance can
exceed 15% in certain matrices.

e proliferation of delta units when encoding multiple substructures can
also overwhelm the beneĕt of compression in NUMA architectures due to the
increased performance overhead of the switch statement (branch mispredic-
tions). For this reason, we revise our score function (equation (5.2)) forNUMA
architectures to include an estimate of the total switch statements executed as
follows:

G = NNZenc − Nunits − Nswitch, (5.3)

where Nswitch = Nunits + Ndeltas, Ndeltas being the total number of delta units
generated. is heuristic balances better the tradeoff between thememory and
the computational part of the kernel by penalizing the encodings that lead to a
large computational cost. We have encountered more than 20% performance
improvement for certain matrices in NUMA-aware thread conĕgurations with
the revised heuristic.

Ʈ e case of using only delta units is not critical, because we encode the full matrix row as a single
delta unit.
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5.7 Evaluating the performance of CSX

We evaluate the performance of the CSX storage format using the matrix suite
and the hardware platforms detailed in Chapter 3, Section 3.2. As alternative
storage formats, besides CSR, we consider BCSR and VBL, since these are the
most established paradigms of CSR alternatives and the best representatives
of the ĕxed and variable size blocking storage formats, respectively. We have
implemented optimized versions of all these formats, including NUMA-aware
implementations. Speciĕcally for BCSR, we have implemented block-speciĕc,
optimized SpMVroutines for all the block sizes (one- and two-dimensional) up
to size eight plus the 3× 3 block. e results reported for BCSR correspond to
the best performing block, whichwas obtained aer an exhaustive search of the
20 available blocks. In practice, where a heuristic will be most probably used
(see Chapter 4, Section 4.3), the real performance of BCSR might be less. For
the parallelization of the SpMV routines, we use a static, row-wise partitioning
scheme based on the non-zero elements of the matrix. Speciĕcally for BCSR,
we partition the input matrix aer we have built it, taking into account the
zero-padding as well, in order to achieve a better load balance. We use 32-bit
integers for the indexing structures of all the storage formats and 64-bit, double
precision Ęoating point values for the non-zero elements. In the case of VBL,
we use one-byte block size ĕelds.

Finally, we used LLVM 2.9 for the compilation of the SpMV routines for
all the considered formats, in order to achieve a fair comparison. We should
note here that beyond our initial expectations, LLVM2.9 offered an average 5%
performance improvement to the non-CSX⁴ formats compared to GCC 4.5.
For the parallelization of the SpMV routines and the preprocessing phase of
CSX, we used explicit, native threading with the Pthreads library (NPTL 2.7)
and bound the threads to speciĕc logical processors using the Linux kernel’s
system call interface. We follow a ‘share-all’ policy for the assignment of threads
to logical processors by default (see Chapter 3, Section 3.2.3 for more details
on alternative core-ĕlling strategies).

5.7.1 CSX compression potential

e compression potential of CSX is favored not only by its ability to detect
multiple types of substructures, allowing to keep only a single column index
per substructure, but also by the very compressed representation of the non-
zero elements metadata. e column index information is further condensed
with the use of delta indexing and variable size integers, while the row infor-
mation is now represented by a single bit per row. is allows CSX to compress

⁴ CSX routines are generated using LLVM by default.
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Figure 5.9: e compression potential of CSX. CSX manages to adapt successfully to
the matrix structure and provides the best compression ratio among the
alternative storage formats considered. Maximum compression ratios are
calculated by assuming storage of the non-zero elements only, i.e., amatrix
representation size of 8NNZ bytes (double-precision Ęoating point values).

the representation size, even for matrices with an irregular structure, where no
substructures are encoded. is is a key advantage of CSX compared to other
alternative storage formats, especially in SMP systems.

Figure 5.9 shows the maximum compression ratio achieved by CSX com-
pared to VBL and BCSR. e absolute maximum compression ratio (assum-
ing only the non-zero elements are stored) is also reported. CSX achieves al-
ways the best compression ratio among the storage formats considered, while
its ability to detect and encode multiple different substructures allows it to
adapt to the speciĕcities of each matrix. For example, it is able to surpass
the compression ratio of BCSR in block-dominated matrices, such as xenon2,
TSOPF_RS_b2383, consph, m_t1 etc., and also VBL’s in less regular ones, such
as Freescale1 and offshore. In matrices dominated by diagonal elements, e.g.,
torso3, cage13, atmosmodj etc., the predominance of CSX is clear: it manages a
more than 20% compression ratio, while BCSR augments the matrix size and
VBL stays close to the original CSR’s size. e most characteristic example of
this case is the atmosmodj matrix, where 99.8% of its non-zero elements are
encoded in diagonal patterns by CSX, reaching the maximum possible com-
pression (36.4%)⁵. At the same time, VBL manages a mere 3.4% compression,
while BCSR increases the matrix size by nearly 60%!

⁵ CSX actual compression ratio for this matrix is 36.1%.
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5.7.2 CSX performance

SMP architectures

e large compression capability of CSX provides a strong performance po-
tential in matrices arising from PDE problems, where the key performance
bottleneck, especially in SMP systems, is the lack of adequate memory band-
width resources. Figure 5.10 shows the speedups achieved by all the considered
methods in our two symmetric shared memory platforms, Harpertown and
Dunnington. e effect of compression is dominant in these architectures,
especially in the multithreaded conĕgurations. CSX and VBL take the lead
with an average 26.4% and 18.5% performance improvement over CSR in the
eight-threaded conĕguration in Harpertown, respectively, while BCSR gains a
mere 4.1%. Similar is the picture in the 24-thread conĕguration in Dunnigton:
CSX offers a 61% performance improvement over CSR on average, VBL fol-
lows further behind with a 28.8% improvement, while BCSR is able to achieve
only 6.3% improvement. BCSR suffers from its inherently low compression
capability and the use of padding to construct full blocks. It can be classiĕed
as an ‘all-or-nothing’ storage format, since in almost half of the matrices of our
suite, it degraded SpMV performance more than 30% on average, while for the
other half matrices it provided a more than 25% performance improvement.
e higher compression potential of VBL and CSX is clearly reĘected by the
speedup diagrams in our two symmetric shared memory architectures. e
ability of CSX to detect and encode multiple types of substructures, and espe-
cially blocks, is a signiĕcant advantage of CSX over VBL, not only in terms of
pure compression ratio, but also in terms of the involved SpMV computations,
since CSX keeps the computational advantage of the BCSR’s ĕxed size blocks,
thanks to the runtime code generation, without paying the padding overhead
at all. Indeed, like BCSR, CSX matches the average performance of CSR in
Harpertown using one thread, despite the additional overhead of zeroing the
output vector in every iteration. In Dunnington, CSX is starting off with a sig-
niĕcant 16.1%performance advantage overCSR right from the single-threaded
conĕguration. We should note here the steep increase of speedup in Dunning-
ton for 12 and 24 threads; this is due to the linear increase of the available
memory bandwidth resources as we addmore CPU sockets (i.e., front-end bus
controllers) to the computation (see Chapter 3, Section 3.3.2), due to the ‘share-
all’ core-ĕlling strategy.

Using a ‘share-nothing’ core-ĕlling strategy that utilizes themaximumavail-
able system’smemory bandwidth (Figure 5.11), the big picture does not change;
CSX’s predominance in SMP systems is clear. It reaches a 47% average perfor-
mance improvement over CSR for the 12-threaded conĕguration, while VBL
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Figure 5.10: CSX speedup in SMP systems. e high compression potential of CSX
allows it to improve signiĕcantly the SpMV performance, surpassing all
otherCSR alternatives. e average speedup is depicted using a ‘share-all’
core-ĕlling policy.

achieves a 24% improvement and BCSR is almost at 5%. An important charac-
teristic of CSX inDunnington is that it continues to improve its performance as
we increase the thread count, while all other formats experience a performance
slowdown that reaches 4% in the case of CSR. InHarpertown, the common bus
is almost completely saturated from the four-threaded conĕguration, while in
Dunnington the speedup reaches a plateau at the 12-threaded conĕguration.
e signiĕcant scaling encountered by all formats for the six- and 12-threaded
conĕgurations in Dunnington is due to the very large, 64MiB, aggregate L3
cache available. Six matrices from our suite ĕt comfortably in the available
cache even in CSR format, while three more are only a little larger. e sys-
tem is ĕnally completely saturated in the 24-threaded conĕguration, where all
formats except CSX encounter a performance slowdown.

NUMA architectures

In NUMA architectures, where the available memory bandwidth is consider-
ably higher, the performance landscape changes, but CSX remains still themost
performant storage format across the full range of multithreaded conĕgura-
tions. Figure 5.12a shows the speedups of the considered storage formats in
Gainestown using a NUMA-aware data placement. e very ĕrst observation
is that CSR is now rather competitive, since thememory bottleneck is not so in-
tense as before until the 16-threaded conĕguration, where Hyperreading is
also enabled. CSX achieves a 17.5% performance improvement over CSRwhen
using eight threads and increases the gap to 20.7% in the 16-threaded conĕg-
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Figure 5.11: CSX speedup in SMP systems using a ‘share-nothing’ core-ĕlling policy
for utilizing the maximum available system’s bandwidth as early as pos-
sible. Average speedups are depicted.

uration, where the contention for shared resources by the hardware threads
becomes visible. e respective numbers for VBL are 8.4% and 13.9% for the
two aforementioned conĕgurations. e case of BCSR is interesting, since it
manages to achieve a performance comparable to VBL, thanks chieĘy to the
ample memory bandwidth that better exposes its computational advantage.
While VBL’s performance falls behind CSR’s up to the two-threaded conĕgu-
ration, reaching a 23.5% performance degradation for the single-threaded one,
CSX experiences a slight 2.8% performance degradation only for the single-
threaded conĕguration. From the two-threaded conĕguration, however, CSX
is already ahead of every other format having achieved an 11.4% performance
improvement over CSR and reaching 20.7% when the full system is utilized.

In order to examine the behavior of CSX in conĕgurations where themem-
ory bandwidth is not an issue, we have conducted experiments in Gainestown
using a ‘share-nothing’ core-ĕlling policy (see Figure 5.12b). In these conĕg-
urations, the increased memory bandwidth offered up to the four-threaded
conĕguration favors the simpler CSR and BCSR formats, which achieve com-
parable performance. VBL falls victim of the increased overhead incurred by
its additional data structures and it is not until the eight-threaded conĕguration
that compensates this cost. On the other hand, CSXmanages to stay very close
to CSR and BCSR for the ĕrst two conĕgurations, despite its increased book-
keeping and decompression cost, experiencing only a slight 3.6% performance
degradation in the two-threaded conĕguration. From the four-threaded con-
ĕguration onward, however, CSX builds a signiĕcant 11.3% performance gap
over CSR, which is further expanded to 17.5% and 20.7% in the eight- and 16-
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Figure 5.12: CSX speedup in NUMA architectures. Average results for the Gaines-
town system using the two different core-ĕlling policies are shown. Even
with ‘share-nothing’ policy, CSXmanages to stay very close to BCSR and
CSR up to the two-threaded conĕguration, before taking the lead inmore
threads.

threaded conĕgurations, respectively.
e speedup results in NUMA architectures revealed a signiĕcant perfor-

mance stability advantage of CSX, since even in conĕgurationswhere themem-
ory bandwidth is not an issue, it manages to match performance of CSR and
BCSR. is behavior is further illuminated by examining the per-matrix per-
formance results for eight threads in Gainestown presented in Figure 5.13. In
this conĕguration, the demands in memory bandwidth are quite signiĕcant,
but the memory subsystem is not yet saturated. Observing the per-matrix per-
formance results, we can ĕrst distinguish two matrix categories:
(a) low-performing matrices (≈3GĘop/s in CSR) and

(b) high-performing matrices (≈5GĘop/s in CSR).
e ĕrst category is formed by matrices with an irregular non-zero element
structure and very short rows; according to the discussion inChapter 3, SpMV’s
performance in these cases is hindered by a number of factors not related to the
memory bandwidth saturation, such as irregular accesses in the input vector,
increased loop overheads and load imbalance. e second category, which is
themost typical in SpMV applications, consists ofmatrices with amore regular
structure arising mostly from the discretization of PDEs; the key problem here
is the contention for memory bandwidth. CSX manages to achieve consider-
able performance improvements in matrices of the second category, approach-
ing the upper bound of dense-matrix vectormultiplication performance in this
conĕguration (8.5GĘop/s). In the low-performing matrices, CSX exhibits a
rather stable behavior, matching or even surpassing the performance of CSR.
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Figure 5.13: Per-matrix performance in Gainestown (eight threads, NUMA-aware).
CSX provides consistently high performance from irregular to regular
matrices, while other CSR alternatives take an ‘all-or-nothing’ approach.

Although VBL and BCSR exhibit similarly high performance in more regular
matrices, with BCSR matching the performance of CSX in block-dominated
matrices (xenon2, consph, m_t1, bmwcra_1, inline_1), the situation changes for
irregular matrices, where both BCSR and VBL tend to exhibit a signiĕcant per-
formance degradation, due to their increased overhead inmatrix size and com-
putations. e advantage of CSX is also clear in matrices dominated by diago-
nal substructures (e.g., torso3, cage13, atmosmodj), which cannot be efficiently
exploited by the alternative formats considered.

