
1

An Extended Compression Format for the
Optimization of Sparse Matrix-Vector Multiplication

Vasileios Karakasis, Theodoros Gkountouvas, Kornilios Kourtis, Georgios Goumas, Nectarios Koziris

Abstract—Sparse matrix-vector multiplication (SpM×V) has
been characterized as one of the most significant computational
scientific kernels. The key algorithmic characteristic of the
SpM×V kernel, that inhibits it from achieving high perfor-
mance, is its very low flop:byte ratio. In this paper, we present
an extended and integrated compressed storage format, called
Compressed Sparse eXtended (CSX), that is able to detect and
encode simultaneously multiple commonly encountered substruc-
tures inside a sparse matrix. Relying on aggressive compression
techniques of the sparse matrix’s indexing structure, CSX is able
to considerably reduce the memory footprint of a sparse matrix,
therefore alleviating the pressure to the memory subsystem. In a
diverse set of sparse matrices, CSX was able to provide a more
than 40% average performance improvement over the standard
CSR format in symmetric shared memory architectures and sur-
passed 20% improvement in NUMA architectures, significantly
outperforming other CSR alternatives. Additionally, it was able
to adapt successfully to the non-zero element structure of the
considered matrices, exhibiting very stable performance. Finally,
in the context of a ‘real-life’ multiphysics simulation software,
CSX was able to accelerate the SpM×V component nearly 40%
and the total solver time approximately 15% after 1000 linear
system iterations.

I. INTRODUCTION

SParse matrices arise in a variety of scientific disciplines,
ranging from physics simulations to data mining and

financial analysis. Most of these applications boil down to the
execution of basic sparse matrix kernels. Among these ker-
nels, the Sparse Matrix-Vector Multiplication kernel (SpM×V),
which computes the product of a sparse matrix and a dense
vector, is probably the most prominent and challenging, being
recently classified as one of the kernels particularly important
for science and engineering in the next decade [1], [2]. The
algorithmic characteristic that renders the optimization of
SpM×V so challenging in modern multiprocessor systems is its
very low flop:byte ratio [3]–[5]. In effect, this means that the
algorithm must retrieve a significant amount of data from the
memory hierarchy in order to perform a useful operation. This
adds significant pressure to the memory subsystem for large
problems that do not fit in the system’s cache hierarchy and
tends to saturate the memory bandwidth of modern symmetric
shared memory multicore architectures. In the case of NUMA
architectures, although the higher memory bandwidth offered
alleviates the pressure to the memory subsystem, the high
memory intensity of the SpM×V kernel renders its perfor-
mance very sensitive to the placement of the data on the
different memory nodes.

V. Karakasis, T. Gkountouvas, G. Goumas and N. Koziris are with the
National Technical University of Athens, Greece.

K. Kourtis is with ETH Zürich, Switzerland.

In order to store a sparse matrix efficiently, one needs to
store only the non-zero values of the matrix along with some
location information for iterating over the non-zero elements.
The most straightforward format is the Coordinate format
(COO) [6], which stores the row index and column index for
each non-zero element. However, the most common format
for storing sparse matrices for use with the SpM×V kernel
is the Compressed Sparse Row (CSR) format [6]. The idea
behind CSR is that it suffices to store only the column indices
and ‘pointers’ to the start of each row for locating each non-
zero element of the matrix. In a typical implementation of
CSR with 32-bit integers for row and column indices and
double precision non-zero values, the gain in matrix size is
approximately 25% compared to the COO format.

Nonetheless, even CSR has a lot of redundant informa-
tion. The non-zero elements of sparse matrices, especially
of those arising from physical simulations, are usually ar-
ranged in dense substructures, e.g., horizontal and/or diagonal
sequences, 2-D blocks etc. One could keep just a single
column index for each encountered substructure, since it is
known beforehand how to iterate over the elements inside the
substructure; the matrix size, therefore, could be significantly
reduced, especially for matrices with a lot of dense regions.
Several storage formats have been proposed in the past that
target the reduction of the matrix size, either explicitly or
implicitly. For example, the Variable Block Length (VBL) [7]
format exploits horizontal substructures grouping together
sequential elements into one-dimensional blocks with variable
length. To achieve this, it also adds a new data structure that
holds the length of every block. The Blocked Compressed
Sparse Row format (BCSR) [6], [8] takes a different approach:
it groups together the non-zero elements into fixed-size 2-
D blocks adding zero-padding to construct full blocks. Other
approaches include formats that exploit diagonal structures [9],
[10] using zero-padding or formats that split the input matrix
into multiple smaller matrices each one holding a different
substructure [9], [11]. The main drawback of these formats,
however, is that they take an ‘all-or-nothing’ approach: they
will either offer very high performance improvement over CSR
in cases where they find the correct substructures or plummet
in cases where they fail to do so. The most typical example
is the BCSR, which can offer 2× performance improvement
in certain matrices, but half the CSR performance in others.

Our approach to the optimization of the SpM×V kernel is the
Compressed Sparse eXtended (CSX). When designing CSX
we set a number of goals for the new format:
(a) It should specifically target on the minimization of the

memory footprint of the matrix, since SpM×V is a memory

2

bandwidth bound kernel,
(b) it should cover a wide range of substructures inside the

matrix, including horizontal, diagonal and 2-D blocks,
(c) it should expose a stable high performance behavior across

different matrices and symmetric shared memory and
NUMA architectures,

(d) it should be extensible and adaptive in the sense of
supporting new substructures or implementing variations
of the existing ones.

In order to meet the two first design goals, we employ an
aggressive compression scheme for CSX. We believe that data
compression techniques will play a more significant role in
future multicore and manycore chips as a means not only
for minimizing the communication cost in different levels
(processor-to-memory, processor-to-processor etc.), but also
for increasing energy-efficiency. CSX builds on top of the
CSR-DU format [12], by adding run-length encoding to the
delta encoding of the column indices performed by CSR-DU,
in order to detect sequences of non-zero elements either
continuous or separated by some constant delta distance. For
each encoded substructure, CSX keeps a two-byte descriptor
(type and size) of the substructure and its initial column
index encoded as a delta distance from the previous one. To
detect non-horizontal substructures, we employ the notion of
coordinate transformations to transform the elements of the
matrix according to the desired iteration order (e.g., vertical,
diagonal, block-wise etc.) and then reuse the very same
detection process that we use for the horizontal substructures.
This technique adds also to the design goal of the extendibility,
since it suffices to define a ‘1-1’ coordinate transformation
in order to detect whatever substructure inside the matrix.
Our third design goal is verified mostly by the experimental
results: CSX manages to significantly reduce the matrix size
and provides a 42% average performance improvement over
CSR on a 24-core symmetric shared memory system. For
NUMA architectures, where the memory bottleneck is not
so intense, we relax the compression scheme by storing the
full initial column index (instead of a delta distance) to
save some of the time-consuming decompression computa-
tions. In these architectures, CSX manages an 18% average
performance improvement over CSR, which climbs to 21%
when simultaneous multi-threading is enabled. Compared to
VBL and BCSR, CSX gains 10% and 33% on average,
respectively, in symmetric shared memory architectures, while
in NUMA architectures the gap closes to 8.4% over VBL and
11% over BCSR on average. A key advantage of CSX over
other CSR alternatives is its performance stability; even for
matrices that CSX does not achieve the highest performance,
its performance lies within 5% of the best. In cases of very
irregular and rather ‘ill-based’ matrices, CSX manages to
successfully adapt to the matrix structure and achieves perfor-
mance comparable to CSR, while other alternatives encounter
a significant performance degradation. Finally, we add to the
versatility of CSX by employing runtime code generation for
the substructure-specific SpM×V routines. For every matrix we
generate specific C code that we compile programmatically
using the Clang [13] front-end compiler infrastructure and
pass it to the LLVM [14] optimization back-end. Thanks to its

advanced mechanism for detecting and encoding substructures
and the flexibility provided by the runtime code generation, the
CSX format can be adapted to the specificities of almost every
sparse matrix and provides consistent and high performance
over a variety of modern commodity architectures, outperform-
ing every major CSR alternative.

In this paper, we take a step further from the simple
optimization of the SpM×V kernel, by focusing also on the
minimization of the preprocessing cost of CSX, in order to
make it practical for ‘real-life’ SpM×V applications. With
the use of advanced sampling of the input matrix and a
careful implementation, we were able to reduce the CSX
preprocessing cost down to approximately 100 serial CSR
SpM×V iterations. This low preprocessing cost can be amor-
tized easily in the context of a large sparse linear solver that
may need a few thousands of SpM×V iterations to converge.
Indeed, despite its preprocessing cost, integrating CSX into
the Elmer multiphysics simulation software offered a nearly
40% performance improvement of the SpM×V component and
a 15% average improvement of the overall solver time.

The rest of the paper is organized as follows: Section II pro-
vides background information about sparse matrices, SpM×V,
iterative solvers and modern commodity architectures. Sec-
tion III presents the data structures of CSX, Section IV
describes how CSX detects and encodes the substructures,
Section V presents the runtime code generation process em-
ployed by CSX, Section VI describes the techniques used for
minimizing the preprocessing cost, while Section VII details
the porting of CSX in NUMA architectures. Section VIII
presents the experimental evaluation of the performance of
CSX, as well as its impact on the overall performance of the
Elmer multiphysics simulation software. Finally, Section IX
presents the related work in the field of SpM×V optimization
and Section X concludes the paper.

II. BACKGROUND & MOTIVATION

A. Significance of the SpM×V and performance bottlenecks
Sparse matrices are finite matrices dominated by zero el-

ements. These matrices arise often with the discretization of
parallel differential equations (PDE) in finite element methods
(FEM) and are usually involved in the solution of large linear
systems. The most widely used class of iterative algorithms
for solving linear systems are the Krylov subspace meth-
ods [15], [16], which include, among others, the well known
GMRES (Generalized Minimum Residual [17]) and the CG
(Conjugate Gradient [18]) iterative methods. Krylov methods
involve the execution of three time-consuming kernels [16],
[19], namely sparse-matrix vector products (SpM×V), vector-
vector operations (AXPY) and dot products. If the method is
preconditioned, then the preconditioner must also be included
in this listing. Fig. 1 shows an execution time breakdown for
a non-preconditioned serial CG implementation. The majority
of the execution time, surpassing 80%, is spent executing the
SpM×V kernel. Similar is the case with other Krylov methods,
e.g., the Bi-CG Stabilized [20] method employed by the Elmer
multiphysics software [21], where the SpM×V kernel takes up
60–90% of the total execution time of the solver, depending
on the input matrix.

3

El
ec

tro
m

ag
n.

FE
M

St
iff

ne
ss

St
ru

ct
ur

al

M
ic

ro
-F

EM

0

20

40

60

80

100

E
xe

cu
tio

n
tim

e
br

ea
kd

ow
n

(%
)

SpMV
Vec. Ops

Fig. 1. Execution time breakdown of a non-preconditioned CG implemen-
tation.

1: procedure CSRSPMV(rowptr , colind , values , N , x, y)
2: for i← 0 to N do
3: yr ← 0
4: for j ← rowptr [i] to rowptr [i+ 1] do
5: yr ← yr + values[j] ·x[colind [j]]

6: y[i]← yr

Alg. 1: A typical SpM×V implementation for the CSR storage
format for N ×N sparse matrices.

The major performance problem of the SpM×V kernel
(Alg. 1) in modern commodity microarchitectures stems pri-
marily from its algorithmic nature. The matrix-vector kernels
(dense and sparse) sweep once through the whole matrix and
perform a constant number of floating point operations per
element. This automatically leads to a Θ(1) flop:byte ratio
compared to the Θ(N) (N being the rank of the matrix) of the
matrix-matrix multiplication kernels. In practice, this means
that in order to avoid bottlenecks, the memory hierarchy must
be able to provide data to the processor at a comparable speed,
which is hardly ever the case for any modern commodity mi-
croarchitecture. The situation gets worse with sparse matrices,
where the kernel must first retrieve the non-zero element’s
location information, before accessing it1. Fig. 2 shows the
speedup of a multithreaded SpM×V CSR implementation and
the consumed main memory bandwidth in GB/s in a two-
way quad-core symmetric shared memory system. Despite
exhibiting ample parallelism [22], the SpM×V kernel fails to
scale beyond four threads due to the saturation of the system’s
memory bandwidth. An 85% of the available memory band-
width is already consumed by the two threads and it is totally
saturated from four threads onward. The minimization of the
memory footprint of the sparse matrix, therefore, becomes of
vital importance for the optimization of the SpM×V kernel,
especially for the symmetric shared memory architectures.

B. Sparse matrix storage formats and their compression po-
tential

Storing a sparse matrix in a dense matrix format is at
least impractical. Therefore, special storage formats have been
proposed to handle sparse matrices under the general rule that
it suffices to store only the non-zero elements (possibly, with
a reasonable zero-padding) along with some location metadata
for locating the elements inside the matrix. Ideally, in order to

1The best possible flop:byte ratio of SpM×V is 0.25, while stencil compu-
tations can approach 0.5 and a 3D FFT kernel reaches 1.64 [5].

1 2 4 8

Threads

0

0.5

1.0

1.5

2.0

S
pe

ed
up

0%
 (0.00 GB/s)

25%
 (1.61 GB/s)

50%
 (3.22 GB/s)

75%
 (4.83 GB/s)

100%
 (6.44 GB/s)

M
em

or
y

B
an

dw
id

th

Speedup
Consumed B/W

Fig. 2. Demonstration of the SpM×V kernel speedup in relation to the
memory bandwidth consumption in a two-way quad-core SMP system.

A =

5.4 1.1 0 0 0 0
0 6.3 0 7.7 0 8.8
0 0 1.1 0 0 0
0 0 2.9 0 3.7 2.9
9.0 0 0 1.1 4.5 0
1.1 0 2.9 3.7 0 1.1

rowptr : (0 2 5 6 9 12 16)

colind : (0 1 1 3 5 2 2 4 5 0 3 4 0 2 3 5)

values : (5.4 1.1 6.3 7.7 8.8 1.1 2.9 3.7 2.9 9.0 1.1 4.5 1.1 2.9 3.7 1.1)

Fig. 3. An example of a sparse matrix stored in the CSR format.

store an N ×N sparse matrix with NNZ non-zero elements,
at least 8NNZ bytes of storage are required, assuming double
precision floating-point values for the non-zero elements and
no need for location metadata (e.g., suppose a fictional matrix
that the location of its non-zero elements could be computed
in the runtime).

The most straightforward sparse matrix storage format is
the Coordinate (COO) format [6], which stores the row index
and column index of every non-zero element. Assuming four-
byte integers for indices, the matrix size in the COO format
is 16NNZ bytes, twice as much the size of the theoretical
lower bound. The Compressed Sparse Row (CSR) format [6]
addresses the problem of the increased matrix size by com-
pressing the row indices and leaving the column indices intact.
More specifically, instead of storing all the row indices, the
CSR format stores only N ‘pointers’ to the start of each row.
Since for most sparse matrices N � NNZ, the total matrix
size now falls to 12NNZ , which is a 25% gain in the total
matrix size compared to the COO format. Fig. 3 shows the
typical implementation of the CSR format, where the rowptr
array stores the row pointers, the colind the column indices
and the values the non-zero values. The great advantage
of CSR is that it provides a good compromise between the
reduction of the matrix size and the ease of construction and
manipulation (no preprocessing of the matrix needed), making
it ideal for SpM×V applications.

However, the colind structure of CSR has a lot of redun-
dant information. Indeed, the matrix size of CSR is still 50%
over the theoretical lower bound. The most common approach
for compressing the column indices is grouping together

4

neighboring elements in blocks and keeping one column index
per block. We can distinguish two large categories of blocking
storage formats: (a) those with fixed size blocks and (b) those
with variable size blocks. The most representative storage
format in the first category is the Blocked Compressed Sparse
Row (BCSR) format [6], [8], which is actually a blocked
version of the CSR format. BCSR arranges all the non-zero
elements of the matrix into fixed size r × c, strictly aligned
blocks, employing zero-padding, if necessary, to construct full
blocks, and keeps a single column index per block. Despite
being initially utilized for register optimizations [8] and still
being very computation-friendly, the BCSR format can sig-
nificantly reduce the size of matrices with large amounts of
dense blocks. Nonetheless, from a theoretical standpoint, the
compression potential of BCSR is limited: suppose a matrix
that its non-zero elements can be grouped perfectly in r × c
blocks without padding (r, c � N), then the condensed
colind structure will be (in bytes) 4NNZ

r×c = Ω(NNZ), still
remaining in the order of NNZ .

In the category of variable size block formats, the most
representative is the Variable Block Length (VBL) format [7],
which forms one-dimensional variable sized horizontal blocks.
Again, the VBL format keeps a single column index per block,
but now, since the block size is variable, an additional data
structure is required to keep the different block sizes. A single
byte for storing the block size is usually more than enough
for the majority of sparse matrices, splitting larger blocks in
255-element chunks. The compression potential of VBL is
higher than BCSR’s and can approach the theoretical lower
bound. Suppose a matrix with NNZ row elements per row and
that k, k � NNZ row , VBL blocks are formed on average
per row. Since in a typical sparse matrix, NNZ row � N ,
k can be considered as constant. Therefore, the size of the
compressed colind will be 4kN and the required size for
holding the block sizes will be kN (assuming one-byte size
representations). These sum up to a size of 5kN = Ω(N)
bytes, which brings the total matrix size very close to the
theoretical lower bound. However, in sparse matrices with
a non-horizontal non-zero element structure, VBL will form
degenerate size-one blocks, and thus, the number of blocks
per row cannot be decoupled from the non-zero elements
per row. In this case, the resulting colind will be in the
order of NNZ . Nonetheless, this cannot overshadow the higher
compression potential of the variable size block methods over
their fixed size counterparts, which are restricted mainly by the
large number of resulting blocks. In practice, VBL achieves
almost always higher compression ratios than BCSR.