Performance stability

eperformance stability of CSX is quantitatively exhibited in Table 5.3, where
we provide some statistics for eight-threaded, NUMA-aware conĕguration in
Gainestown, an achitecture that favors more computational-friendly formats⁶.
e competitiveness of CSR and BCSR is clear from this table, gaining seven
and nine matrices, respectively. Nonetheless, even in this not so favorable con-
ĕguration, CSX manages to achieve the absolute best performance in the ma-
jority of matrices (12), while VBL contents itself to just twomatrices. emost
important information of this table, however, are the performance differences
of each format from the best overall performance. Speciĕcally, for each consid-
ered format, we present its average performance difference from the absolute
best for all thematrices that it did not gained; we also present a 95% conĕdence
interval (C.I.). ese metrics conĕrm the predominance of CSX both in terms

⁶ In Harpertown and Dunnington, the predominance of CSX is almost total, providing the best
performance in 26 out of the 30 matrices of our suite.
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CSR BCSR VBL CSX

Best perf. 7 9 2 12

Differences from best

Average 21.15% 20.13% 12.03% 5.79%
95% C.I. ±3.53% ±4.99% ±2.94% ±2.16%

Minimum 2.60% 0.01% 1.62% 1.13%
Maximum 32.27% 35.86% 33.79% 19.04%

Table 5.3: Performance stability of the different storage formats examined compared
to CSX (Gainestown, eight-threaded, NUMA-aware conĕguration).

of overall SpMV performance and in terms of adaptivity to the different char-
acteristics of each matrix. Despite obtaining the absolutely best performance
in less than half of the matrices, CSX manages to be as close as 5.8% to the
overall best performance. VBL follows further back with an average difference
of 12% from the best performance, while BCSR and CSR come last with 20.1%
and 21.2% differences, respectively. e stability of CSX is also superior to the
other considered formats as it is depicted by the computed conĕdence intervals,
while BCSR, as expected, is the least stable format with a performance varia-
tion of 5%. CSX can be therefore considered as a high performance storage
format for sparse matrices, since not only achieves the highest performance in
the majority of matrices in both SMP and NUMA architectures, but also man-
ages to stay very close to the overall best performance in the rest of thematrices,
including corner cases, such as very irregular matrices, exhibiting signiĕcant
performance stability compared to other alternatives.

Performance on special-structured matrices

Despite being a matrix-agnostic format, CSX is able to detect the structure of
the input matrix and provide performance comparable to specialized formats
for matrices with a special structure, e.g., diagonal, banded matrices etc. As
a proof-of-concept example, we compare the performance of CSX with the
performance of the Dense Matrix-Vector multiplication kernel (DMV) on a
2000 × 2000 dense matrix. Table 5.4 shows the performance of both kernels
for theDunnington andGainestown systems. Despite being a generic format, it
is clear that CSX, without any prior knowledge, canmatch the performance of a
special-purpose format (here dense matrix format). is was possible because
CSX has detected and encoded a single substructure (horizontal substructures,
no delta units) and our code generator has completely optimized out the switch
statement by using a single inline call to the substructure-speciĕc code. e lit-
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5. e Compressed Sparse eXtended Format

1 core 1 socket 4 sockets

DMV 558MĘop/s 755MĘop/s 10095MĘop/s
CSX 547MĘop/s 751MĘop/s 9922MĘop/s
CSR 404MĘop/s 473MĘop/s 5509MĘop/s

(a)Dunnington.

1 core 1 socket 2 sockets

DMV 1827MĘop/s 4950MĘop/s 8562MĘop/s
CSX 1766MĘop/s 4872MĘop/s 8442MĘop/s
CSR 1526MĘop/s 3117MĘop/s 5658MĘop/s

(b)Gainestown.

Table 5.4: DMV vs. CSX performance. Despite being matrix-agnostic, CSX matches
the performance of dense matrix-vector multiplication.

tle overhead encountered is incurred by the 255-element unit limit and the rest
of CSX’s bookkeeping. e behavior will be similar for a banded matrix, since
CSX will detect diag(1) units only.

e ability of CSX to adapt automatically to the structure of the matrix of-
fers great Ęexibility, since it can provide near optimal performance for a vari-
ety of different matrices without any prior knowledge of the non-zero element
structure. ese results emphasize the adaptability of CSX, which alsomatches
or surpasses the performance of CSR in irregular matrices.

The effect of matrix reordering

Some of the matrices in our matrix suite depart from the typical, memory
bandwidth-boundbehavior, and experience signiĕcant performance overheads,
incurred chieĘy by their irregular sparsity structure (see Figure 5.13). As dis-
cussed in Chapter 2 (Section 2.4), a common technique for ‘homogenizing’ the
sparsity structure of a sparsematrix ismatrix bandwidthminimization [Cuthill
and McKee, 1969; Karypis and Kumar, 1995; Çatalyürek and Aykanat, 1999].
Such techniques operate on structurally symmetric matrices and use row and
columnpermutations, in order to bring the non-zero elements as close as possi-
ble to the main diagonal. A successful matrix reordering will render the access
pattern in the input vector more regular and will also homogenize the Ęop:byte
ratio across the whole matrix, therefore leading to higher performance lev-
els. We have applied the Reverse Cuthill-McKee (RCM) [Cuthill and McKee,
1969] reordering algorithm in low-performing and structurally symmetricma-
trices from our suite, namely parabolic_fem, offshore, G3_circuit and thermal2.
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Figure 5.14: Performance of CSX and CSR in RCM reordered matrices. Ma-
trix reordering techniques beneĕt more the CSX format, since the re-
distribution of the non-zero elements allows the detection of more sub-
structures by CSX. Results shown are from the eight-threaded NUMA-
aware conĕguration in Gainestown.

Figure 5.14 shows the performance of their original and reordered versions
for CSR and CSX in the Gainestown platform using a NUMA-aware eight-
threaded conĕguration. e performance gain is signiĕcant for both formats,
but CSX is beneĕted more in all matrices considered. In parabolic_fem and off-
shore, CSX achieves a 28% and 11% performance improvement over CSR, re-
spectively, while before reordering both formats achieved similar performance.
e samebehavior is observed forG3_circuit and thermal2, whereCSXhasman-
aged to close the performance gap from CSR. A signiĕcant observation from
this ĕgure is that matrix reordering and similar input vector access optimiza-
tion techniques have an orthogonal effect to thememory bandwidthminimiza-
tion performed by CSX. Additionally, these techniques seem to favor CSX
more, since they provide the grounds for detecting more substructures and
therefore achieving higher compression levels.

5.7.3 CSX preprocessing cost

As discussed in Section 5.5, the preprocessing of CSX is bounded from the
detection and encoding of non-horizontal substructures, which require a lexi-
cographic sort of the matrix coordinates. An easy way to reduce to the prepro-
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(b)Gainestown (16 threads, NUMA-aware).

Figure 5.15: e preprocessing cost of CSX. Statistical sampling of the matrix leads
to an order of magnitude drop in the preprocessing cost, rendering CSX
a viable alternative even for online preprocessing.

cessing cost is to program CSX⁷ to detect only delta units or horizontal sub-
structures. Nonetheless, this kind of preprocessing reduction comes at a cost
of the overall CSX performance as it is depicted in Figure 5.15. To exploit its
full potential, CSX must be programmed to detect as many substructure types
as possible. In this case, however, the preprocessing cost climbs to several hun-
dreds of serial CSR SpMV operations. ough not irrational even for on-line
preprocessing, this cost is large and can eradicate the performance beneĕt of
CSX in the midterm. For this reason, we employ uniform statistical sampling
on the input matrix as described in detail in Section 5.5. e use of sampling
can drop the preprocessing cost nearly an order of magnitude with a minimal
impact in CSX’s overall performance. A key aspect for sampling a sparse ma-
trix with CSX is to use a lot of sampling windows scattered all over the matrix,
in order to obtain a ‘good look’ of the whole matrix and avoid any over- or
under-estimation of the presence of certain substructures. In our case, we have
used 48 samplingwindows for sampling only 1% of the total non-zero elements
of the matrix.

Figure 5.15 shows the preprocessing cost of CSX measured in serial CSR
SpMV operations in relation to the achieved performance improvement over
the multithreaded CSR in Dunnington using 24 threads and in Gainestown
using 16 threads. e cost when detecting only delta units (CSX-delta) or hor-
izontal substructures (CSX-horiz) inDunnington is very small ranging from16
to 35 CSR SpMV operations, but only a 14.8% to 23.9% performance improve-
ment is achieved. euse of sampling in detecting all the available substructure

⁷ CSX can be conĕgured to detect speciĕc types of substructures or even to encode speciĕc sub-
structure instantiations.
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types (CSX-sampling) increases the cost up to 69 CSR SpMV operations—an
affordable number for on-line preprocessing of the matrix—providing a 59%
performance improvement. e preprocessing cost increases signiĕcantly with
the activation of full preprocessing (no windows, no sampling) surpassing the
400 serial CSR SpMV operations, only to offer a mere 1.3% additional perfor-
mance improvement over CSR.

Similar is the picture inGainestown, where sampling leads even to a slightly
higher average performance. SpMV performance in Gainestown is not as di-
rectly related to matrix size representation as in SMP systems, therefore, some
encoding decisions using sampling may lead to better computational charac-
teristics, in spite of a larger representation size. Another difference between
SMP and NUMA architectures, as revealed by Figure 5.15, is that the prepro-
cessing cost is more exposed in NUMA architectures ranging from 32 to 985
serial SpMV operations, while in Dunnington this cost ranges from 16 to 492
operations.

5.8 Integrating CSX into multiphysics simulation software

As a further evaluation of the potential of CSX in optimizing SpMV in the con-
text of a multiphysics application, we have integrated CSX into the Elmer [Lyly
et al., 1999–2000] multiphysics simulation soware. Elmer employs iterative
Krylov subspacemethods for treating large problems using the preconditioned
Bi-Conjugate Gradient Stabilized (BiCGStab)method [van der Vorst, 1992] for
the solution of the resulting linear systems. Elmer supports parallelism across
multiple nodes usingMPI, but uses only a single thread inside every node. For
this reason, we have also implemented a multithreaded CSR version for Elmer,
in order to achieve a fair comparison with CSX.

e integration processwas quite straightforward, since Elmer already sup-
ported the use of external SpMV libraries through a well-deĕned multiplica-
tion interface; we did, however, extend the interface slightly, in order to sup-
port the notion ofmatrix representation tuning (see Figure 5.16). Elmer passes
to the external library the CSR data structures and the input and output vectors
along with a generic handle to be ĕlled with the tuned matrix, either automati-
cally (e.g., ĕrst call) or upon request (reinit Ęag). When amatrix-vectormul-
tiplication call is redirected to the CSX library, if the *tuned handle is valid or
the reinit Ęag is set, we construct the CSX matrix, assign it to the *tuned
handle and proceed with the multiplication. Otherwise, we simply perform
the multiplication with the provided handle, ignoring all CSR parameters. e
process of constructing the CSXmatrix from a CSR input consists of two steps:
(a) Conversion of CSR into CSX’s internal representation. is representation
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5. e Compressed Sparse eXtended Format

void matvec_(void **tuned, void *n,
void *rowptr, void *colind, void *values,
void *u, void *v,
int reinit);

Figure 5.16: e updated matrix-vector multiplication interface of Elmer. New argu-
ments are typeset in italics, while u and v are the input and output vectors,
respectively. If *tuned is NULL or reinit is set, the CSX matrix is con-
structed from the CSR parameters and assigned to the *tuned handle. If
the reinit Ęag is not set during a computation, the CSX matrix will be
constructed once upon the ĕrst call.

Problem name Equations involved SpMV
exec. time (%)

øuxsolver Heat + Flux 57.4
HeatControl Heat 57.5
PoissonDG Poisson + Discontinuous Galerkin 62.0
shell Reissner-Mindlin 83.0
vortex3d Navier-Stokes + Vorticity 92.3

Table 5.5: e benchmark problems used for the evaluation of the CSX integration
into the Elmer multiphysics soware. e problems are selected from
Elmer’s testing suite and signiĕcantly enlarged, in order to lead to quite large
matrix representations (larger than 576MiB). e execution time percent-
ages are reported over the total solver’s time, including a diagonal precon-
ditioner.

is used for the preprocessing of matrix (see Section 5.3.1).

(b) Detection and encoding of substructures. is is the phase of the actual CSX
preprocessing, where the matrix is mined for substructures and the ĕnal
CSX format is constructed.
For the evaluation of the CSX integration, we have selected ĕve benchmark

problems from the Elmer testing suite. We have properly augmented the prob-
lem size (increasing the grid density), so that the resulting matrices are quite
large, exceeding the 576MiB boundary⁸. Table 5.5 presents details on the se-
lected benchmarks; the percent of the total solver’s execution time⁹ spent in the
SpMV routine is also reported.

Figure 5.17 shows an execution time breakdown of the total time Elmer
spent inside the CSX library aer 1000 Bi-CG iterations. e ĕrst observation

⁸ is is the size of the aggregate cache of the cluster nodes participating in the computation.
⁹ Assembly times are not included.
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(b) PoissonDG.
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(c) shell.
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Figure 5.17: Execution time breakdown of the CSX library aer 1000 Bi-CG itera-
tions. e conversion cost is negligible, while CSX preprocessing is eas-
ily hidden by increasing the computation threads. CSX’s bootstrap cost
is completely amortized aer less than 300 iterations.

is that the cost of the conversion to the CSX’s internal representation is negligi-
ble. In fact, this step is a single large allocation of the internal representation’s
data structures and a sweep of the input CSR matrix. e rest of the prepro-
cessing cost is hidden as we add more threads to the SpMV computation or
if the computation itself is quite signiĕcant, e.g., in the vortex3d benchmark.
e total preprocessing cost of CSX is completely amortized aer 224–300 Bi-
CG iterations with themultithreaded CSR kernel. While this cost is reasonable
for large and complex simulations that may take thousands of iterations, CSX’s
preprocessing could also be performed offline, in order to further minimize
this bootstrap cost.

Despite the preprocessing cost, however, CSX was able to considerably ac-
celerate not only the SpMVcomponent of the Elmer soware, but also the over-
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Figure 5.18: Speedup of the Elmer multiphysics simulation soware by employing
CSX (preprocessing time is included) aer 1000 linear system iterations.
e knee in the multithreaded speedup diagrams at the 16 nodes is due
to the lower memory bandwidth of the Clovertown cluster nodes, which
start to participate in the computation from this point on.

all execution time of the solver (Figure 5.18). More speciĕcally, CSX was able
to provide a 37% average improvement of the SpMV component in a 24-node,
two-way SMP, quad core Intel Xeon E5405/E5335 (Harpertown/Clovertown)
mixed cluster aer 1000 Bi-CG iterations. e overall solver’s performance was
improved by a noticeable 14.8%, despite the large preconditioning cost in three
of the benchmarks used (see Table 5.5). We believe this improvement will be
much more signiĕcant, if other parts of the solver (e.g., the preconditioner)
also exploit parallelism.

5.9 Summary

In this chapter, we presented, discussed and evaluated in detail the Compressed
Sparse eXtended (CSX) storage format, a new approach for storing sparse ma-
trices, in order to achieve high performance inmodernmulticore architectures.
CSX is able to detect a variety of substructures in the non-zero element struc-
ture of the matrix, e.g., horizontal, diagonal, two-dimensional blocks, which
then encodes them in a single, very condensed, integrated matrix representa-
tion. is characteristic allows CSX to adapt to the speciĕcities of every in-
put matrix and achieve considerable compression levels, providing stable high
performance from irregular to special-structured matrices. CSX takes special
care for NUMA architectures by favoring the computational part of the ker-
nel, which is more signiĕcant in these cases. In practice, CSX overwhelms in
terms of absolute performance all other CSR alternative storage formats, pro-
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5.9. Summary

viding performance gains more than 60% and 20% in SMP and NUMA ar-
chitectures, respectively. Moreover, it is rather important that these improve-
ments do no not come at an excessive preprocessing cost, allowing CSX to pro-
vide noticeable performance improvements also in the context of a production
multiphysics simulation soware, despite its initial bootstrap cost.
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6

Exploiting symmetry in sparse matrices

Symmetric sparse matrices arise quite oen in the solution of sparse linear sys-
tems and speciĕc iterativemethods exist for treating such symmetric problems.
Since the key performance problem of the SpMV kernel is the saturation of the
system’s memory bandwidth, it is quite tempting to reduce almost to the half
the representation size of a symmetric matrix by do not storing the non-zero
elements of the upper or lower triangular part. While beneĕcial in a single-
threaded context, such an approach proves to be problematic in multithreaded
conĕgurations. e typical row-wise distribution of the sparse matrix among
the threads introduces an undesirable race condition on the elements of the
output vector. e preferred way to solve this dependency, in order to avoid
the prohibitive cost of locking, is to use per-thread local vectors for performing
the local SpMV computation; this method, however, introduces an additional
reduction step in the symmetric SpMV computation, which further stresses
the memory subsystem and eliminates the beneĕt from the reduction in the
matrix size.

In this chapter, we propose an indexing scheme for the local vectors of
the symmetric SpMV kernel, which minimizes the memory traffic during the
reduction phase of the kernel, allowing symmetric SpMV to scale. We also
extend the CSX storage format to support efficiently symmetric matrices. In
conjunction with the local vectors indexing scheme, symmetric CSX is capa-
ble of providing a more than 2× performance improvement over the standard
CSR format and accelerating the CG iterative method by nearly 80%.

6.1 The symmetric SpMV kernel

emost widely used format for storing symmetric sparsematrices is the Sym-
metric Sparse Skyline (SSS) format, a variation of CSR that stores only themain
diagonal and the lower triangular elements. More speciĕcally, SSS stores the di-
agonal elements separately and the lower triangular elements using the typical
CSR format (see Chapter 2, Section 2.4 for more details). Assuming four-byte
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Figure 6.1: e RAW dependency on the output vector in a parallel execution of the
symmetric SpMV kernel (ĕgure replicated from Chapter 2).

indices and eight-byte double-precision Ęoating point values for the non-zero
elements, the matrix size in the SSS format can be calculated as follows:

SSSS = 4
NNZ− N

2︸ ︷︷ ︸
colind

+ 8
NNZ− N

2︸ ︷︷ ︸
lower values

+ 4(N+ 1)︸ ︷︷ ︸
rowptr

+ 8N︸︷︷︸
diagonal

(6.1)

= 6(NNZ+ N) + 4 (6.2)

For the typical case of sparse matrices, where NNZ ≫ N, the matrix size in
the SSS format is almost half that of CSR’s (approximately 12NNZ). Given the
streaming nature of the SpMVkernel, this considerable reduction in thematrix
size is expected to provide a signiĕcant performance improvement in a single
threaded implementation of the kernel. In a multithreaded context, however,
the execution of the kernel becomes problematic. Splitting thematrix row-wise
introduces a RAW dependency in speciĕc output vector elements due to the
vector updates generated by the SpMV operations in the upper triangular ma-
trix (see Figure 6.1). e typical way of avoiding this dependency without the
use of locking, whose cost can be prohibitive, is to use local, per-thread vectors
for storing the partial results of the multiplication (Algorithm 6.1). e SpMV
execution is split into two parallel phases: the multiplication phase and the re-
duction phase. e multiplication phase (Algorithm 6.1, lines 2–11) performs
the actual SpMV operation writing the partial results to the local vectors, while
the reduction phase (Algorithm 6.1, lines 12–16) reduces the local vectors into
the ĕnal output vector.

e reduction operation required by the local vectors method is streaming
and is expected to be bound from the available memory bandwidth, despite
its high parallelism at the order of Θ(N). is phase introduces a signiĕcant
workload overhead to the SpMV computation that depends on the total num-
ber of threads used. Assuming eight-byte double precision values for the local
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6.1. e symmetric SpMV kernel

1: procedureMVSM(A::in, x::in, y::out, p::in, start::in, end::in)
A: matrix in SSS format
x: input vector
y: output vector
p: participating threads
start, end: start/end of thread partitions

2: for i← 0 to p do in parallel
3: for r← start[i] to end[i] do
4: yi[r]← dvalues[r] · x[r]
5: for j← rowptr[i] to rowptr[i+ 1] do
6: c← colind[j]
7: yi[r]← yi[r] + values[j] · x[c]
8: yi[c]← yi[c] + values[j] · x[r]
9: end for
10: end for
11: end for
12: for r← 0 to N do in parallel
13: for i← 0 to p do
14: y[r]← y[r] + yi[r]
15: end for
16: end for

Algorithm 6.1: Parallel implementation of the symmetric SpMV kernel using the SSS
storage format.

vectors and p participating threads, the working set of the reduction phase is

wsred = 8pN (6.3)

e key characteristic of this overhead is that it increases proportionally to the
number of threads used and is expected to lead to a saturation of the avail-
able memory bandwidth beyond a certain number of threads whatsoever, lim-
iting the scalability of the symmetric SpMV kernel. is behavior is depicted
clearly in the speedup diagrams of Figure 6.2. While the performance beneĕt of
the symmetric SSS kernel ranges between 30% and 80% in the single-threaded
conĕguration, this gain is continuously shrinking as the number of threads in-
creases until it is completely eliminated (Dunnington, 24 threads, Gainestown,
8 threads) or even reversed (Gainestown, 16 threads), leading to considerably
lower performance than the baseline CSR.
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Figure 6.2: Speedup of the naive symmetric SpMV implementation. e scalability
of the symmetric SpMV kernel using local vectors is limited by the ĕnal
reduction step, whose workload increases linearly to the number of com-
putation threads, leading to a complete saturation of the available memory
bandwidth resources.

6.2 Minimizing the reduction cost

e previous discussion on the symmetric SpMV kernel has revealed the key
performance problem of the increased workload overhead of the reduction
phase. Due to its streaming nature, it is crucial to reduce the data computa-
tions during the reduction phase, in order to alleviate the memory subsystem
and, if possible, decouple this overhead from the thread count, allowing SpMV
to scale. We present here two approaches toward this direction based on the
key observation that only speciĕc parts of the output vector need to be kept
locally, since not all accesses conĘict. e memory traffic incurred by the re-
duction phase can be therefore considerably reduced.

6.2.1 Effective ranges of local vectors

emethod of effective ranges, proposed by Batista et al. [2010], updates only
a speciĕc region of each local vector and redirects the rest of updates directly
to the output vector. According to the symmetric SpMV algorithm (Algo-
rithm 6.1), the i-th thread is assigned the calculations for the SSS submatrix
between the start[i] and end[i] rows. Since we store the lower triangular ma-
trix, there is no way for the thread i to access elements below the end[i] row
boundary. erefore, it is safe to exclude this region from the reduction phase.
Furthermore, thread i can obtain access to the output vector between the start[i]
and end[i] elements directly without ruining SpMV consistency, exactly as in
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the regular unsymmetric SpMV implementation. e SpMV operations at the
remaining region, from the ĕrst row up to start[i], may conĘict with the output
vector updates and, therefore, it must write to the local vector; this region is
the effective region of the local vector (Figure 6.3c) and should be updated dur-
ing the reduction phase. Assuming, without loss of generality, that each thread
obtains almost the same number of rows, the working set overhead of the re-
duction phase for this method using p threads can be calculated as follows:

wseff ≈ 8
p(p− 1)

2
· N
p
= 4(p− 1)N (6.4)

e reduction overhead is now halved compared to the naive version, but the
key problem of the symmetric SpMV execution remains: the overhead of the
reduction phase still grows linearly with the number of participating threads.

Geus and Röllin [2001] present a similar approach for non-banded matri-
ces for minimizing the communication data among the processes of a distrib-
uted SpMV computation. ey specialize their approach for banded matrices
by reducing the effective range of the communicated data (i.e., local vectors)
to the half of matrix bandwidth. is approach can be extended straightfor-
wardly to regular matrices and collapses to the method described here for ma-
trices with a very large bandwidth. Nonetheless, even this approach does not
decouple the reduction overhead from the thread count, especially formatrices
with a relatively large bandwidth.

6.2.2 Local vectors indexing

Our approach onminimizing the reduction phase overhead is based on the ob-
servation that the effective regions of the local vectors are quite sparse, i.e., very
few elements of the effective regions are actually updated during the SpMV
computation. Another interesting trait of the effective regions, as depicted
in Figure 6.4, is that their density is continuously decreasing as more threads
are added to the SpMV computation, reaching an average of 10.7% at the 24
threads ofDunnington and 2.6% at 256 threads. Motivated by this behavior, we
introduce an indexing scheme for the non-zero elements of the local vectors,
in order to update only the conĘicting elements during the reduction phase,
minimizing the workload overhead. For each non-zero element in the effec-
tive regions of the local vectors (Figure 6.3d), we keep a pair (vid, idx), where
vid is a unique local vector ID and idx is the index of the non-zero element
inside the local vector. e size of idx equals the matrix index size, i.e., four-
bytes, while vid can vary depending on the maximum expected thread count.
In our implementation, we use generously four bytes for the vid ĕeld, but two
or even a single byte is enough for current multicore architectures.
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Figure 6.3: Local vectormethods for the reduction phase of the symmetric SpMVker-
nel. An example implementation of symmetric SpMVwith p = 4 threads.
e naive method (6.3b) uses simply four local buffers that reduces later
to the ĕnal output vector. e effective ranges method (6.3c) uses p − 1
local vectors writing only the possibly conĘicting regions. e indexing
scheme proposed (6.3d) uses p−1 local vectors and an indexing structure
that points only to the really conĘicting elements.
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Figure 6.4: e density of the effective regions of local vectors. Local vectors become
more sparse as the thread count increases, reaching a 2.7% density at 256
threads. e vertical line marks the density at the 24 threads of Dunning-
ton.

e workload overhead of the reduction phase using our indexing scheme
is now dependent on the density d of the effective regions of the local vectors.
More speciĕcally, assuming, without loss of generality, that the Nmatrix rows
are equally partitioned among p threads, the working set overhead is

wsidx = wseffd+ 8
(p− 1)Nd

2︸ ︷︷ ︸
index size

(6.5)

≈ 8(p− 1)Nd (6.6)

Although, theoretically, the local vectors indexing does not decouple the reduc-
tion phase overhead from the thread count, in practice, the effect of the thread
count increase is considerably attenuated. is is due to the inverse relation
between the thread count and the density of the effective regions, which even-
tually tends to stabilize the workload overhead as the thread count increases
and is visually depicted in Figure 6.5. e reduction overhead of both the naive
and the effective ranges methods increases linearly with the thread count, ex-
ceeding signiĕcantly themultiplication phase at the 24 threads in Dunnington.
e overhead of the indexing scheme proposed, on the other hand, increases
at a much slower pace and tends to stabilize around 15% at the 24 threads.
Indeed, with an average density of almost 11% at this thread count, the index-
ing scheme’s working set overhead is more than four times lower than the case
of the effective ranges. In Gainestown, the reduction overhead is lower for all
methods, since thememory bandwidth contention is not very pronounced, but
the same behavior is observed also in this architecture.
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Figure 6.5: e workload overhead of the reduction phase (over the serial SSS imple-
mentation) for the three local vectors methods considered. e reduction
overhead increases linearly with the thread count for the naive and the
effective ranges methods, surpassing the execution time of the actual mul-
tiplication. Conversely, the overhead of the indexing scheme proposed
tends to stabilize as the thread count increases, leading to a rather small,
15% overhead.

Parallelization e parallelization of the reduction phase in our index-based
scheme is based on the local vectors index, since this speciĕes the actual re-
duction operations. More speciĕcally, we ĕrst sort the index in an ascending
order of the idx ĕeld and then split it equally among the participating threads.
e only restriction in the splitting process is that an idx value must not be
shared among any pair of threads, in order to guarantee the independence of
the updates to the ĕnal output vector.

6.2.3 Alternative methods

e reduction phase of the symmetric SpMV cannot be avoided, unless with
the use of atomic operations on the output vector elements. Buluç et al. [2011]
take an interesting approach by introducing a hybrid method that uses a con-
stant number of reduction operations and some strain atomic operations on
speciĕc output vector elements. e key idea of the method resides on orga-
nizing the matrix into large block diagonals (three in the proposed implemen-
tation), stored with the efficient CSB blocking storage format (see Chapter 2,
Section 2.2.3). e SpMV computation proceeds independently between the
three block diagonalsƬ and writes the results to dedicated local vectors, which

Ƭ e computation inside each diagonal is also parallel proceeding with two distinct phases.
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will be reduced to the output at a ĕnal step. e SpMV computations on non-
zero elements beyond the block diagonals proceed independently and write
directly to the output vector using atomic operations. e key advantage of
this method is that it uses a constant number of local vectors, decoupling the
reduction overhead from the thread count. However, the overhead of reduc-
ing even three local vectors for very large and sparse matrices, where the local
vectors might not ĕt in the system’s aggregate cache, can be quite important.
Additionally, the cost of atomic operations for strain non-zero elements can be
quite important for matrices with a large bandwidth.