C. Trends in modern mainstream computer architectures

It is not very long ago that the quest for higher processor
frequencies was abandoned by the leader chip manufacturers,
due to the need for higher energy efficiency and the need
to keep Moore’s law alive at the same time. The interest of
academia and industry has since shifted toward incorporating
multiple cores inside the same physical processor, inaugu-
rating the multicore era and setting up new challenges. The
use of multiple cores or hardware threads inside the same

.
.P .P

.C$
.Bus I/F

.P .P

.C$
.Bus I/F

.MC . Main
Mem.

.Bus

(a) Symmetric shared memory.

.
.P .P

.C$
.MC

.P .P

.C$
.MC

. Mem.
Node 0

. Mem.
Node 1

(b) NUMA.

Fig. 4. The two current trends in commodity architectures: symmetric shared
memory and NUMA architectures.

physical processor has broaden the gap between the rate that
the processor can now consume data and the rate that the
memory subsystem can supply data, making the ‘memory-
wall’ problem [23] even tenser.

Symmetric shared memory multicore architectures are af-
fected the most from the memory-processor speed gap. In these
architectures, all the memory and interprocessor communica-
tion requests are routed through the same front-end bus to the
central, off-chip memory controller and the peer processors
(Fig. 4(a)). Apparently, this centralized logic, in conjunction
with the low bandwidth and high latency that the off-chip
communication carries with, can easily become the hotspot
of a memory-intensive application, like the SpM×V kernel.
Large and complex cache hierarchies, unfortunately, can limit
this effect in the short term only.

The need to extract more parallelism from the hardware,
given the slow DRAM speed evolution pace, demands a more
decentralized approach. The Non Uniform Memory Access
(NUMA) architectures ‘move’ the memory controller inside
the processor chip and use dedicated hardware for the in-
terprocessor communication (Fig. 4(b)). The main memory,
though still shared, is no more uniformly accessible from every
processor in the system: it is split into multiple nodes, each one
assigned to a single processor. The available bandwidth is now
ample for the communication between a processor and its local
memory node, but accessing remote nodes requires multiple
and costly hops. Two more challenges arise with the NUMA
architectures for the memory-intensive kernels: (a) the increase
in the available memory bandwidth may reveal weaknesses
in the computational part of the kernel, that were otherwise
hidden by the very slow access to the main memory, and
(b) the kernel’s performance can be now very sensitive to the
correct placement of its data on the different memory nodes.
The latter poses an additional burden for the programmer, who
might need to explicitly alter her kernel to fully exploit the
NUMA capabilities of a system.

III. THE COMPRESSED SPARSE EXTENDED FORMAT

A. The need for an integrated storage format

Sparse matrices arising from the discretization of partial
differential equations have their non-zero elements arranged
in substructures either extending to some one-dimensional
direction (e.g., horizontal, vertical, diagonal) or expanding to
two-dimensional blocks. The exact nature of these substruc-
tures depends chiefly on the underlying application domain

5

.

. . . .

.

. . .

. . .

. . .
.

.. ..1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..10

..1

..2

..3

..4

..5

..6

..7

..8

..9

..10

(a) BCSR.

.

. .

.

.

.

. .

. . .

. .

. . .

.

. .

.

. ..

.. ..1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..10

..1

..2

..3

..4

..5

..6

..7

..8

..9

..10

(b) VBL.

.

.

.

.
.

.

.diag(2)

.horiz(1) .anti-diag(1)

.vert(1)

.bcol(4,2)

.bcol(4,2) .bcol(3,2)

.

.. ..1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..10

..1

..2

..3

..4

..5

..6

..7

..8

..9

..10

(c) CSX.

Fig. 5. The advantage of detecting multiple substructures inside a sparse
matrix (gray dots are non-zero elements, white dots are padding elements).
The use of padding in fixed size blocking (BCSR) can be excessive for
matrices with irregular non-zero element structure, while detecting only one
substructure type (VBL) cannot exploit substructures in different directions.

and any preprocessing performed in the original matrix (e.g.,
bandwidth minimization techniques) that alters the distribution
of the non-zero elements. As already discussed in Section II,
exploiting these substructures can result in a reduction of the
matrix size. However, restraining a storage format to detect
a single substructure may have diminishing returns in cases
where the detected substructure does not exist in adequate
quantities inside the sparse matrix (Fig. 5), leading even to
an increase in matrix size compared to the standard CSR.
Alternatives that split the matrix into multiple submatrices of
the same rank, each one storing a different substructure [9],
[24], should experience additional scaling problems, since a
final reduction of partial output vectors is required; the SpM×V
kernel performance can be hindered as well, due to very small
rows of the resulting submatrices [3], and load balancing
issues might also creep in. The need for an integrated storage
format that could incorporate a multitude of substructures is
seemingly the most viable approach to a performant CSR
alternative.

The proposed Compressed Sparse eXtended (CSX) format
integrates five different substructure categories (horizontal,
vertical, diagonal, anti-diagonal, 2-D blocks) into a single
storage format and can be expanded easily to support more.
Since we focus on the minimization of the matrix size, we
build CSX on top of the CSR-DU [12] format. CSR-DU is
a CSR alternative that applies delta indexing (delta encoding)
in the CSR’s colind structure; instead of storing the full,
four-byte column index for every non-zero element, CSR-DU
stores the delta distance from the previous index based on the
premise that one or two bytes will be enough to store the
delta distances in most of the cases. Basing CSX on CSR-DU
has the additional benefit of using a more compressed storage
format than the standard CSR as a baseline, giving rise to per-
formance improvements even in the case that no substructures
are detected.

Detecting sequences of continuous column indices, i.e.,
an horizontal substructure, given the delta distances of the
columns is straightforward: a sequence of constant delta
distances d forms an horizontal substructure. It then suffices
to store only the initial column index (as a delta index)
and a descriptor of the substructure, including its type and
length. This type of column index encoding employed by
CSX is commonly known as run-length encoding. For non-

1 1 6 8
variable

int
variable

int

fixed
{8,16,32}

. . . fixed
{8,16,32}CTL

nr rjmp id size ujmp ucol deltas

Head Body

Fig. 6. The ctl byte-array used by CSX to encode the location information
of the non-zero elements of a sparse matrix. Optional fields are denoted with
a dotted bounding box.

horizontal substructures, we transform the coordinates of the
matrix’s non-zero elements (originally in row-wise order) into
the desired iteration order and reuse the very same horizontal
substructure detector to detect non-horizontal ones.

B. The data structures

CSX replaces both the rowptr and colind arrays of
the standard CSR with a single control byte-array containing
all the required information, called ctl (Fig. 6). Similar
to CSR-DU, CSX divides the matrix into units. In CSX’s
terminology, a unit represents a substructure inside the sparse
matrix, will it be a substructure (substructure unit) or a
sequence of column index delta distances represented by the
same number of bytes (delta unit). A CSX unit is comprised
of two parts: the head and the body. The head contains a
two-byte descriptor of the unit and its initial column index
(ucol field) encoded as a variable-size integer. The two byte
descriptor stores a 6-bit ID of the substructure unit (id field)
and the size of the unit in non-zero elements. The nr bit
denotes the start of a new row. Finally, the body part is present
only in delta units and stores the column index delta distances
as fixed-size integers.

The rjmp bit and the ujmp field serve a special purpose.
Since CSX encodes non-horizontal substructures, it is pos-
sible for substructures to group together all the elements of
subsequent rows. For example, the anti-diagonal substructure
in Fig. 5(c) starting at position (1, 9) contains also the sole
element of the second row, leaving it empty. These rows must
be skipped when computing the SpM×V. Therefore, the rjmp
bit denotes the existence of empty rows, while the ujmp field
stores the number of empty rows to skip in a variable-size
integer.

Similar to CSR, CSX stores the non-zero elements of the
matrix in a values array, but in a substructure row-wise
order. For example, the substructures in Fig. 5(c) will be stored
in the following order: horiz(1), anti-diag(1), bcol(4,2), vert(1),
diag(2), bcol(4,2) and bcol(3,2).

Encoding variable-size integers in CSX: In an attempt to be
as compact as possible, the CSX format employs the use of
variable-size integers to encode the initial column indices and
the row jumps. In this encoding, an arbitrary integer is stored
in 7-bit chunks reserving the most significant bit (bit 7) of each
byte as a link between the different chunks (Fig. 7). The gain
in the total matrix size by the use of variable-size integers is 2–
3% and has an almost direct impact on the performance of the
SpM×V kernel in symmetric shared memory systems, where
the memory bandwidth saturation leaves enough space for the
additional computational burden of the decoding process.