6.3 CSX for symmetric matrices

Having optimized the reduction phase of the symmetric SpMV kernel, we take
a step further and optimize the multiplication phase by extending the highly
compressed CSX format (see Chapter 5) to support symmetric matrices. is
optimization is orthogonal to the reduction phase optimization discussed in
the previous section. Similarly to SSS, the symmetric version of CSX, hence-
forth called CSX-Sym, stores separately the main diagonal in a dvalues ar-
ray and the lower triangular submatrix in normal CSX. All the substructures
detected in the lower submatrix have a symmetric counterpart in the upper
triangular submatrix; for example, every horizontal substructure in the lower
half starting at (i, j) element denotes also the existence of a vertical one in the
upper half starting at position (j, i) and so forth. e generated code for CSX-
Sym takes care for computing also the symmetric substructure. e only re-
striction we impose on the detection of symmetric substructures is that all of
its vector updates must be directed either to the original output vector or the
local vector; not to both of them. In other words, if a the i-th thread’s parti-
tion starts at start[i] row, symmetric substructures crossing this boundary are
not encoded. Figure 6.6 shows an example of the substructures detected by
CSX-Sym; note that the horizontal substructure starting at row 6 is not en-
coded, since the elements of its symmetric counterpart cross the original/lo-
cal vector boundary. Despite deteriorating slightly the compression potential
of CSX-Sym, this restriction leads to more efficient code, since per-element
checks would be needed otherwise, in order to determine where to redirect the
vector update.

Compression potential Employing all the sophistication of CSX in detecting
and encoding substructures inside a sparse matrix, CSX-Sym is able to con-
siderably compress the symmetric sparse matrix representation, reaching very
close to the maximum possible compression ratio (67%), while the SSS format
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Figure 6.6: Encoded substructures by CSX-Sym in an 8 × 8 sparse matrix. Dotted
lines denote thread partitions; the shaded elements of the upper triangular
submatrix are not stored. Note that the horizontal substructure at row 6 is
not encoded, since its symmetric vertical substructure crosses the thread
partition boundary.

Matrix CSR Size
(MiB)

C.R.
(SSS)

C.R.
(CSX-Sym)

C.R.
(Max.)

parabolic_fem 44.06 45.4% 49.6% 63.6%
offshore 49.54 48.0% 56.1% 65.3%
consph 69.10 49.5% 63.9% 66.4%
bmw7st_1 84.54 49.3% 64.4% 66.2%
G3_circuit 93.72 43.5% 60.2% 62.4%
thermal2 102.88 45.4% 53.4% 63.6%
m_t1 111.99 49.7% 65.3% 66.4%
bmwcra_1 122.38 49.5% 65.1% 66.4%
hood 124.08 49.3% 64.4% 66.2%
crankseg_2 162.16 49.8% 64.9% 66.6%
nd12k 162.88 49.9% 64.9% 66.6%
af_5_k101 202.77 49.1% 63.9% 66.0%
inline_1 423.25 49.5% 64.7% 66.4%
ldoor 536.04 49.3% 64.5% 66.2%
boneS10 638.28 49.5% 65.1% 66.3%

Table 6.1: Compression ratio (C.R.) of the symmetric CSX. Symmetric CSX is able to
provide near optimal compression ratios for symmetric matrices.

usually contends itself to less than 50% in most of the cases. Table 6.1 details
the compression ratio of both formats for the 15 symmetric matrices of our
suite.

128



thesis March 11, 2013 15:54 Page 129 �
�	

�
�	 �
�	

�
�	

6.4. Performance evaluation

6.4 Performance evaluation

In the following, we evaluate the performance of the three local vector meth-
ods discussed, namely the naive, the effective ranges and the index-based local
vectormethods. We also evaluate the impact of the CSX-Sym variant in the ex-
ecution of the symmetric SpMV kernel. For the evaluation, we use the 15 sym-
metric and positive deĕnite sparse matrices of our matrix suite and focus on
the Dunnington and Gainestown platforms as representatives of the SMP and
NUMA architectures, respectively. We employ a ‘share-nothing’ core-ĕlling
policy for this evaluation, in order to exhibit more clearly the memory band-
width contention of the reduction phase of the symmetric SpMV kernel. e
CSX-Symvariant is setup exactly as the typical CSX (seeChapter 5, Section 5.7).
In order to exhibit its full potential, we report performance results with full
preprocessing enabled for the comparisons with other symmetric SpMV ap-
proaches. In the evaluation of the CG iterative method, however, we employ
statistical sampling as described in Chapter 5, Section 5.7.3, and include also
this time in the overall reported results. For more information on the matrix
suite, the hardware platforms used and the experimental procedures, the reader
is referred to Chapter 3, Section 3.2.

6.4.1 Local vectors methods

e performance improvement achieved by the different local vector methods
considered is depicted in the speedup diagrams of Figure 6.7. All methods start
with a signiĕcant improvement in the single-threaded conĕguration, especially
in the Dunnington platform, but the naive and the effective ranges methods
scale at a lower rate compared to the baseline CSR. e performance improve-
ment offered by this methods is continuously shrinking as the thread count
increases and is completely eliminated when the memory bandwidth is satu-
rated. Due to its reduced working set overhead, the effective ranges method
exhibits a slightly better behavior in such cases, but it still does not allow sym-
metric SpMV to scale. In Gainestown, the performance of the naive and the
effective ranges methods is very close to the original CSR at the eight-threaded
conĕguration and deteriorates signiĕcantly at the 16-threaded.

e performance beneĕt of the proposed local vectors indexing method is
prominent in both considered architectures. e considerably reduced work-
ing set overhead, which remains almost stable with the thread count, allows
symmetric SpMV to scale at the same rate as the original CSR implementation,
without compromising the performance improvement in the cases of mem-
ory bandwidth saturation. More speciĕcally, our indexing scheme achieves an
83.9% performance gain over the best SSS conĕguration in Dunnington (12
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Figure 6.7: Symmetric SpMV speedupwith different local vectors reductionmethods.
e indexing method is the most efficient allowing SpMV to scale.

threads) and a 44% improvement in Gainestown. Overall, the symmetric SSS
kernel using the local vectors indexing scheme was able to provide a more than
2× improvement over the standard CSR implementation in Dunnington and
1.5× inGainestown in themultithreaded conĕgurations. is is a rather signif-
icant achievement, since the proposed technique allows the efficient exploita-
tion of the symmetric structure of certain matrices, which otherwise would
remain unexploited.

In order to provide more insight on the importance of the reduction phase
in the symmetric SpMV implementation, we present in Figure 6.8 the execu-
tion time breakdown of the symmetric SpMV kernel for all the considered re-
duction methods at the 24-threaded conĕguration in Dunnington. It is clear
that the proposed local vectors indexing scheme reduces considerably the re-
duction phase overhead, keeping it at a minimal level. is reduction method
has a beneĕcial side-effect: the multiplication phase has also decreased with
the proposed indexing scheme. is is mainly due to the lower cache interfer-
ence introduced by the modest working set overhead of our method. e high
working set overhead of the alternative methods in many-threaded conĕgura-
tions is likely to spill out useful data from the cache, incurring an increased
overhead to the multiplication phase of the next iteration.

Finally, it is essential to point the four cases (parabolic_fem, offshore,G3_circuit,
thermal2) that CSR’s performance surpasses or reaches our indexing method.
ese matrices are high-bandwidth matrices with a lot of their non-zero ele-
ments at very long distances from the main diagonal, leading to considerable
memory traffic during the reduction phase. However, the local vectors index-
ing method seems to handle efficiently even such cases, exhibiting a rather low
overhead, while the naive and effective ranges methods are overwhelmed by
the reduction cost.

130



thesis March 11, 2013 15:54 Page 131 �
�	

�
�	 �
�	

�
�	

6.4. Performance evaluation

p
a

ra
b

o
lic

_
fe

m

o
ff

s
h

o
re

c
o

n
s
p

h

b
m

w
7

s
t_

1

G
3

_
c
ir
c
u

it

th
e

rm
a

l2

m
_

t1

b
m

w
c
ra

_
1

h
o

o
d

c
ra

n
k
s
e

g
_

2

n
d

1
2

k

a
f_

5
_

k
1

0
1

in
lin

e
_

1

ld
o

o
r

b
o

n
e

S
1

0

0.01

0.10

0.50

1.00

2.00

T
im

e
 o

v
e

r 
s
e

ri
a

l 
C

S
R

CSR
SSS naive
SSS eff. ranges
SSS indexed

Figure 6.8: Symmetric SpMVexecution time breakdown at 24 threads inDunnington.
e reduction overhead (darker regions) is considerably reduced with the
use of local vector indexing.

6.4.2 Symmetric CSX

e performance of the CSX-Sym variant and the optimized SSS format (local
vectors indexing) compared to the unsymmetric CSR and CSX implementa-
tions are depicted in Figure 6.9. anks to its highly compressed representa-
tion, CSX-Sym provides a 43.4% further performance improvement over the
optimized SSS format in Dunnington, an architecture that is mostly affected
by the matrix size representation. In Gainestown, where the available memory
bandwidth is ample, the performance gap closes to 10% on average, but CSX-
Sym is still able to provide a performance gain. e unsymmetric CSX and
CSR implementations are well below in performance, especially in Dunning-
ton, where the memory bottleneck is more prominent. CSX-Sym was able to
provide an impressive (for an SpMV implementation) 21× speedup in Dun-
nington at the 24 threads and a nearly 8× in Gainestown at the 16-threaded
conĕguration. is noteworthy behavior is due to the low overhead of the
index-based reduction phase, which allows the beneĕt from the advanced com-
pression of CSX to become visible also in the symmetric kernel.

In order to gain a further insight in the CSX-Sym performance, Figure 6.10
shows the per-matrix performance of the four considered formats (CSR, SSS,
CSX and CSX-Sym) at the 16-threaded conĕguration in Gainestown. CSX-
Symmanages to achieve the best performance, surpassing 10GĘop/s, in 11 out
of the 15matrices. e remaining fourmatrices are the high-bandwidth corner
cases, where no symmetric format did achieve any performance improvement
over CSR. High-bandwidth matrices have their non-zeros across the whole
matrix, leading to a rather low substructure frequency. However, with the ex-
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Figure 6.9: Symmetric SpMV speedup with the CSX-Sym format. CSX-Sym opti-
mizes further the symmetric SpMV kernel, especially in SMP architec-
tures, where the memory bandwidth contention is more prominent.
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Figure 6.10: Per-matrix performance for theCSX-Sym format at 16 threads inGaines-
town. CSX-Sym’s performance in more regular matrices surpasses
10GĘop/s, while staying close to baseline CSR performance in less regu-
lar ones.

ception of parabolic_fem, which has a rather irregular structure and very high
bandwidth, CSX-Sym was able to achieve near-best performance for almost all
these corner-case matrices.

6.4.3 Reduced bandwidth matrices

e execution of the symmetric SpMV kernel is particularly affected by the
bandwidth of the input sparse matrix. Apart from the performance problems
caused to the typical SpMV kernel, e.g., irregular access in the input vector,
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Dunnington
(24 threads)

Gainestown
(16 threads)

CSR 24.8% 8.9%
CSX 50.2% 11.1%
SSS 73.6% 34.9%
CSX-Sym 85.3% 38.6%

Table 6.2: Symmetric SpMVperformance improvement due tomatrix reordering (the
RCM algorithm was used). e impact of reordering is much more signif-
icant for symmetric formats, while CSX tends to be beneĕted more from
this optimization, since it is able to detect and encode more substructures.

increased loop overheads, load imbalances etc. (see Chapter 3, Section 3.3 for
more details), high-bandwidthmatrices tend to increase the interference among
the threads of the symmetric SpMV kernel when writing to the output vector.
e reduction phase of the naive and the effective ranges local vectors meth-
ods is not affected by this interference, since all updates are directed to the lo-
cal vectors. e proposed local vectors indexing scheme, however, is affected,
since the reduction phase overhead depends exactly on this interference, as we
update in local vectors only the conĘicting elements. Reducing, therefore, the
bandwidth of such matrices can be quite beneĕcial for the symmetric SpMV
kernel.

Originally conceived for reducing the communication overhead in distrib-
uted symmetric SpMV implementations, matrix bandwidth reduction tech-
niques try to bring the non-zero elements as close to the main diagonal as pos-
sible, by reordering the rows and columns of the matrix. e obvious effect
of this non-zero rearrangement in the SpMV execution is the minimization
of the inter-process interference. In a distributed SpMV implementation, this
is equivalent to reducing the communication overhead, since less data from
the input and output vectors must be exchanged among the participating pro-
cessors. In the context of a multithreaded execution, this is equivalent to the
minimization of the reduction phase overhead. Matrix bandwidth minimiza-
tion techniques have beneĕcial side-effects also in the typical unsymmetric
SpMV implementation, since the homogenization of the non-zero elements
distribution leads to a better access pattern and load balance (see Chapter 3).
Substructure-detecting formats, like CSX, are beneĕted further, since the non-
zero rearrangement increases the opportunities of detecting more substruc-
tures (see Chapter 5). is picture is veriĕed also for the symmetric SpMV
kernel, as Table 6.2 depicts, where the average performance improvement of
the different SpMV implementation due to matrix reordering is reported. In
Dunnington, the standard CSR gains a 22% improvement, while baseline CSX
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Figure 6.11: Per-matrix performance on reordered symmetric matrices (Gainestown,
16 threads). CSX-Sym is the most performant format surpassing the
12GĘop/s barrier in the majority of sparse matrices.

is beneĕted by 63%. As expected, the effect ofmatrix reordering in the symmet-
ric kernel is much more important, with the improvement of SSS surpassing
90%, while CSX-Sym gets a more than 2× acceleration. Similar is the picture
in Gainestown, but both the encountered improvements and the differences
among the different formats are attenuated. Such behavior—apparent through-
out the performance evaluations in this thesis—is quite typical in NUMA ar-
chitectures, where the memory bandwidth contention is not so intense as in
SMP systems. Figure 6.11, ĕnally, shows the absolute SpMV performance in
the reordered matrices of our suite; it is noteworthy that CSX-Sym’s perfor-
mance surpasses 12GĘop/s in nine matrices.

6.4.4 Impact on the CG iterative method

In order to evaluate the impact of the local vectors indexing optimization and
the CSX-Sym format in the context of an iterative solver, we have implemented
a non-preconditioned version of the Conjugate Gradient (CG) method. e
CG method is a widely used iterative solution method for symmetric positive
deĕnite linear systems. It is also part of the NAS parallel benchmark suite, as
a typical kernel of unstructured grid computations, for assessing the perfor-
mance of a parallel system in irregular long distance communication and the
matrix-vector product [Bailey et al., 1991].

Figure 6.12 shows the execution time breakdown of the CG method us-
ing the unsymmetric CSR and CSX formats and their symmetric counterparts,
SSS and CSX-Sym (with local vectors indexing). Results are shown at the 24
threads in Dunnington for the RCM reordered matrices aer 2048 iterations.
e ĕrst generic observation is that the vector operations can be quite signif-
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1: procedure CG(A, b, x0)
A: coefficient matrix
b: target vector
x0: initial approximate solution

2: r0 ← b− Ax0
3: p0 ← r0
4: i← 0 ◃ Iteration count
5: loop
6: ai ←

rTi ri
pTi Api

◃ SpMV operation
7: xi+1 ← xi + ai · pi
8: ri+1 ← ri − ai · pi
9: if |ri+1| is adequately small then
10: break

11: bi ←
rTi+1ri+1

rTi ri
12: pi+1 ← ri+1 − bi · pi
13: i← i+ 1

return xi+1

Algorithm 6.2: e non-preconditioned Conjugate Gradient algorithm.

icant in smaller and sparse matrices, such as parabolic_fem, offshore etc., and
may exceed 50% of the overall execution time of the multithreaded CG ker-
nel. CG performs several vector operations, including dot products, during
an iteration (see Algorithm 6.2), but only a single SpMV operation. For small
matrices, therefore, that ĕt in the aggregate cache, the overhead of vector op-
erations can easily dominate the total execution time of the solver. With the
exception of the very sparse parabolic_fem and offshore matrices, where the
computation is dominated by the vector operations, CG is greatly beneĕted by
the symmetric storage formats, encountering a more than 50% overall perfor-
mance improvement in large matrices. CSX-Sym is hindered by its prepro-
cessing cost in smaller matrices and offers similar or lower performance the
SSS format with the local vectors indexing optimization technique. In larger
matrices, however, CSX-Sym compensates its preprocessing cost and manages
to offer a further performance improvement to the CG kernel.
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Figure 6.12: CG execution time breakdown using 24 threads in Dunnington at the
RCM reordered matrices aer 2048 iterations. Symmetric storage for-
mats using the local vectors indexing technique provide a signiĕcant
performance improvement; CSX-Sym is beneĕcial in large sparse ma-
trices where it is able to compensate its preprocessing cost. [Execution
time breakdown legend – colored: SpMV, black: SpMV reduction, anti-
diagonal: vector operations, diagonal: CSX preprocessing.]

6.5 Summary

In this chapter, we focused on exploiting the non-zero element symmetry of
symmetric sparsematrices, in order to accelerate the performance of the SpMV
kernel. Storing almost half of the original matrix’s non-zero elements (lower
triangular and main diagonal), symmetric sparse matrix storage formats can
signiĕcantly beneĕt the SpMVperformance, due to the alleviation of themem-
ory subsystem. However, the multithreaded symmetric SpMV kernel has to
successfully overcome a RAW dependency in the output vector incurred by
the SpMV operations performed in the symmetric (upper triangular) part of
the matrix. e most common solution involves the use of local, per thread
vectors, where the intermediate results of the SpMV computation are written.
At a second step, these vector are reduced in parallel to the ĕnal output vec-
tor. e key performance problem of this step is that it incurs a signiĕcant
performance overhead, increasing linearly with the thread count, which not
allows SpMV kernel to scale. Based on the observation that local vectors are
quite sparse and their sparsity increases with the thread count, we proposed a
local vector indexing scheme, which reduces only the conĘicting output vec-
tor elements, therefore attenuating the memory bandwidth bottleneck of the
reduction phase. We further optimize symmetric SpMV by extending the CSX
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6.5. Summary

format to support also symmetric matrices. e so called CSX-Sym variant
achieves almost optimal compression of the sparse matrix and, in conjunction
with the local vectors indexing scheme, manages a more than 2× acceleration
of the symmetric SpMV kernel, while the impact of the proposed optimiza-
tions in the context of the CG iterative solver accounts for a more than 50%
performance improvement for large symmetric sparse matrices.
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7

Energy-efficiency considerations

Power-aware computing and energy-efficiency issues has been of particular in-
terest in embedded computing for several years. As the level of integration of
CMOS digital circuits heads toward its limits, energy-efficiency is gaining an
increasing interest from the hardware up to the soware level also in the HPC
community. Leakage power is becoming increasingly important as circuit de-
signs scale down to a few nanometers and tend to dominate the overall power
dissipation of a chip. Techniques for dynamically switching off idle processor
components are nowmeetingmore traditional ones, like Dynamic Voltage and
Frequency Scaling (DVFS) techniques, in an effort tominimize the overall pro-
cessor’s power dissipation. Nonetheless, application performance is a critical
and deĕnitive factor of HPC and should remain in the foreground. Balancing
this tradeoff, therefore, is of key concern in implementing high-performance
and energy-efficient systems and applications.

In this chapter, we take a ĕrst step toward identifying and exploring the
performance-energy tradeoffs of the SpMV kernel in modern multicore archi-
tectures by varying the processor’s frequency and the placement of threads at
the available cores. Employing the notion of Pareto optimality, we character-
ize the different tradeoffs and propose a methodology for selecting the SpMV
execution conĕgurations (processor frequency, thread placement) that lead to
the best performance-energy compromises for a speciĕc input matrix. is
chapter opens a number of issues that need to be answered more precisely in
the future and serves as food-for-thought for evaluating the real impact of so-
ware optimizations targeting energy-efficiency in the context of HPC.

7.1 Fundamentals of processor power dissipation

7.1.1 Sources of power dissipation

e power dissipation of a CMOS device at the elementary transistor gate level
is formulated as a sum of three major components: switching loss, leakage and
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short-circuit loss [Brooks et al., 2000; Kaxiras and Martonosi, 2008]. More
speciĕcally, the power dissipation P of a CMOS device is approximated by the
following formula:

P =
1
2
CV2αf+ Pleakage + Pshort-circuit (7.1)

e ĕrst term, also referred to as dynamic power, is the power dissipation due
to the switching of the device transistors and is directly related to the circuit
capacitance C, the supply voltage V, the clock frequency f of the device and
the activity factor α. e circuit capacitance is a design parameter that de-
pends largely on the wiring of the on-chip components. e activity factor
is a fraction at the range [0, 1], denoting how oen the device is clocked, i.e.,
how oen it is actually used; whenever idle, devices are deconnected from the
clock source in order to save energy (clock gating). e leakage power is the
power dissipation due to the current that leaks from a transistor when its gate
is switched off. Although transistors are viewed as ideal on-off switches, in
practice, a very small amount of current is Ęowing at the ‘off ’ state, inducing a
power loss. e short-circuit or glitching power is the power dissipated by the
instantaneous short-circuit, due to imperfect state transition times, as a tran-
sistor switches between the on and off states.

Dynamic power has been the dominant source of power dissipation in
CMOS devices for several years. Its quadratic relation to the supply voltage
has led to considerable savings in power consumption as new technology al-
lowed the safe reduction of this. e clock frequency has a double effect on
the dynamic power dissipation: apart from its direct relation to the total dis-
sipated power as speciĕed by equation (7.1), sustaining a higher frequency of-
ten requires a proportionally higher supply voltage, leading to a cubic rela-
tion between frequency and dynamic power [Brooks et al., 2000; Kaxiras and
Martonosi, 2008]. is signiĕcant impact of frequency on the total dissipated
power has led to the wider adoption of a dynamic management of voltage and
frequency, in order to reduce the overall power dissipation without compro-
mising performance. Dynamic Voltage and Frequency Scaling (DVFS) tech-
niques allow the selective scaling of both voltage and frequency in less CPU-
intensive phases of an application, e.g., memory-boundor latency-tolerant parts,
in order to achieve high performance at a lower power budget [Xie et al., 2003;
Choi et al., 2004]. More advanced techniques separate the processor in mul-
tiple independent domains of voltage control, allowing the selective scaling of
voltage in different processor components depending on the needs of the run-
ning application [Semeraro et al., 2002; Herbert and Marculescu, 2007; Matt-
son et al., 2010].
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As the integration scale is shrinking to a few nanometers, leakage power is
becoming a signiĕcant factor of the power dissipation of modern processors.
ere are two types of leakage power: sub-threshold leakage and gate leakage.
Sub-threshold leakage is due to the electric current that Ęows through a tran-
sistor at the off state, i.e., when its voltage is below a threshold denoting the
off state. Sub-threshold leakage increases exponentially as this threshold volt-
age is lowered [Kaxiras and Martonosi, 2008]. e reduction of the threshold
voltage comes as a result of an analogous reduction of the supply voltage V in
equation (7.1), since a minimum voltage difference is required between the on
and off states of the transistor. Gate leakage, on the other hand, occurs due to
direct tunelling of electrons through the insulator separating the gate and the
transistor channel. As the insulator layer becomes too thin, due to the shrink-
ing of the integration scale, the gate leakage increases exponentially and so does
leakage power [Borkar, 1999; Kim et al., 2003; Agarwal et al., 2006].

It is clear that computer architecture is hitting a ‘power wall’, built chieĘy by
the tremendous increase in leakage power [Ramirez, 2011; Ahmed and Schue-
graf, 2011], and drastic technology shis are needed in order to keep Moore’s
law alive beyond the 22 nm barrier [Hisamoto et al., 2000; Yang et al., 2004;
Skotnicki et al., 2005; Hu, 2012]. Modernmicroarchitectures tackle the leakage
power problem by incorporating advanced power management. Apart from
dynamic voltage and frequency scaling techniques, which have been around
for some years [Semeraro et al., 2002], modern processors allow also the dy-
namic ‘shut down’ of idle cores. For example, IBM’s latest eight-core four-
way SMT Power7 processor can bring a single core into one of two ‘sleep’
modes, in order to save as much power as possible from idling cores [Kalla
et al., 2010]. Similarly, Intel’s Sandy Bridge microarchitecture alters dynami-
cally the power state of different processor components, in order to optimize
the total power dissipation, and also offers a power monitoring interface to the
user level, so that soware can take advantage and reduce the overall energy
consumption [Rotem et al., 2012].

Closing the discussion on the sources of power dissipation in modern mi-
croarchitectures, we should make a speciĕc note on caches. e integration
of multiple fast cores into the same processor socket has placed a signiĕcant
burden to the memory subsystem. Both in terms of latency and bandwidth,
main memory cannot sustain the very high rates that a modern processor can
consume data; and this difference tends to grow exponentially with every new
processor generation [Wulf andMcKee, 1995]. erefore, large caches come to
ĕll in and hide this performance gap, and it is not extraordinary to encounter
today caches as large as 24MiB per socket. However, such large caches take up
a signiĕcant portion of the total die area and, as a result, are chief contributors
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to the processor’s total leakage powerƬ [Kaxiras and Martonosi, 2008]. Sev-
eral techniques have been proposed for reducing the leakage power loss from
caches, ranging from speciĕc memory cell technologies [Powell et al., 2000] to
techniques for shutting down whole unused portions of the cache [Yang et al.,
2001] or speciĕc unused cache lines [Kaxiras et al., 2001; Flautner et al., 2001].
Such techniques are soon becomingmainstream and allow energy-efficient de-
signs for caches even exceeding 20MiB [Chang et al., 2009; Huang et al., 2012].

7.1.2 Energy-Delay products

From a soware perspective, the minimization of the power dissipation of the
underlying architecture is just one side of the coin: performance is the other
and is quite critical, as well. While there is a clear tradeoff between the power
dissipation of a computer system and its performance, a high performance sys-
tem is not necessarily inefficient in terms of energy consumption. Power dis-
sipation is nothing more than the rate a computer system consumes energy.
erefore, the faster the computation, the lower is the total amount of energy
consumed; aer all, energy is what we pay for. For this reason, the Ęop/s

W met-
ric is being widely adopted for assessing the energy efficiency of a computer
system. As of this writing, the fastest supercomputer in the world, achieving
the mighty performance of 17.6 PĘop/s, is also the thirdƭ most energy-efficient
with a performance of 2.1GĘop/s per Watt of dissipated power [Top500, 2012;
Green500, 2012].

A closer look at the performance per Watt metric reveals that it is nothing
more than the inverse of the energy consumption. A common way for assess-
ing the performance-energy tradeoffs of a system’s design are the energy-delay
products or EDn, n ≥ 0. For n = 0, the energy-delay product corresponds to
the system’s energy consumption, while larger values of n bias the tradeoff to-
ward higher performance. Aswe shall see in Section 7.2, energy-delay products
are optimal design tradeoffs under the Pareto optimality criterion, i.e., there
exist no other design without compromising at least one of the energy or the
performance objectives.