6

..7
.

6 . . . 0
.
7
.

6 . . . 0

.b7 = 1

.b7 = 1

Fig. 7. The variable-size integer encoding employed by CSX.

IV. DETECTION AND ENCODING OF SUBSTRUCTURES

A. Mining the matrix for substructures

CSX can detect a variety of non-horizontal substructures
with the use of coordinate transformations on the non-zero
elements of the matrix. To facilitate the detection process,
CSX uses a special internal representation for the sparse
matrix, which is a hybrid of CSR and a generic version
of the COO format. Instead of simple non-zero elements,
the CSX’s internal representation stores generic elements;
a generic element is either a single non-zero element or
a substructure. Similarly to the COO format, each generic
element is stored as an (i, j, v) tuple, lexicographically sorted
on the (i, j). In the case of a substructure, (i, j) represents
the coordinate of the first element in the substructure and
v is an array of the substructure’s elements. We also keep
the CSR’s row pointers for fast row accessing. This internal
representation is constructed once during the ‘loading’ of the
original matrix, either from CSR or from the disk.

CSX detects substructures by applying run-length encoding
on the column indices of the matrix. The run-length encoding
first computes the delta distances of the column indices and
then assembles groups, called runs, from the same distance
values (Fig. 8, Alg. 2). Each run is identified by the common
delta value and its length. Runs with length greater or equal to
two form a substructure; nonetheless, we impose a restriction
on the minimum length of a run (currently set to four) to
avoid a proliferation of very small runs that could be more
of an overhead than a benefit. There is also another subtle
issue when mapping the detected runs into CSX units: all
runs—except those that start at the beginning of a row—
miss the first element of the real substructure. For example, in
Fig. 8 the length of the real units are 5 and 4, instead of the
detected runs of 4 and 3, which miss the 10 and 21 column
indices, respectively. This can be crucial for the detection of
2-D substructures where additional alignment limitations exist.
In our actual implementation, we fix this issue and also split
large runs into 255-element chunks, so as to fit in the one-
byte size field of a CSX unit. The process of scanning the
whole matrix for a specific type of substructures is described
in Alg. 3; we iterate over the rows of the matrix and for
each row we gather all the column indices that are not yet
part of a substructure and apply run-length encoding. For all
the detected substructure instantiations (different delta values),
we keep statistics (number of units and number of non-zero
elements covered) to guide us on the final selection of the
substructures to encode in CSX.

Detecting non-horizontal substructures: In our previous
discussion on the detection process, we have not mentioned
about horizontal substructures specifically. Indeed, the detec-
tion process ‘sees’ just column indices and the only require-

col. indices: 1 10 11 12 13 14 21 41 61 81 . . .
delta values: 1 9 1 1 1 1 7 20 20 20 . . .

1× 4 1× 3
d = 1 d = 20

Fig. 8. Example of the run-length encoding of the column indices.

1: function RLENCODE(colind ::in)
colind : sorted column indices

2: deltas ← DELTAENCODE(colind)
3: d← deltas[0]
4: f ← 1
5: rle ← (d, f)
6: for i← 1 to N do
7: if deltas[i] = d then
8: f ← f + 1
9: else

10: if f ≥ min run length then
11: rle ← rle ∪ (d, f)

12: d← deltas[i]
13: f ← 1

14: return rle

Alg. 2: Run-length encoding of the column indices

ment is that these indices must be sorted. Detecting horizontal
substructures is therefore straightforward, since the matrix
elements are arranged in row-wise (horizontal) order and are
lexicographically sorted by default. To detect non-horizontal
substructures then, it suffices to transform the matrix elements
into the desired iteration order, sort them lexicographically
and use the DETECTSUBSTR() procedure described in Alg. 3.
The case of one-dimensional, non-horizontal substructures
is straightforward and Tab. I shows the exact coordinate
transformations that we use for their detection. The case of
2-D substructures, though, is a bit more complex, since we
need to ‘linearize’ the coordinates of the elements.

The approach we take for the 2-D substructures in CSX is
depicted in Fig. 9. We segment the matrix into fixed-width
bands, either row- or column-aligned, and apply a space-
filling transformation inside every band, passing the resulting
sequence to the DETECTSUBSTR() procedure. However, care
must be taken during the detection, since now not all detected
units are valid blocks; for a unit to be valid, it must begin
at a column index (in the transformed space), which is a
multiple of the band width. Using this segmentation technique,
we have managed to detect loosely aligned, variable-sized
blocks, further increasing the compression potential of CSX.
We support two categories of block substructure types, namely
row-aligned and column-aligned blocks, and each category
defines seven different substructure types for different widths
of the segmentation bands (r, c ∈ [2, 8] in Tab. I). In total,
the use of coordinate transformations has allowed CSX to
support seamlessly 18 different substructure types and enables
the straightforward expansion to other substructure families,
e.g., diagonal blocks.

Fig. 10 shows the substructures detected by CSX in our
matrix suite and is very characteristic of the capability of
CSX in detecting a variety of substructures inside a sparse
matrix. It is very interesting that CSX was able to detect
and encode even ‘weird’ substructures, such as the diagonal

7

1: procedure DETECTSUBSTR(matrix ::in, stats::inout)
matrix : CSX’s internal repr., lexicographically sorted
stats: substructure statistics

2: colind ← ∅ . Column indices to encode
3: for all rows in matrix do
4: for all generic elements e(i, j, v) in row do
5: if e is not a substructure then
6: colind ← colind ∪ e.j
7: continue
8: enc ← RLENCODE(colind)
9: UPDATESTATS(stats , enc) . Update statistics for this encoding

10: colind ← ∅
11: enc ← RLENCODE(colind)
12: UPDATESTATS(stats , enc) . Update statistics for this encoding
13: colind ← ∅

Alg. 3: Detecting substructures in CSX’s internal representa-
tion.

(1, 1)

(3, 1)
. . .

. . .

..
.

(a) Row-aligned detection.

(1, 1)

(1, 3)

..
.

..
.

. . .

(b) Column-aligned detection.

Fig. 9. Detection process of 2-D substructures in CSX (black dots denote
non-zero elements).

ones with delta distances of 857 and 1714 in the pre2 matrix.
In matrices dominated by dense blocks, CSX was able to
detect large blocks in significant amounts, as is the case of
the inline 1 and af k 101 matrices. The detection of large
dense blocks not only has a positive impact on the overall
compression ratio, but also provides a performance advantage
in the SpM×V computations. Finally, the substructure map of
a sparse matrix produced by CSX can be very revealing for
the specific performance behavior of SpM×V. For example, the
matrices Freescale1, parabolic fem and offshore are dominated
by delta units with very large delta distances meaning that they
are quite sparse and rather random. Indeed, their performance
is poor using any format, suffering from irregular accesses in
the input vector and load imbalances.

Substructure types and their instantiations: In CSX we
make a distinction between a substructure type and its in-
stantiation. In CSX’s terminology, a substructure instantiation
denotes how exactly a substructure type is encountered inside
the sparse matrix. For example, the horizontal substructures
with d = 1 and d = 20 of Fig. 8 belong to the same
substructure type (horizontal), but are different instantiations.
Similarly, the blocks 2 × 10 and 2 × 20 are instantiations
of the same block, row-aligned, r = 2 type. A substructure
type, therefore, may have indefinitely many instantiations in a
sparse matrix, which adds great flexibility to the CSX format,
allowing it to detect almost every dense pattern inside a sparse
matrix. The 6-bit id field in the ctl structure of CSX (Fig. 6)
refers to the exact substructure instantiation being encoded by

TABLE I
THE COORDINATE TRANSFORMATIONS APPLIED BY CSX ON THE MATRIX

ELEMENTS FOR ENABLING THE DETECTION OF NON-HORIZONTAL
SUBSTRUCTURES (ONE-BASED INDEXING ASSUMED).

Substructure Transformation

Horizontal (i′, j′) = (i, j)
Vertical (i′, j′) = (j, i)
Diagonal (i′, j′) = (N + j − i,min(i, j))

Anti-diagonal (i′, j′) =

{
(i+ j − 1, i), i+ j − 1 ≥ N
(i+ j − 1, N + 1− j), i+ j − 1 > N

Block (row aligned) (i′, j′) = (b i−1
r
c+ 1,mod(i− 1, r) + r(j − 1) + 1)

Block (column aligned) (i′, j′) = (b j−1
c
c+ 1, c(i− 1) + mod(j − 1, c))

the related unit; it does not refer to an abstract substructure
type. This has the downside of limiting the total number of
substructure instantiations in a sparse matrix to 64, but, in
practice, only 4–5 instantiations are selected for encoding (see
Fig. 10).