7.1.3 Energy-efficiency from a software perspective

Soware applications can play a signiĕcant role in reducing the overall power
dissipation of a computer system. e dynamic power of a processor is directly

Ƭ e dynamic power dissipation of very large caches is not so signiĕcant, since they usually reside
in a different voltage and frequency domain than the rest of the processor, running atmuch lower
frequencies.

ƭ e most energy-efficient achieves 2.5 GĘop/s per Watt.

142



thesis March 11, 2013 15:54 Page 143 �
�	

�
�	 �
�	

�
�	

7.1. Fundamentals of processor power dissipation

affected by the utilization of its units during the different phases of an appli-
cation. In power terms, the utilization of a hardware unit can be viewed as an
indication of its activity factor. Based on this assumption, Isci and Martonosi
[2003] build a quite accurate model for predicting the power dissipation of
processors based on the Intel Netburst microarchitecture [Koufaty and Marr,
2003]. e authors infer the activity factor of 22 hardware components (caches,
TLBs, execution units etc.), by calculating their utilization using hardware per-
formance counters, and use a weighted sum of the per-component power pre-
dictions, in order to calculate the overall dynamic power dissipation of the pro-
cessor. A more detailed and generic approach in predicting the power dissipa-
tion of amodern processor is theMcPATpowermodel framework [Sheng et al.,
2009]. McPAT also predicts power dissipation through the use of performance
monitoring events, but, conversely to the model of Isci and Martonosi [2003],
it is not bound to a speciĕc architecture technology. Instead, it uses low-level
powermodels for modeling the behavior of fundamental components of a chip
multiprocessor, allowing the exploration of design tradeoffs for new architec-
tures.

Collecting a multitude of performance monitoring events, in order to ob-
tain an accurate power estimate, might require multiple runs of the proĕled
application, since the number of performance monitoring registers is rather
restricted in currentmicroarchitectures. As a result, suchmethods are not suit-
able for online power estimation of a running application. Curtis-Maury et al.
[2008] take a hybrid offline/online approach for predicting the execution con-
ĕguration (thread count and core frequency) that provides an optimal balance
between performance and energy consumption. e runtime system proposed
collects performance monitoring information from a running application and
feeds a regression model trained offline, which predicts the optimal conĕgura-
tion for the next phase of the application. In effect, this technique intends to
allocate theminimum of resources (frequency, thread count) to an application,
so that it proceeds at a low power budget without compromising performance.
A similar hybrid approach is adopted also by Singh et al. [2009] in a power-
aware thread scheduling scheme that tries to keep the overall system’s power
dissipation within a user-speciĕed envelope.

While soware control over dynamic power consumption is feasible, thanks
to smart use of frequency scaling and thread placement, soware control of
leakage power is not yet widely adopted. In order to achieve this, the soware
must be able to ‘switch off ’ speciĕc functional units of the processor (ALU, FPU
etc.) or deactivate unused parts of the cache, depending on its own needs. As-
suming a hardware support for such ĕne-grained leakage power control, Zhang
et al. [2003] and You et al. [2006] explore compiler techniques for identifying
basic blocks where a speciĕc functional unit is unused and instrument the re-
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sulting code with explicit activation/deactivation instructions for controlling
the state of a functional unit. Similarly, Zhang et al. [2002] assume a ĕne-
grained control of the instruction cache lines and propose compiler optimiza-
tion techniques for selectively putting cache lines into a low leakage mode.

7.2 Performance-Energy tradeoffs in the SpMV kernel

Sparse Matrix-Vector Multiplication is a memory bandwidth bound kernel.
is has been made clear from the analysis in the previous chapters, where we
have proposed original techniques for attacking this key performance prob-
lem. We have shown that as far as the memory path is completely saturated,
there is almost no worth at increasing the concurrency of the kernel, since the
performance gain is minimized. is observation is important from a power
perspective, since adding more cores to the computation increases the power
dissipation for only a marginal gain in performance.

read placement plays also a signiĕcant role in the execution of the SpMV
kernel. A sane core-ĕlling policy can allow SpMV to scale, by delaying the sat-
uration of the memory bandwidth through a better balance of the memory
traffic. For example, the ‘share-nothing’ core-ĕlling policy, presented in Chap-
ter 3, distributes the threads in all the available sockets, so that a minimum
resource sharing is achieved. e advantage of this policy is the minimization
of the contention in shared resources of the memory data path (e.g., caches,
bus interface, memory controller etc.). Speciĕcally for the shared caches, such
a placement increases the size of the system’s aggregate cache available to the
computation, therefore relieving further the main memory subsystem. As a
result, SpMV scales at a steady pace up to the 12-threaded conĕguration in
Dunnington, before the memory bus is eventually saturated (see Chapter 3,
Section 3.3.2). Unfortunately, such a performance improvement is not a free
lunch. Not only the increased processor utilization augments its power dissi-
pation, but, more importantly, the use of multiple caches can lead to a consid-
erable increase in the total power dissipation of a system that supports dynamic
leakage control and is able to put in ‘sleep mode’ unused caches or even whole
unused processors. is dri in power dissipation, however, may be compen-
sated by the faster execution time and a possible frequency scaling through the
DVFS mechanism.

Finally, the performance of the SpMVkernel is directly related to the struc-
ture of the input matrix. Apart from the implications in the SpMV perfor-
mance that a sparse matrix may have (memory bottleneck, irregular accesses,
load imbalances etc.), the energy footprint of SpMV is likely to vary from ma-
trix to matrix. For example, it might be a waste of energy to assign multiple
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sockets to the computation of an irregular matrix with load imbalances, while
such a placement sounds reasonable for a more regular one. It is therefore im-
portant to quantify and consider such information in the effort to predict the
optimal performance-energy tradeoffs for the SpMV kernel.

7.2.1 Experimental setup

For the evaluation of the performance-energy tradeoffs of the SpMV kernel,
we have used the Dunnington system for the performance measurements (see
Chapter 3, Section 3.2) and the McPAT framework [Sheng et al., 2009] for de-
tailed power estimations. e Dunnington system comprises four Intel X7460
packages built at 45 nm technology. Each X7460 package is essentially a set
of three dual-core modules with a 3MiB shared cache and the whole pack-
age hosts a 16MiB uniĕed L3 cache. e processor supports DVFS and offers
two frequency steps, namely at 2.14GHz and at 2.67GHz (full speed). Each
frequency step is associated with a speciĕc supply voltage, which is regulated
accordingly upon transition to the speciĕed frequency [Int, 2008]. We use the
cpufrequtils userspace tools in Linux for controlling the processor’s frequency.

e alternative thread placements we consider fall in three categories de-
pending on the sharing of common resources:
(a) Full sharing, in which threads are placed as close as possible, sharing all

the levels of the cache hierarchy (same as the ‘share-all’ policy described in
Chapter 3).

(b) Semi sharing, in which threads are placed so that they share only the L3
cache, but not the L2 cache.

(c) No sharing, in which threads are placed as sparsely as possible, so as to
minimize the sharing of the cache hierarchy (same as the ‘share-nothing’
policy described in Chapter 3).

We use the notation XpYsZc to describe a placement using Z cores in total,
Y sub-packages (shared L2 components) and X physical packages or sockets
(shared L3). For example, the possible thread placements for four threads are
1p2s4c, 2p4s4c and 4p4s4c. We consider in total 26 different thread placements
for the following thread counts: 1, 2, 3, 4, 6, 8, 9, 12, 15, 18, 24.

e McPAT framework predicts power dissipation based on speciĕc pro-
cessor event counts (e.g., core cycles, cache accesses/misses etc.). Since it is
intended for use with processor simulators, it supports a very detailed list of
events, which are not all available in real processors. For this reason, we in-
cluded events that are a close match to the ones required by McPAT and con-
tribute to the overall power dissipation of the processor [Isci and Martonosi,
2003; Singh et al., 2009]. In total, we included 14 event counts, which are de-
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Event Mnemonic Description

C E

UnHalted Core Cycles Unhalted core cycles
UOPS_RETIRED.ANY Micro-ops retired
SIMD_UOPS_EXEC SIMDmicro-ops executed

B U E

Branch Instruction Retired Branch instructions retired
Branch Misses Retired Mispredicted branch instructions retired

C E

L1I_READS Instruction fetches
L1I_MISSES Instruction fetch unit misses
L1D_REPL Cache lines allocated in the L1 data cache
L1D_ALL_REF.ANY All references to the L1 data cache
L2_RQSTS L2 cache requests
L2_LINES_IN L2 cache misses
LLC Reference Last level cache references
LLC Misses Last level cache misses

B E

BUS_TRANS_ANY All bus transactions

Table 7.1: Performance monitoring events used for the prediction of power dissipa-
tion by the McPAT framework. For more information on the performance
monitoring events of Intel microarchitectures, please refer to [Int, 2010]
using the event mnemonic.

tailed in Table 7.1. e Intel Core microarchitecture of Dunnington includes
only two programmable performance monitoring counters, so multiple runs
of the SpMV kernel were required to collect all the event counts. Finally, we do
not include in our overall power measurements the idle power of unused pro-
cessor packages, as if we were able to put them in a low-leakage sleep mode.

7.2.2 Characterizing the tradeoffs

Figure 7.1 presents the performance-energy tradeoffs of 52 execution conĕgu-
rations (thread placement, core frequency) of the SpMV kernel in Dunnington
for four sparse matrices with different computational characteristics. More
speciĕcally, xenon2 and parabolic_fem are both small matrices, ĕtting in the
system’s aggregate cache, but the latter is quite irregular. Conversely, boneS10
and thermal2 are both large enough to ĕt in the system’s aggregate cache, but
the second has an irregular structure. All matrices were stored in CSX for-
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7.2. Performance-Energy tradeoffs in the SpMV kernel

mat. Performance and dynamic energy consumption (dynamic power × exe-
cution time) are normalized over the overall best performance and the maxi-
mum energy consumption, respectively. e ĕrst key observation is that the
performance-energy landscape is rather broad and two execution conĕgura-
tions might be quite apart in terms of energy-efficiency. Additionally, at the
same energy level there existmultiple conĕgurationswith varying performance
and vice versa. is requires amethod for characterizing each tradeoff, an issue
wediscuss later in this section. Another key observation is that the performance-
energy landscape differs between small and large regular matrices, while for
irregular ones the difference is not so wide.

A closer examination of the landscape for matrix xenon2 (31MiB in CSX)
reveals that the most energy-efficient execution conĕguration is the one using
six threads spread sparsely (no sharing of L2 caches) across two packages and
clocked at 2.14GHz. At the other end, using two packages and eight threads
packed together to share the L2 caches at 2.67GHz is the least energy-efficient
conĕguration, consuming almost 2.5× more energy for a fraction of the per-
formance. is is a typical example of how beneĕcial a correct thread place-
ment at a lower frequency can be. Although, the six-threaded conĕguration
uses more shared hardware resources, the lower frequency allows a 35% saving
in power dissipation compared to the high-frequency eight-threaded conĕg-
uration (4.4W vs. 6.8W). From a performance perspective, the six-threaded
conĕguration is also more beneĕcial, since it eliminates the contention in the
shared L2 caches, now acting as private caches, and offers a signiĕcantly higher
performance (+37%), despite the lower frequency. A key observation, com-
mon in more regular matrices, is the steep increase in energy-efficiency. For
example, the 3p9s9c execution conĕguration at 2.14GHz in xenon2 has twice
the performance of the most energy-efficient 2p6s6c with almost the same en-
ergy consumptionƮ. is is due to an almost equal increase in performance
and power consumption, which is typical of the linear scaling that SpMV en-
counters on regularmatrices whenmore sockets are added to the computation.
Despite the same steep increase in energy-efficiency, large matrices, exceeding
the system’s aggregate cache, exhibit a slightly different performance-energy
landscape. For example, the most energy-efficient conĕguration for boneS10
is the 1p2s2c two-threaded conĕguration at 2.14GHz, while the least energy-
efficient is the 15-threaded at 2.67GHz. It is worth noting the memory bot-
tleneck and its effect on energy consumption. e most performant conĕgu-
rations for boneS10 are the 12-threaded and the eight-threaded conĕguration
using all four sockets at 2.67GHz. e memory bus is already saturated from

Ʈ e doubling of performance when moving from six to nine threads is due to the comfortable
ĕtting of the working set in the aggregate cache of the three packages.
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(d) Large, irregular (thermal2).

Figure 7.1: Performance-energy tradeoffs of the SpMV kernel for a set of matrices
with different performance characteristics. Execution conĕgurations are
in the form XpYsZc denoting that X sockets, Y sub-packages (shared L2
components) and Z cores are used in total.
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the eight-threaded conĕguration and adding four more threads offers only a
marginal performance improvement; trying to add evenmore threads is a pure
waste of energy, which is eventually doubled at the 15-threaded conĕguration⁴.

e landscape of the performance-energy tradeoffs in irregular matrices is
similar to that of large regularmatrices, but with a less steep increase in energy-
efficiency. Matrix size seem not to play a signiĕcant role, since both the small
parabolic_fem and the larger thermal2 have the same most and least energy-
efficient conĕgurations, namely the 1p2s2c at 2.14GHz and the 15-threaded
at 2.67GHz, respectively. is should be expected, since the key performance
problem of these matrices is not the memory bandwidth bottleneck (see Chap-
ter 3), therefore, matrix size is not very critical. For the same reason, there is
no such a steep increase in energy-efficiency; since SpMV’s scaling is hindered,
the gain in performance from the use of more cores is less important than the
resulting increase in power dissipation.