B. Selecting substructures for final encoding

So far we have described how a single substructure is de-
tected by CSX. The full detection process and the selection of
the substructures for the final encoding is described in Alg. 4,
which is a typical local search optimization algorithm. More
specifically, for each available substructure type, we transform
the matrix to the corresponding iteration order and scan it,
collecting statistics for the examined substructure type. After
having collected statistics for all the available substructure
types, we filter out all the instantiations that fail to surpass
a certain threshold in encoding the non-zero elements of the
matrix (in our current implementation, this is set to 5% of the
total non-zero elements) and proceed with the selection of the
most suitable type for encoding the matrix (SELECTTYPE()).
The algorithm then proceeds by encoding the matrix with the
selected substructure type (ENCODESUBSTR()) and repeating
the same procedure until no type can be selected.

The criterion we use for selecting the substructures to
encode is a rough estimate of the achieved reduction in the
size of the original CSR’s colind structure. Assuming that
we keep a single, full column index per detected substructure
(ignoring delta units), the size of the ctl structure will be

Sctl =

encoded︷ ︸︸ ︷
Nunits +

unencoded︷ ︸︸ ︷
NNZ −NNZ enc , (1)

where Nunits is the total number of encoded substructure units
and NNZ enc is the number of the non-zero elements encoded
by the substructure type. Therefore, the gain in the CSR’s
colind size will be roughly

G = NNZ − Sctl = NNZ enc −Nunits , (2)

which is the metric that a substructure type must maximize in
order to be selected for encoding.

V. GENERATING THE SPM×V CODE

The indefinitely large and a priori unknown number of
substructure instantiations inside a sparse matrix dictates the

8

xe
no

n2
AS

IC
_6

80
k

to
rs

o3
C

he
by

sh
ev

4
H

am
rle

3

pr
e2

ca
ge

13
at

m
os

m
od

j
oh

ne
2

kk
t_

po
w

er

TS
O

PF
_R

S_
b2

38
3

G
a4

1A
s4

1H
72

Fr
ee

sc
al

e1
ra

ja
t3

1 F1
pa

ra
bo

lic
_f

em
of

fs
ho

re
co

ns
ph

bm
w

7s
t_

1
G

3_
ci

rc
ui

t
th

er
m

al
2

m
_t

1
bm

w
cr

a_
1

ho
od

cr
an

ks
eg

_2
nd

12
k

af
_5

_k
10

1
in

lin
e_

1
ld

oo
r

bo
ne

S1
0

Matrix

0

10

20

30

40

50

60

70

80

90

100

N
on

-z
er

o
el

em
en

ts
 c

ov
er

ag
e

(%
)

DU8
DU16
DU32
horiz(1)
horiz(2)
vert(1)
vert(2)
diag(1)
diag(3)
diag(11)
diag(857)
diag(1714)
anti-diag(1)
brow(2,2)
brow(2,3)
brow(2,4)
brow(2,6)
brow(2,9)
brow(2,12)
brow(2,18)
brow(3,3)
brow(3,6)
brow(3,9)
brow(3,12)
brow(3,15)
brow(3,18)
brow(4,4)
brow(5,5)
brow(5,15)
brow(7,7)
brow(7,14)
brow(7,21)
bcol(3,2)

Fig. 10. The substructures detected and encoded by CSX in a diverse set of sparse matrices. The substructures are identified by their type name and the
delta distance or the block dimensions for the one- and two-dimensional substructures, respectively. Delta units are denoted with the ‘DU’ prefix.

1: procedure ENCODEMATRIX(matrix ::inout)
matrix : CSX’s internal matrix in row-wise order

2: repeat
3: stats ← ∅
4: for all available substructure types t do
5: TRANSFORM(matrix , t)
6: LEXSORT(matrix)
7: DETECTSUBSTR(matrix , stats)
8: TRANSFORM−1(matrix , t)
9: FILTERSTATS(stats) . Filter out instantiations that encode less

than 5% of the non-zero elements
10: s← SELECTTYPE(stats)
11: if s 6= NONE then
12: TRANSFORM(matrix , s)
13: LEXSORT(matrix)
14: ENCODESUBSTR(matrix) . Encode the selected substructure
15: until s = NONE

Alg. 4: Detection, selection and encoding of the substructures
in CSX.

use of runtime code generation for the substructure-specific
SpM×V routines. We have built a new Just-In-Time (JIT) com-
pilation framework for CSX based on Clang and LLVM [13],
[14]. LLVM is a low-level compiler infrastructure that provides
a collection of modular and reusable compiler and toolchain
technologies. Clang is a C language family front-end for the
LLVM infrastructure. Its main purpose is to parse normal
C/C++ source code, convert it to the LLVM’s Intermediate
Representation (IR) and pass it to the LLVM back-end for
the generation of the final native code. The great advantage of
Clang and LLVM is that they provide a very rich programming
interface that allows the development of efficient JIT code and
its easy integration into an existing application.

In our initial implementation of CSX [25], we used to
generate the LLVM IR directly through the related library

interface. However, this is a tedious and error-prone task (also
in terms of performance), since not only a good understanding
of the intermediate representation is required, but also the
actual SpM×V code is ‘obfuscated’ by the complex calls
needed to construct the IR. For this reason, we now generate
simple C code for the substructure-specific SpM×V routines
and use Clang to generate optimized LLVM IR. The overhead
of parsing the resulting C source (one translation unit, less
than 150 l.o.c.) and generating the optimized LLVM IR is
negligible compared to the matrix preprocessing time to justify
the extra pain of maintaining a pure LLVM IR codebase
or even an on-disk cache of precompiled SpM×V routines.
Fig. 11 shows how the just-in-time compilation is organized
in CSX. CSX maintains a directory of C source templates2,
which define a set of text hooks to be filled in the runtime.
For each substructure type we maintain a source template for
performing the SpM×V computation inside the substructure3,
and we also have a ‘top-level’ template that is responsible
for the execution of the full SpM×V kernel in the CSX
format. After we have selected the substructures for encoding
and have generated the CSX’s data structures, we pick the
suitable templates and generate the corresponding SpM×V C
code passing it to the Clang front-end. We program the front-
end to emit an optimized LLVM IR module, from which we
get a function pointer to the generated SpM×V kernel and,
eventually, the LLVM back-end takes over to generate the final
native code for the host machine.

The SpM×V kernel that we execute for CSX is shown
in Alg. 5. First, we should note that in CSX we must
explicitly zero out the output vector (lines 4–5), an arti-

2Not to be confused with the C++ templates.
3For block substructures we maintain just two generic templates: one for

row-aligned blocks and one for column-aligned ones.

9

Encoded
matrix

C code
generator

Clang
front-end

LLVM
module

Native
SpMV code

Function
pointer

SpMV source
templates

SpMV

source

Emit
LLVM

Execution
Engine

call

Fig. 11. The just-in-time compilation framework of CSX.

1: procedure CSXSPMV(ctl ::in, values::in, x::in, y::out)
2: ycurr ← y . Current position in y vector
3: xcurr ← x . Current position in x vector
4: for i← 0 to N do . We must zero-out the output vector
5: ycurr [i]← 0

6: yr ← 0 . Local accumulator
7: repeat
8: flags ← ∗ctl
9: size ← ∗(ctl + 1)

10: ctl ← ctl + 2
11: if TESTBIT(flags , 7) then . Check if nr bit is set
12: ∗ycurr ← ∗ycurr + yr
13: yr ← 0
14: NEW ROW HOOK() . Advances ycurr

15: xcurr ← x

16: xcurr ← xcurr+ DECODECOLUMN(ctl)
17: id ← GETID(flags) . Retrieve the ID of the next unit
18: BODY HOOK() . Unit-specific SpM×V code
19: until ctl ends

Alg. 5: The SpM×V kernel template used the CSX storage
format. The hooks are filled in during the runtime. The ‘∗’ is
a dereference operator.

fact that is prescribed by the use of multiple non-horizontal
substructures. However, the effect of this operation is very
small, especially in multithreaded configurations, where the
initialization is performed in parallel. The algorithm iterates
over the ctl structure decoding a field at a time. If a new
row is detected, we store the computed dot product (yr) in the
output vector and advance the current position (ycurr) with
the NEW ROW HOOK(). If the matrix does not contain row
jumps, the generated code simply advances ycurr by one. In
the opposite case, it checks the rjmp bit and if there is a
jump, it advances ycurr with the value of the variable size
integer containing the jump size. The algorithm proceeds by
decoding the variable size integer containing the delta distance
from the previous column index (DECODECOLUMN()) and
computes the starting column index (xcurr) of the current
CSX unit. It then retrieves the ID of the unit and executes
the unit-specific SpM×V code within the BODY HOOK().
The BODY HOOK() is actually replaced by a C switch
statement, switching on the id variable. The unit-specific
SpM×V routines are responsible for correctly advancing the
ctl structure and the current column index, as well as
updating the local accumulator yr , if necessary.