Optimal tradeoffs

Having examined inmore detail the performance-energy landscape of the SpMV
kernel, the question that arises is what consists a good tradeoff. Apparently,
points in the upper le corner of the performance-energy landscape are good
tradeoffs, since they maximize performance, while keeping energy require-
ments low. However, the question that poses now is how we could compare
tradeoffs against each other and if there exist a single best tradeoff. Suppose
two points, let (e, p) and (e′, p′), in the performance-energy landscape that cor-
respond to execution conĕgurations E and E′. If e < e′ and p ≥ p′, then E is
deĕnitely a better tradeoff than E′, since with a lower energy consumption, it
achieves at least the same performance; the same is true for two conĕgura-
tions where e ≤ e′ and p > p′. In this case, conĕguration E strictly dominates
conĕguration E′. On the other hand, if e ≤ e′ and p ≤ p′, we cannot assess
whether E is a better tradeoff than E′. e set of points (and the correspond-
ing execution conĕgurations) that are not dominated by any other point in
the performance-energy landscape form the non-dominated Pareto front [Luke,
2011]. e conĕgurations on the Pareto front are the set of optimal tradeoffs,
since they are strictly better than any other conĕguration in at least one objec-
tive (performance or energy). An important property of the Pareto front is that
when moving from one point to another, we experience the least possible loss
in energy consumption and the greatest gain in performance and vice versa.
In that sense, all points of the Pareto front are formally equivalent tradeoffs.

⁴ e 15-threaded conĕguration suffers also from load imbalance, since six threads must share
the L2 cache, while the rest use it exclusively.
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erefore, there is not a single best tradeoff of performance and energy (unless
the Pareto front collapses to a single point), but rather a set of best tradeoffs.

Optimality of energy-delay products Each tradeoff corresponding to a mini-
mal energy-delay product for some n ≥ 0 is an optimal tradeoff in the Pareto
sense. is can be easily proved: assume that the execution conĕguration M
minimizes the EDn product for some n ≥ 0, i.e., eMdnM < eM′dnM′ for each
M′ ̸= M. If we suppose that (eM, dM) does not lie on the Pareto front, then
there must be a conĕguration C, such that either eC < eM and dC ≤ dM or
eC ≤ eM and dC < dM. erefore, the energy-delay product of this conĕg-
uration will be eCdnC ≤ eMdnM for n = 0 or eCdnC < eMdnM for n > 0, which
contradicts with our initial assumption that the conĕguration M minimizes
the energy-delay product. erefore, M is a non-dominated solution, i.e., a
point on the Pareto front. As a corollary, every point of the Pareto front is a
minimal energy-delay product for some n ≥ 0.

emost typical energy-delay products used in practice are the energy (E),
energy-delay (ED) and energy-delay squared (ED2) products, in an increas-
ing bias toward higher performance. Figure 7.2 shows the Pareto front for the
xenon2 and parabolic_femmatrices along with the ED and ED2 products.

7.3 Predicting the optimal execution conögurations

As SpMV kernel’s performance depends heavily on the input matrix structure,
it is desirable, given an unknown matrix, to be able to predict those multicore
execution conĕgurations that lead to an ideal performance-energy tradeoff, in
order to spare hardware resources and achieve possible energy savings. Ac-
cording to the discussion and experimental evaluation in Chapter 3, two of the
most deĕnitive parameters for the SpMV kernel performance are the matrix
size and the Ęop:byte ratio of the matrix, which is directly related the average
non-zero elements per row. If the matrix is small enough to ĕt in the aggre-
gate cache of the underlying architecture, SpMV will experience a signiĕcant
performance improvement, since the contention for main memory bandwidth
is eliminated. However, there exist matrices where the memory bandwidth
contention is not the key performance problem, as these suffer from irregular
accesses, loop overheads, load imbalances etc. We showed in Chapter 3 that
there exist a signiĕcant correlation between the Ęop:byte ratio of a matrix and
its performance, while in the last section, we identiĕed also differences in the
performance-energy landscape of SpMV, depending on the size and the spar-
sity of the matrix. is information can be therefore useful in the prediction of
the optimal execution conĕgurations for the SpMV kernel.

150



thesis March 11, 2013 15:54 Page 151 �
�	

�
�	 �
�	

�
�	

7.3. Predicting the optimal execution conĕgurations

2p6s6c

3p9s9c

4p12s12c

3p9s9c

4p12s12c 4p12s24c

0 0.25 0.5 0.75 1.0

Dynamic Energy (norm.)

0

0.25

0.5

0.75

1.0

P
er

fo
rm

an
ce

 (
no

rm
.)

2.14 GHz
2.67 GHz
Pareto front

ED best
ED2 best

(a) xenon2matrix.

1p2s2c
1p2s4c

2p2s2c

3p8s8c

4p12s12c

4p12s24c

4p12s12c

4p12s24c

0 0.25 0.5 0.75 1.0

Dynamic Energy (norm.)

0

0.25

0.5

0.75

1.0

P
er

fo
rm

an
ce

 (
no

rm
.)

2.14 GHz
2.67 GHz
Pareto front

ED best
ED2 best

(b) parabolic_femmatrix.

Figure 7.2: e optimal performance-energy tradeoffs for two sparse matrices. e
points on the Pareto front are annotated with the corresponding execution
conĕgurations. e conĕgurations minimizing the energy-delay products
are also shown.

Our goal is to predict a broad set of optimal execution conĕgurations; for
this reason we rely on a machine learning approach based on clustering, in or-
der to approximate the Pareto front of the optimal conĕgurations. e key con-
cept behind this idea is that we expect matrices with similar structural charac-
teristics, e.g., large regularmatrices, to have similar performance-energy trade-
offs. e procedure of learning is based on an initial clustering of matrices ac-
cording to their size and their average non-zero elements per row. For each
cluster, we construct a representative Pareto front from the execution conĕgu-
rations that lie on the Pareto fronts of thematrices in the cluster. Each cluster is
then represented by its geometric center (in the space of the matrix attributes)
and its Pareto front.

7.3.1 Clustering the matrices

In order to obtain a representative set of matrices and more samples for train-
ing of our model, we have expanded our initial matrix suite (see Chapter 3, Ta-
ble 3.1) to contain 50 sparsematrices, all selected from theUniversity of Florida
Sparse Matrix collection [Davis and Hu, 2011]. Each matrix is assigned a vec-
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tor of two attributes reĘecting its sparsity and size. Since clustering depends
on the distances of the matrices in the attribute space, it is crucial that the at-
tribute values represent a valid similaritymeasure. For example, considering as
the size attribute the matrix size relative to the total aggregate cache of the un-
derlying system can lead to misleading results, since very large matrices, such
as boneS10, are likely to become falsely outliers, i.e., not belonging to any clus-
ter. In practice, we do not care how large is a matrix, if it signiĕcantly exceeds
the system’s aggregate cache; therefore, such a metric is not a valid similarity
measure. e exact is true for a pure absolute or relative average-nonzeros-
per-row metric. For this reason, we assign values in a stepwise fashion, trying
to reĘect better the similarity of matrices. More speciĕcally, assuming C is the
system’s aggregate cache and S the matrix size, we calculate the size attribute as
following, identifying different cases for matrices ĕtting in the aggregate cache
of two, three or four sockets (full system)⁵:

am =


1, S/C ∈ (0, 1/2)
1.5, S/C ∈ [1/2, 3/4)
3, S/C ∈ [3/4, 1)
3.5, S/C ∈ [1,∞)

(7.2)

Similarly, we set the barrier for very sparse matrices at 15 non-zero elements
per row and calculate the sparsity attribute as following:

as =

{
1
15 ·

NNZ
N , NNZ

N ≤ 15
2, NNZ

N > 15
(7.3)

Figure 7.3 shows the formed matrix clusters using a hierarchical clustering
technique. Our attribute value assignment allowed the clustering algorithm
to correctly identify the four basic matrix categories, namely ‘small and sparse’,
‘small and regular’, ‘large and sparse’ and ‘large and regular’, without leaving
irrelevant outliers.

7.3.2 Constructing the cluster Pareto front

Assuming that the clustering of the matrices reĘects correctly their common
performance characteristics, the cluster Pareto front will consist of the most
common execution conĕgurations present in the Pareto fronts of every matrix
in the cluster. In order to construct the cluster Pareto front, we start iterating

⁵ We do not include a case for matrices ĕtting in the L3 cache of a single socket, since our suite
does not have so small matrices.
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Figure 7.3: e four major clusters in our extended matrix suite.

the Pareto fronts of the matrices in the cluster from the most performant con-
ĕguration to the most energy-efficient, i.e., from the upper-rightmost Pareto
point down to the lemost. During the iteration, we record the execution con-
ĕgurations that correspond to the current point for every matrix in the cluster
and select the most frequent. If two or more conĕgurations have the same
frequency, we select both of them if their frequency is more than 25% of the
cluster size, otherwise we select the one with the least number of threads, in or-
der to cover better the low-energy conĕgurations. We also use this technique
to provide predictions about the conĕgurations minimizing the ED and ED2

products.

Avoiding overötting e Pareto fronts of the different matrices in a cluster
do not necessarily have the same amount of points. e proposed method for
constructing the cluster Pareto entails the risk of creating a Pareto front with so
many points that will not be representative of the cluster, covering even corner
cases. To avoid this situation of overĕtting, we stop the construction of the
Pareto front as soon as we ‘run out’ of points for more than half of the matrices
in the cluster. Figure 7.4 shows an example of the construction of the cluster
Pareto front.

7.3.3 Classiöcation and testing

Aer the training procedure is over, we store the cluster centers and the associ-
ated cluster Pareto fronts for future use. e cluster center is the geometric me-
dian of its comprisingmatrices in the attribute space, while the cluster Pareto is
constructed as described before. ese two features characterize every discov-
ered matrix category. When a new unseen matrix appears, we calculate its size
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Matrix #1 Matrix #2 Matrix #3 Cluster Pareto

4p12s24c@2.67 4p12s24c@2.67 4p12s24c@2.67 4p12s24c@2.67
4p12s12c@2.67 4p12s12c@2.67 4p12s12c@2.67 4p12s12c@2.67
4p8s8c@2.67 4p8s8c@2.67 4p8s8c@2.67 4p8s8c@2.67

4p12s24c@2.14 4p12s24c@2.14 4p12s24c@2.14 4p12s24c@2.14
4p12s12c@2.14 4p12s12c@2.14 4p12s12c@2.14 4p12s12c@2.14
4p8s8c@2.14 4p8s8c@2.14 4p8s8c@2.14 4p8s8c@2.14
2p6s6c@2.14 1p2s2c@2.14 2p6s6c@2.14 2p6s6c@2.14
1p3s3c@2.14 n/a 1p3s6c@2.14 1p3s3c@2.14
1p2s2c@2.14 n/a 1p2s4c@2.14 1p2s2c@2.14

n/a n/a 1p2s2c@2.14 n/a

Figure 7.4: Construction of the cluster Pareto front for a cluster of three matrices.
Bold typeface shows the conĕgurations that are selected to be part of the
constructed Pareto front.

and sparsity attributes, according to equations (7.2) and (7.3) and classify it to
the closest matrix cluster in the attribute space. We retrieve then the execution
conĕgurations of the Pareto front of the matching cluster and assign it to the
new matrix.

In order to assess the quality of our predictions, we assign a rank to ev-
ery execution conĕguration of the predicted Pareto front reĘecting its opti-
mality. To achieve this, we ĕrst compute iteratively a set of Pareto fronts for all
the performance-energy tradeoffs of the target matrix. e ĕrst Pareto front
is the set of optimal conĕgurations as described in Section 7.2.2 (optimality
rank zero). In every iteration i, we omit the points of the previously computed
fronts and recompute a new Pareto front; the points of this front are the i-th
best execution conĕgurations (optimality rank i). Figure 7.5 shows an example
of the three ĕrst Pareto fronts of matrix thermal2. Each point of the predicted
Pareto front, therefore, is assigned the optimality rank of the real Pareto front
it lies on. e average rank of all predicted conĕgurations is the overall quality
measure of our prediction; we call this measure the rank of the predicted Pareto.

We test our predictionmethod through a ĕve-cross-validation (5-CV) tech-
nique. Cross-validation is a common statistics technique for assessing the ac-
curacy of a prediction model and consists of the following steps:
(a) Shuffleuniformly the initial data set and split it into a ĕxed number of equal

partitions (also known as folds). In our case, the data set is the matrix suite
of the 50 matrices, which is split into ĕve folds.

(b) Keep one fold for testing and use the rest for training.

(c) Repeat previous step until all folds are tested.
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Figure 7.5: e three ĕrst Pareto fronts of the matrix thermal2. e execution conĕg-
urations on the ĕrst front are optimal, while those lying on the i-th front
constitute the i-th best solutions.

Table 7.2 summarizes the results of the 5-CV test. For each fold, it is depicted
the rank of the predicted Pareto front and the percentage of predictions with a
rank below a certain threshold. Our prediction methodology manages to pro-
vide rather accurate predictions with an average prediction rank close to zero.
In fact, 90% of the predicted Paretos have a rank below one on average, while all
have a rank below two. Figure 7.6 shows typical predictions for matrices from
every cluster. e predictions for regular matrices are quite accurate and tend
to become a perfect match for larger ones. On the other hand, predictions for
very sparsematrices, e.g., thermal2, tend to be slightly less accurate. is should
be expected, since our sparsity attribute (average non-zero elements per row)
reĘects accurately only the loop overheads of very sparse matrices. Although
very sparse matrices are likely to suffer also from irregular accesses and load
imbalances, this rule has exceptions; for example, a reordered version of an
irregular matrix does not have such performance limitations (see Chapter 3,
Section 3.3.2). However, we have chosen not to fragment further the category
of very sparse matrices, since our initial data set is small enough to allow an
accurate training of such sub-categories.

Finally, Table 7.3 summarizes the accuracy of the energy-delay predictions.
More speciĕcally, for each of the three products selected, namely energy, energy-
delay and energy-delay squared, it is depicted how far our predictions lie from
the originalminimal products. For example, our predictions for themost energy-
efficient conĕgurations lead to an average 7.6%more energy consumption than
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Figure 7.6: Optimal execution conĕgurations predictions and predictions for the
minimal ED and ED2 products. e rank-zero and rank-two Pareto fronts
are also shown.
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7.3. Predicting the optimal execution conĕgurations

Fold No. Prediction
Rank Rank < 1 Rank < 2

#1 0.45 100.0% 100.0%
#2 0.27 77.8% 100.0%
#3 0.37 88.9% 100.0%
#4 0.19 100.0% 100.0%
#5 0.27 88.9% 100.0%

Average 0.31 91.1% 100.0%

Table 7.2: Cross-validation results for the proposed prediction methodology. It is de-
picted the rank of the predicted Pareto front and the percentage of predic-
tions with a rank below a certain threshold.