Since we encode specific substructure instantiations in CSX,
we know during the compilation time the exact delta distances
of the one-dimensional substructures and the exact block di-
mensions of the 2-D ones. This allows us to generate efficient
code with hardcoded constant delta distances and constant
block dimensions, matching the computational advantage of
the fixed-size blocks of BCSR. Additionally, if only one

substructure instantiation is encoded, we optimize out the
switch statement completely.

Parallelization: CSX follows the parallelization pattern of
CSR. During the construction of the CSX’s internal represen-
tation, we split the input matrix row-wise maintaining roughly
the same number of non-zero elements per partition. From this
point on, the detection and encoding phases of CSX proceed
independently, producing different final CSX submatrices per
partition. The SpM×V kernel in Alg. 5 changes only in line 2,
where we initialize ycurr to the beginning of the partition
and in line 4, where we iterate only within the bounds of
the partition.

VI. TACKLING THE PREPROCESSING COST

The preprocessing time of CSX is bounded by the multiple
calls to the LEXSORT() routine, which performs a lexico-
graphic sort on the transformed matrix elements, during the
scanning for substructures (Alg. 4, lines 4–8). We address this
issue with a combination of partial sorting and sampling. More
specifically, instead of scanning the matrix as a whole, we
split it into constant size preprocessing windows based on the
non-zero elements and scan every window separately. This
modification reduces automatically the asymptotic complexity
of the scanning phase from Θ(NNZ lgNNZ) to Θ(NNZ) at
the expense of missing the substructures that cross the bound-
aries of the windows. To further reduce the preprocessing cost,
we only examine a certain number of windows uniformly
distributed over the whole matrix covering only a small
amount of the total non-zero elements. In our experiments,
sampling a mere 1% of the matrix non-zero elements using
48 sampling windows reached the same SpM×V performance
levels as the full-fledged preprocessing at nearly an order of
magnitude less preprocessing time.

Having minimized the substructure scanning phase, the
preprocessing time is now bound from the final encoding of
the matrix (Alg 4, lines 12–14), which is still in the order
of Θ(NNZ lgNNZ). In this phase, unfortunately, partitioning
and, especially, sampling cannot be applied, since we need to
encode the whole matrix, after all. Nonetheless, the impact of
this phase on the overall preprocessing cost is not so crucial
for two main reasons: in most of the cases a very small number
of substructure types will be finally encoded, and the full cost
of the sorting will be paid only during the encoding of the first
substructure type, since every time we sort only the unencoded
elements.

In addition to the use of sampling and preprocessing win-
dows, we further reduce the preprocessing cost by paralleliz-
ing the whole preprocessing process. The parallelization is
straightforward: after we have loaded the initial CSR matrix,
we setup a new thread for every partition that proceeds
independently with the scanning and the construction of the
final CSX matrix.

Finally, we take particularly care of the memory manage-
ment during the preprocessing, by avoiding completely mem-
ory reallocations that would result in huge memory copies. For
this reason, we try to infer the exact allocation requirements
for a data structure right from the beginning or, in case this is

10

not possible, we are generous with the initial allocation and
then truncate the extra space. This optimization has led to a
considerable acceleration of the preprocessing phase, reaching
a 2× to 3× speedup.

The preprocessing cost of CSX for detecting all the sup-
ported substructure types ranges now in the order of 100 serial
CSR SpM×V operations (cf. the approximately 500 operations
of [25]), rendering it viable even for online processing of the
input matrix.

VII. PORTING TO NUMA ARCHITECTURES

The key factor for the high performance of SpM×V in
NUMA architectures is the correct placement of the involved
data on the system’s memory nodes [3], [26]. The data each
thread accesses must lie on its local memory node, in order
to avoid the saturation of its peers’ memory links and also the
increased latency incurred by the multiple hops required for a
remote access. A thread in the multithreaded SpM×V kernel
accesses the matrix data structures of its own matrix partition,
the corresponding parts of the output vector and arbitrary
parts of the input vector. The correct placement of the matrix
partitions in CSX is straightforward: since the construction
of the CSX matrix happens independently for every partition,
we just need to make sure that the CSX’s data structures are
allocated on the correct node using calls to a NUMA-aware
memory allocator, e.g., the numa_alloc_onnode() of the
Linux numactl library.

For the output vector though, we have to implement a
more low-level allocation scheme. The problem with the
output vector is that, ideally, different parts of it must lie on
different physical memory nodes, while still being continuous
in the virtual address space. Our approach is a Linux-based
coarse-grained interleaved allocation scheme and is depicted
in Fig. 12. The idea is simple: we allocate the whole output
vector continuously in the virtual address space with a single
call to mmap() and then bind every partition on its local node
with subsequent calls to mbind(), rounding the partition
sizes to the nearest multiple of the system’s page size. The
advantage of this allocation scheme is that the data placement
is completely transparent to the user code, which now becomes
NUMA-aware with the least effort. We used this technique
to implement NUMA-aware versions of the SpM×V kernel
with the CSR, BCSR and VBL formats (see Section VIII for
the experimental evaluation) by just replacing the standard
allocation calls with calls to our coarse-grained interleaved
allocator.

Finally, for the sake of our experimentation, we place a copy
of the input vector on every memory node. This arrangement
provides a better balancing of the overall memory operations
and exposes further the computational part of the kernel. In
practical applications, however, where the input vector changes
during the SpM×V iterations, placing it on a single node is a
more reasonable option without losing significantly in SpM×V
performance for the great majority of sparse matrices4.

4We measured a 2.5% average performance overhead using a single instance
of the input vector, which falls to 1.5% when using the same interleaved
allocation scheme as for the output vector.

void *addr

mbind()

Virtual memory

Physical memory

Node 0 Node 1

mmap()

Fig. 12. Coarse-grained interleaved allocation of data structures involved in
SpM×V. The data placement is completely transparent to the user code, yet
NUMA-aware. The actual physical page allocation happens on memory write.

Optimizing the computations: Modern NUMA architectures
have an important side-effect on the execution of the SpM×V
kernel: the increased memory bandwidth when accessing a
local memory node, exposes more the computational part of
the kernel, which is no longer negligible. CSX performs some
heavy decompression operations in decoding the variable size
integers (Fig. 7) used to store the column delta distances and
the row jumps. The case of row jumps is not of considerable
concern, since we do not generate the decoding code at all
for matrices that do not have them, and in cases they do, the
decoding is not in the critical path. What stays in the critical
path, though, is the decoding of the column delta distance
before computing every substructure (Alg. 5, line 16). The
decoding is trivial if the delta distance is less than 128, but
it demands hefty bit operations if it is larger. Unfortunately,
when encoding substructures (and not only delta units5) there
is a proliferation of multi-byte column delta distances, whose
decoding can considerably hinder the overall SpM×V perfor-
mance. For this reason, we replace the column delta distance
with the full starting column index of the substructure, stored
in a standard 32-bit integer. This optimization degrades the
overall compression ratio 2–3%, but the gain in performance
can exceed 15% in certain matrices.

The proliferation of delta units when encoding multiple
substructures can also overwhelm the benefit of compression
in NUMA architectures due to the increased performance
overhead of the switch statement (branch mispredictions). For
this reason, we revise our score function (equation (2)) for
NUMA architectures to include an estimate of the total switch
statements executed as follows:

G = NNZ enc −Nunits −Nswitch , (3)

where Nswitch = Nunits + Ndeltas , Ndeltas being the total
number of delta units generated. This heuristic balances better
the tradeoff between the memory and the computational part
of the kernel by penalizing the encodings that lead to a large
computational cost. We have encountered more than 20%
performance improvement for certain matrices in NUMA-
aware thread configurations with the revised heuristic.

VIII. EXPERIMENTAL EVALUATION

A. Setup and methodology
For the evaluation of the CSX format, we have selected

30 matrices from the University of Florida Sparse Matrix

5The case of using only delta units is not critical, because we encode the
full matrix row as a single delta unit.

11

TABLE II
THE MATRIX SUITE USED FOR THE EXPERIMENTAL EVALUATION. ALL

MATRICES ARE SQUARE. THE MAXIMUM POSSIBLE COMPRESSION RATIO
(C.R.), USING NO INDEXING STRUCTURES, IS DENOTED, ALONG WITH

THE COMPRESSION RATIO ACHIEVED BY CSX.

Matrix N NNZ
Size

(MiB)
C.R.
(CSX)

C.R.
(Max.) Problem

xenon2 157,464 3,866,688 44.85 30.6% 34.2% Materials
ASIC 680k 682,862 3,871,773 46.91 24.0% 37.0% Circuit Sim.
torso3 259,156 4,429,042 51.67 32.3% 34.6% 2D/3D
Chebyshev4 68,121 5,377,761 61.80 29.7% 33.6% Structural
Hamrle3 1,447,360 5,514,242 68.63 22.9% 38.7% Circuit Sim.
pre2 659,033 5,959,282 70.71 20.4% 35.7% Circuit Sim.
cage13 445,315 7,479,343 87.29 21.1% 34.6% Graph
atmosmodj 1,270,432 8,814,880 105.72 36.1% 36.4% C.F.D.
ohne2 181,343 11,063,545 127.30 21.0% 33.7% Semiconductor
kkt power 2,063,494 14,612,663 175.10 20.0% 36.3% Optimization
TSOPF RS b2383 38,120 16,171,169 185.21 33.1% 33.4% Power
Ga41As41H72 268,096 18,488,476 212.61 28.4% 33.7% Chemistry
Freescale1 3,428,755 18,920,347 229.61 10.3% 37.1% Circuit Sim.
rajat31 4,690,002 20,316,253 250.39 30.9% 38.1% Circuit Sim.
F1 3,428,755 26,837,113 308.44 31.1% 33.6% Structural
parabolic fem 525,825 3,674,625 44.06 6.7% 36.4% C.F.D.
offshore 259,789 4,242,673 49.54 16.5% 34.7% Electromagnetics
consph 83,334 6,010,480 69.10 30.9% 33.6% F.E.M.
bmw7st 1 141,347 7,339,667 84.54 31.1% 33.8% Structural
G3 circuit 1,585,478 7,660,826 93.72 32.3% 37.6% Circuit Sim.
thermal2 1,228,045 8,580,313 102.88 15.7% 36.4% Thermal
m t1 97,578 9,753,570 111.99 31.9% 33.4% Structural
bmwcra 1 148,770 10,644,002 122.38 32.1% 33.6% Structural
hood 220,542 10,768,436 124.08 31.9% 33.8% Structural
crankseg 2 63,838 14,148,858 162.16 30.6% 33.4% Structural
nd12k 36,000 14,220,946 162.88 29.3% 33.4% 2D/3D
af 5 k101 503,625 17,550,675 202.77 33.3% 34.0% Structural
inline 1 503,712 36,816,342 423.25 31.4% 33.6% Structural
ldoor 952,203 46,522,475 536.04 33.2% 33.8% Structural
boneS10 914,898 55,468,422 638.28 32.4% 33.7% Model Reduction

Collection [27] (Tab. II). We made an effort to include large
matrices from various scientific disciplines with different non-
zero element structures. In order to evaluate the adaptivity
and the performance stability of CSX in unfavorable cases,
we have selected a large amount of matrices with a rather
irregular structure. These matrices are challenging for mem-
ory bandwidth minimization formats, since contention to the
memory bandwidth is not the key performance problem in
these cases [3].

The alternative storage formats we consider in this paper
are the BCSR and the VBL storage formats. We have selected
these formats as the most established paradigms of CSR
alternatives and as the best representatives of the fixed and
variable size blocking storage formats, respectively. Of course,
the baseline storage format in this comparison remains the
CSR. We have implemented our own optimized versions of
all these formats, including NUMA-aware implementations.
Specifically for BCSR, we have implemented block-specific,
optimized SpM×V routines for all the block sizes (1-D and 2-
D) up to size eight plus the 3× 3 block. The results reported
for BCSR correspond to the best performing block, which was
obtained after an exhaustive search of the 20 available blocks.
In practice, where a heuristic will be most probably used (e.g.,
in OSKI [28]), the real performance of BCSR might be less.
For the parallelization of the SpM×V routines, we use a static,
row-wise partitioning scheme based on the non-zero elements
of the matrix. Specifically for BCSR, we partition the input
matrix after we have build it, taking into account the zero-
padding as well, in order to achieve a better load balance.

TABLE III
EXPERIMENTAL PLATFORMS. THE NUMBERS FOR THE SUSTAINED
BANDWIDTH ARE OBTAINED WITH THE STREAM BENCHMARK.

Harpertown Dunnington Gainestown

Model Intel Xeon E5405 Intel Xeon X7460 Intel Xeon W5580
Microarchitecture Intel Core Intel Core Intel Nehalem
Clock freq. 2.00 GHz 2.66 GHz 3.20 GHz

L1 cache (D/I) 32 KiB/32 KiB 32 KiB/32 KiB 32 KiB/32 KiB

L2 cache
6 MiB

(per 2 cores)
3 MiB

(per 2 cores)
256 KiB

(per core)
L3 cache – 16 MiB 8 MiB
Cores/Threads 4/4 6/6 4/8
Peak Front-end B/W 10.7 GB/s 8.5 GB/s 2× 30 GB/s
Sustained B/W 5.8 GB/s 5.4 GB/s 2× 15.5 GB/s

Multiprocessor Configurations

Processors 2 4 2
Cores/Threads (total) 8/8 24/24 8/16

Finally, we use 32-bit integers for the indexing structures of
all the storage formats and 64-bit, double precision floating
point values for the non-zero elements. In the case of VBL,
we use one-byte block size fields.

Our computational testbed comprises two symmetric shared
memory systems and a NUMA platform. Specifically, the
Harpertown system is a two-way quad-core Intel Xeon E5405
configuration (8 cores, symmetric shared memory), the Dun-
nington system is a four-way six-core Intel Xeon X7460
configuration (24 cores, symmetric shared memory), and the
Gainestown system is a two-way quad-core Intel Xeon W5580
configuration (8 cores/16 threads, NUMA). Tab. III presents
the technical characteristics of our platforms in more detail.
All systems were running a 64-bit version of the Linux
OS (kernel version 2.6) and we used LLVM 2.9 for the
compilation of the SpM×V routines for all the considered
formats, in order to achieve a fair comparison. We should note
here that beyond our initial expectations, LLVM 2.9 offered
an average 5% performance improvement to the non-CSX6

formats compared to GCC 4.5. For the parallelization of the
SpM×V routines and the preprocessing phase of CSX, we used
explicit, native threading with the Pthreads library (NPTL 2.7)
and bound the threads to specific logical processors using
the sched_setaffinity() system call. We followed a
‘share-all’ policy for the assignment of threads to logical
processors by first ‘filling’ a socket before moving to the
next one, with the exception of Gainestown; in this case, we
did not use the HyperThreading feature but for the last 16-
thread configuration. Compared to a ‘share-nothing’ policy,
the selected core-filling policy gives a better insight on the
SpM×V performance as we scale a system to accommodate
more sockets and exposes better the impact of the correct data
placement in NUMA architectures. Finally, for the NUMA-
aware implementations, we used the numactl library, version
2.0.7, in conjunction with our low-level interleaved allocator.

Using simply the same compiler is not enough to achieve
a completely fair comparison of the different storage formats.
For this reason, we have built a common measurements frame-

6CSX routines are generated using LLVM by default.

12

work that interfaces with the storage format implementations
through a well-defined sparse matrix-vector multiplication
interface. We performed 128 consecutive SpM×V operations
with randomly created input vectors. We made no attempt
to artificially pollute the cache after each iteration, in order
to better simulate the behavior of iterative scientific appli-
cations, where matrix and vector data are present in the
cache hierarchy, either because they have just been produced
or they have been recently accessed. We should note here
that by using multiple iterations, we induce temporal locality
to our benchmark, and, thus, the streaming behavior of the
SpM×V kernel is maintained only if the working set and,
more specifically, the matrix data are larger than the system’s
aggregate cache.

B. The performance of the CSX format

Fig. 13 shows the speedups achieved by all the considered
methods in our two symmetric shared memory platforms,
Harpertown and Dunnington. The effect of compression is
dominant in these architectures, especially in the multithreaded
configurations. CSX and VBL take the lead with an average
26.4% and 18.5% performance improvement over CSR in
the eight-threaded configuration in Harpertown, respectively,
while BCSR gains a mere 4.1%. Similar is the picture in the
24-thread configuration in Dunnigton: CSX offers a 41.8%
performance improvement over CSR on average, VBL follows
further behind with a 28.8% improvement, while BCSR is
able to achieve only a bare 6.3% improvement. BCSR suffers
from its inherently low compression capability and the use of
padding to construct full blocks. It can be classified as an ‘all-
or-nothing’ storage format, since in almost half of the matrices
of our suite, it degraded SpM×V performance more than 30%
on average, while for the other half matrices it provided a
more than 25% performance improvement. The compression
potential of VBL and CSX is definitely higher than BCSR’s
and this is clearly depicted by the speedup diagrams in our
two symmetric shared memory architectures. The ability of
CSX to detect and encode multiple types of substructures,
and especially blocks, is a significant advantage of CSX over
VBL, not only in terms of pure compression ratio, but also in
terms of the involved SpM×V computations, since CSX keeps
the computational advantage of the BCSR’s fixed size blocks,
thanks to the runtime code generation, without paying the
padding overhead at all. Indeed, like BCSR, CSX matches the
average performance of CSR in Harpertown using one thread,
despite the additional overhead of zeroing the output vector
in every iteration. In Dunnington, CSX is starting off with a
significant 13.1% performance advantage over CSR right from
the single-threaded configuration.