Fold No. Energy ED ED2

#1 6.9% 1.6% 6.6%
#2 12.5% 10.5% 17.7%
#3 13.2% 4.1% 8.0%
#4 2.1% 0.9% 0.0%
#5 3.5% 8.5% 14.2%

Average 7.6% 5.1% 9.3%

Table 7.3: Energy-delay prediction accuracy. e average per-fold distances from the
original minimal products are depicted.

the optimal. Of similar accuracy are the predictions for the rest of the consid-
ered products, with ED products being approximated with a 5.1% difference
and ED2 with 9.3% on average.

7.3.4 Limitations

e proposed methodology for predicting the SpMV execution conĕgurations
that lead to optimal performance-energy tradeoffs is able to provide rather ac-
curate predictions in a diverse set of sparse matrices. However, some limita-
tions still exist. First, despite the accurate execution conĕgurations predictions,
our method cannot currently predict how far these conĕgurations lie in the
performance-energy landscape. For example, the conĕgurations 1p2s2c and
4p8s8c at 2.14GHz for boneS10 (Figure 7.1), although equivalent in terms of
Pareto optimality, consume almost the same amount of dynamic energy for a
more than 3× performance difference; it is clear that the 1p2s2c could have
been omitted as a ‘not-so-ideal’ tradeoff in practice. is limitation can be
raised with a more ‘loose’ construction of the Pareto front, which would in-
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clude only points with a variation of the objectives above a certain threshold.
A second limitation involves the matrix clustering. While the matrix size-

related attribute is well formed, the sparsity-related attribute does not account
for speciĕc intricacies of very sparse matrices that affect SpMV performance,
e.g., irregular non-zero element structure and load imbalances. As a result,
a deterioration of accuracy is observed in such cases. Including this informa-
tion for clustering requires a full matrix scan and a reasonable quantiĕcation of
these characteristics, which will reĘect correctly the similarity or dissimilarity
of the matrices in terms of performance.

7.4 Open issues

In this chapter, we have taken a ĕrst approach on identifying the performance-
energy tradeoffs of the SpMV kernel and predicting the execution conĕgura-
tions that lead to optimal performance-energy compromises, depending on the
input matrix. A number of issues, though, still remain open and should be ad-
dressed in the future. Our approach focused solely on the dynamic power and
energy consumption of the processor ignoring leakage power dissipation. Ac-
cording to McPAT’s predictions, the leakage power of the four sockets of the
Dunnington system amounts to 88W, while the maximum dynamic power
recorded was slightly over 50W. On average, matrices ĕtting in the system’s
aggregate cache contributed a 37% increase in the combined power dissipa-
tion of all processors in the system, while the total processor power dissipa-
tion for large matrices was only 12.5% higher. is difference is quite ex-
pected, since SpMV under-utilizes the processor for large matrices (IPC < 1)
due to the memory bottleneck. Nonetheless, even these numbers are half-
truth, since main memory power dissipation is not considered. In fact, main
memory operations are quite power-hungry consuming almost 50×more en-
ergy than processor’s arithmetic operations [Dongara, 2012]. Indeed, Kamil
et al. [2008] show that memory-intensive benchmarks, such as STREAM and
CG, are more power-hungry than CPU-intensive ones in a full-system scale.
And the SpMV kernel is not an exception. It is therefore important to consider
the performance-energy tradeoffs of the SpMV kernel from a full-system uti-
lization context. Despite the several questions that remain to be answered in
this direction, we believe that the preliminary results presented in this chapter
and the proposed methodology for identifying and predicting the optimal ex-
ecution conĕgurations will remain relevant also in a full-system performance-
energy analysis, where the main memory power dissipation will play a deĕni-
tive role.
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8

Conclusions

is thesis focused on the optimization of the Sparse Matrix-Vector Multipli-
cation kernel (SpMV) for modern multicore architectures. We performed an
in-depth performance analysis of the kernel and identiĕed its major perfor-
mance bottlenecks. is allowed us to propose an advanced storage format for
sparse matrices, the Compressed Sparse eXtended (CSX) format, which tar-
gets speciĕcally the minimization of the memory footprint of the sparse ma-
trix. is format provides signiĕcant improvements in the performance of the
SpMV kernel in a variety of matrices and multicore architectures, maintaining
a considerable performance stability. Finally, we investigated the performance
of the SpMV kernel from an energy-efficiency perspective, in order to identify
the execution conĕgurations that lead to optimal performance-energy trade-
offs. is chapter summarizes the basic conclusions and achievements of this
work, providing also the author’s vision for the future research prospects and
directions.

8.1 SpMV: Victim of the memory wall

eSpMVkernel lies at the heart of iterative solutionmethods for sparse linear
systems, which arise in a variety of scientiĕc domains. e key performance
problem of SpMV stems primarily from its streaming nature, incurring a very
low Ęop:byte ratio, which eventually poses a considerable pressure to themem-
ory hierarchy. Performing an in-depth performance analysis of the SpMV ker-
nel in this thesis, we highlighted this characteristic—somehow overlooked in
the past—as the major performance bottleneck of the kernel in modern mul-
ticore architectures. In SMP architectures, this problem deĕnes completely
the SpMV performance for large matrices in a highly multithreaded context,
as the common front-end bus is quickly saturated. In NUMA architectures,
on the other hand, the integrated memory controllers leave more headroom
and the memory path is not completely saturated until the full system is uti-
lized; this allows some computational optimizations, which in SMP systems
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have no impact at all. Nonetheless, SpMV performance in NUMA systems
is quite sensitive to the correct placement of the threads’ data at the partici-
pating memory nodes, since the interprocessor links can be easily saturated.
Respecting the correct data placement for shared data structures may require
considerable porting effort and lead to an important code refactoring of an ex-
isting SMP-based code. To facilitate this process, we have introduced a simple
NUMA-aware interleaved allocator that transparently places parts of a shared
data structure on the correct memory nodes without affecting the SMP-based
logic of the user code; simply replacing the memory allocation calls suffices for
a successful porting.

In this thesis, we took a closer look at blocking storage formats for sparse
matrices. Blocking has been successfully used in the past as an alternative stor-
agemethod for sparsematrices, since it not only allows the reduction of thema-
trix size but also offers good computational characteristics. We provided a de-
tailed performance analysis of the most typical blocking methods, identifying
the merits and weaknesses of each one. e key conclusion of this analysis was
the compression vs. multithreaded performance tradeoff between the variable
and ĕxed size blocking methods. While leading to considerable gains in the
matrix size representation, especially for matrices with an irregular structure,
variable size blockingmethods should pay the cost of the additional bookkeep-
ing needed to store the different block size values. e increased compression
starts to pay off as the number of threads increases and the pressure to the
memory subsystem becomes of crucial importance for the performance of the
SpMV kernel; in a highly multithreaded context, therefore, variable size block-
ing formats can signiĕcantly outperform their ĕxed size counterparts. Fixed
size blocking methods, on the other hand, lead to a simpler kernel implemen-
tation, allowing not only a better code generation from the compiler, but also
advanced computational optimizations, such as vectorization. Focusing on
BCSR, the most representative ĕxed size blocking storage format, we inves-
tigated the implications of the block shape on the performance of the SpMV
kernel. ese can be quite important in cases where the memory bandwidth is
not completely saturated and computational optimizations can offer a signiĕ-
cant performance beneĕt. Toward this direction, we have developed a perfor-
mance model that considers both the memory and the computational part of
the SpMV kernel and is able to accurately predict the optimal block for BCSR.

8.2 CSX: A viable approach to a high performance SpMV

Two are the main drawbacks of previous approaches in optimizing the per-
formance of the SpMV kernel. First, these approaches are not very focused on

160



thesis March 11, 2013 15:54 Page 161 �
�	

�
�	 �
�	

�
�	

8.2. CSX: A viable approach to a high performance SpMV

theminimization of the memory footprint of the sparse matrix, since their ori-
gins go back to different backgrounds, e.g., register optimizations, and, second,
they take an ‘all-or-nothing’ approach. For example, the BCSR format will pro-
vide a signiĕcant performance improvement in matrices dominated by dense
two-dimensional regions, but its performance will plummet in other cases.
Motivated by these shortcomings of alternative storage formats for SpMV, we
have proposed in this thesis the Compressed Sparse eXtended format (CSX),
an explicit compression-based and integrated format. CSX is able to detect
and encode in the same representation a multitude of substructures present in
sparse matrices, namely horizontal, vertical, diagonal, anti-diagonal and two-
dimensional blocks. Combinedwith a highly compressed representation based
on run-length encoding of the column indices, CSX is able to reduce thematrix
representation size close to the theoretical bounds. As a result, CSX provides
considerable performance improvements (exceeding 50% on average) in SMP
systems, where the memory bottleneck is more pronounced. In NUMA ar-
chitectures, we take particular care in balancing the decompression overhead.
More speciĕcally, we relax the compression scheme and use an advanced sub-
structure selection heuristic that considers also the computational overhead of
decompression. ese optimizations allow CSX to provide a more than 20%
average performance improvement in NUMA systems, outperforming other
alternative storage formats.

An important trait of CSX is its performance stability. While it is able to
provide signiĕcant performance improvements in matrices with a lot of sub-
structures, its performance is at least comparable to the baseline CSR format
in very sparse and irregular matrices, proving a high adaptability to the ma-
trix structure. Additionally, we placed considerable effort in minimizing the
matrix preprocessing cost (detection and encoding of substructures), in order
to render CSX a viable alternative in the context of ‘real-life’ solvers. Indeed,
CSX was a able to accelerate the performance of the Elmer solver nearly 15%,
despite its preprocessing cost and the increased preconditioning cost for the
considered benchmark problems.

A signiĕcant extension of CSX, proposed in this thesis, is the support for
symmetric sparse matrices. Symmetric sparse matrices may arise in the dis-
cretization of PDEs and it is quite tempting—in the context of the SpMV ker-
nel—to store only the lower triangular part and the main diagonal. Despite
the obvious beneĕt of this layout in matrix size reduction, the multithreaded
execution of the symmetric SpMV kernel inserts a RAW dependency on the
output vector, rendering the efficient implementation of the kernel problem-
atic. Most approaches eliminate this dependency either using local per-thread
vectors or a combination of per-thread vectors and selective locking. Using a
local vector per thread requires an additional ĕnal reduction step, whose over-
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head is growing linearly with the thread count, limiting therefore the scalability
signiĕcantly, while the cost of excessive locking, on the other hand, can be pro-
hibitive. Our approach in optimizing the symmetric SpMV kernel exploited
the fact that local vectors become quite sparse as the thread count increases.
For this reason, we employ an indexing scheme for the local vectors to reduce
only the conĘicting elements; all other vector updates are pushed directly to
the output vector. is technique decouples in practice the reduction over-
head from the thread count and allows the symmetric SpMV kernel to scale.
In combination with the CSX variant for symmetric matrices, which leads to
nearly 67% compression ratios, we were able to accelerate more than 2× the
performance of the SpMV kernel, an improvement that is visible also from the
context of the CG iterative solution method.

8.3 Toward an energy-efficient SpMV

In this thesis, we took a ĕrst step toward investigating the performance-energy
tradeoffs of the SpMV kernel. Motivated by the memory-intensive nature of
SpMV, we investigated alternative core frequencies and thread placements, in
order to achieve high performance at a low energy budget. Modern processors
support dynamic voltage and frequency scaling, allowing considerable energy
savings without sacriĕcing performance in non-CPU-intensive workloads. As
such, SpMV’s performance depends greatly on the placement of threads on the
available cores, since a sane placement can alleviate the pressure to the mem-
ory subsystem. As a result, a combination of a low processor frequency and an
efficient thread placement may lead to considerable energy savings, sacriĕc-
ing only a small fraction of the overall performance. Based on the assumption
that matrices with similar performance characteristics (mainly due to matrix
structure) will exhibit a similar behavior in energy consumption, we proposed
a machine learning approach for predicting the execution conĕgurations lead-
ing to the optimal performance-energy tradeoffs. Our preliminary results are
promising enough and pave the path for a further investigation of the energy-
efficient execution of the SpMV kernel.

8.4 Future research directions

Memory intensity is an inherent problem of the SpMV kernel. In fact, it is a
scientiĕc kernel with one the smallest Ęop:byte ratios and it is expected to be
bound from memory bandwidth in the foreseeable future, unless we experi-
ence a considerable breakthrough in main memory technology. As a result, we
expect the notion of data compression, employed also by CSX in this thesis, to
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be of actual interest in the next years. However, CSX has reached the limits of
matrix metadata compression and it is therefore essential to extend compres-
sion to thematrix data itself, i.e., its non-zero values. e performance gains of
symmetric storage formats provide a clear indication on the beneĕts of an effi-
cient non-zero value compression. e key challenges in this approach, how-
ever, is that the compression must respect the double precision accuracy of the
values and a good balance of the decompression cost is needed, in order not to
hog the overall computation.

Data compression techniques are gaining recently an increasing interest
not only as a means of tackling the ever increasing memory-processor speed
gap in memory-intensive applications, but also as a means of reducing the en-
ergy consumption of the memory subsystem. is adds another dimension in
the optimization of memory-intensive applications and opens interesting re-
search directions. In the context of a scientiĕc application, a combination of
data compression and advanced power management techniques in the proces-
sor could provide the grounds for minimizing its energy footprint and maxi-
mizing performance.

Finally, from a more technical point of view, it is important to enrich CSX
with a functional library interface so that it will be easily exploited by the HPC
community. Toward the same direction, a further improvement of matrix pre-
processing through advanced caching techniques will make CSXmore appeal-
ing and help its dissemination.
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