In the NUMA architectures, where the available memory
bandwidth is considerably higher, the performance landscape
changes, but CSX remains still the most performant storage
format across the full range of multithreaded configurations.
Fig. 14 shows the speedups of the considered storage formats
in Gainestown using a NUMA-aware data placement. The
very first observation is that CSR is now rather competitive,
since the memory bottleneck is not so intense as before until

the 16-threaded configuration, where HyperThreading is also
enabled. CSX achieves a 17.5% performance improvement
over CSR when using 8 threads and increases the gap to
20.7% in the 16-threaded configuration, where the contention
for shared resources by the hardware threads becomes visible.
The respective numbers for VBL are 8.4% and 13.9% for
the two aforementioned configurations. The case of BCSR
is interesting, since it manages to achieve a performance
comparable to VBL, thanks chiefly to the ample memory
bandwidth that better exposes its computational advantage.
While VBL’s performance falls behind CSR’s up to the two-
threaded configuration, reaching a 23.5% performance degra-
dation for the single-threaded one, CSX experiences a slight
2.8% performance degradation only for the single-threaded
configuration. From the two-threaded configuration, however,
CSX is already ahead of every other format having achieved
an 11.4% performance improvement over CSR and reaching
20.7% when the full system is utilized.

This behavior can be further explained by examining the
per-matrix performance results for eight threads in Gainestown
presented in Fig. 15. We have selected this configuration
instead of the 16-threaded configuration as being less favorable
for CSX and most representative of systems where the mem-
ory bottleneck is not so intense. Observing the performance
results, we can first separate our matrix suite into two matrix
categories: (a) low-performing matrices (≈3 Gflop/s in CSR)
and (b) high-performing matrices (≈5 Gflop/s in CSR). The
first category is formed by matrices with an irregular non-
zero element structure and very short rows; SpM×V is rather
latency-bound than bandwidth-bound in this case, since it
suffers chiefly from cache misses in the input vector [3].
The second category, which is the most typical, consists of
matrices with a more regular structure arising mostly from the
discretization of PDEs; the key problem here is the contention
for memory bandwidth. CSX manages to achieve consider-
able performance improvements in matrices of the second
category, approaching the upper bound of dense-matrix vector
multiplication performance in this configuration (8.5 Gflop/s).
In the low-performing matrices, CSX exhibits a rather stable
behavior, matching or even surpassing the performance of
CSR. Although VBL and BCSR exhibit similarly high per-
formance in more regular matrices, with BCSR matching the
performance of CSX in block-dominated matrices (xenon2,
consph, m t1, bmwcra 1, inline 1), the situation changes for
irregular matrices, where both BCSR and VBL tend to exhibit
a significant performance degradation, due to their increased
overhead in matrix size and computations. The advantage of
CSX is also clear in matrices dominated by diagonal patterns
(e.g., torso3, cage13, atmosmodj), which cannot be efficiently
exploited by the alternative formats considered.

In Tab. IV, we exhibit quantitatively the performance stabil-
ity of CSX in the eight-threaded, NUMA-aware configuration
in Gainestown7. The competitiveness of CSR and BCSR is
clear from this table, gaining seven and nine matrices, respec-
tively. Nonetheless, even in this not so favorable configuration,

7In Harpertown and Dunnington, the predominance of CSX is almost total,
providing the best performance in 26 out of the 30 matrices of our suite.

13

1 2 4 8

Threads

1

1.5

2

2.5

S
pe

ed
up

 o
ve

r
se

ria
l C

S
R

CSR
CSX
VBL
BCSR

(a) Harpertown.

1 2 6 12 24

Threads

1

2

4

6

8

10

S
pe

ed
up

 o
ve

r
se

ria
l C

S
R

CSR
CSX
VBL
BCSR

(b) Dunnington.

Fig. 13. Speedup diagrams of CSX in comparison to the rest CSR alternative storage formats. The steep increase of speedup in Dunnington for 12 and 24
threads is due to the exponential increase of the available aggregate L3 cache as we use additional sockets.

1 2 4 8 16 (HT)

Threads

1

2

4

6

S
pe

ed
up

 o
ve

r
se

ria
l C

S
R

CSR-numa
CSX-numa
VBL-numa
BCSR-numa

(a) Gainestown.

1 2 4 8 16 (HT)

Threads

1

2

3

4

5

S
pe

ed
up

 o
ve

r
se

ria
l C

S
R

CSR
CSR-numa

(b) The effect of the NUMA-aware data placement in SpM×V.

Fig. 14. Speedup of CSX in comparison to the rest CSR alternative storage formats in the Gainestown NUMA system. The effect of the NUMA-aware data
placement is also depicted.

xe
no

n2
AS

IC
_6

80
k

to
rs

o3
C

he
by

sh
ev

4
H

am
rle

3

pr
e2

ca
ge

13
at

m
os

m
od

j
oh

ne
2

kk
t_

po
w

er
TS

O
PF

_R
S_

b2
38

3
G

a4
1A

s4
1H

72
Fr

ee
sc

al
e1

ra
ja

t3
1 F1

pa
ra

bo
lic

_f
em

of
fs

ho
re

co
ns

ph
bm

w
7s

t_
1

G
3_

ci
rc

ui
t

th
er

m
al

2

m
_t

1

bm
w

cr
a_

1

ho
od

cr
an

ks
eg

_2
nd

12
k

af
_5

_k
10

1
in

lin
e_

1

ld
oo

r

bo
ne

S1
0

Matrix

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

G
flo

p/
s

CSR-numa
BCSR-numa
VBL-numa
CSX-numa

Fig. 15. The SpM×V performance in Gainestown for every sparse matrix in our suite using 8 threads in a NUMA-aware configuration.

14

TABLE IV
DEMONSTRATION OF THE PERFORMANCE STABILITY OF EACH METHOD IN

GAINESTOWN (EIGHT-THREADED, NUMA-AWARE CONFIGURATION).

CSR BCSR VBL CSX

Best perf. 7 9 2 12

Differences from best

Average 21.15% 20.13% 12.03% 5.79%
95% C.I. ± 3.53% ± 4.99% ± 2.94% ± 2.16%

Minimum 2.60% 0.01% 1.62% 1.13%
Maximum 32.27% 35.86% 33.79% 19.04%

CSX manages to achieve the absolute best performance in the
majority of matrices (12), while VBL contents itself to just
two matrices. The most important information of this table,
however, are the performance differences of each format from
the best overall performance. Specifically, for each considered
format, we present its average performance difference from
the absolute best for all the matrices that it did not gained.
We also present a 95% confidence interval (C.I.)8. These
metrics confirm the predominance of CSX both in terms of
overall SpM×V performance and in terms of adaptivity to
the different characteristics of each matrix. Despite obtaining
the absolutely best performance in less than half of the
matrices, CSX manages to be as close as 5.79% to the overall
best performance. VBL follows further back with an average
difference of 12.03% from the best performance, while BCSR
and CSR come last with 20.13% and 21.15% differences,
respectively. The stability of CSX is also superior to the
other considered formats as it is depicted by the computed
confidence intervals, while BCSR, as expected, is the least
stable format with a performance variation of almost 5%. CSX
can be therefore considered as a high performance storage
format for sparse matrices, since not only achieves the highest
performance in the majority of matrices in both SMP and
NUMA architectures, but also manages to stay very close
to the overall best performance in the rest of the matrices,
including corner cases, such as very irregular matrices, ex-
hibiting significant performance stability compared to other
CSR alternatives.

Before closing the presentation of the performance of CSX,
it is important to emphasize the effect of the data placement
in the NUMA architectures. Fig. 14(b) compares the speedups
of the standard and NUMA-aware versions of the CSX and
CSR storage formats. The difference in performance between
the two versions is quite large. In the eight-threaded con-
figuration, where we start using the second processor in the
system, the CSR standard implementation starts to encounter
a performance slowdown, while CSX enters a plateau, before
encountering a slowdown with the 16 threads. The correct data
placement of the NUMA-aware versions balances the memory
traffic between the two available memory controllers and offers
an almost 2× performance improvement to both formats.
Similar is the behavior for the other two formats, VBL and

8An α% confidence interval denotes that α% of the observed samples will
lie within the specified interval, assuming that the samples follow the normal
distribution.

CSX-delta

CSX-horiz

CSX-sampling CSX-full

8 32 128 512

Serial CSR SpMV operations

1

1.1

1.2

1.3

1.4

P
er

f.
im

pr
ov

em
en

t o
ve

r
M

/T
 C

S
R

Fig. 16. The preprocessing cost of CSX in Dunnington using 24 threads.

BCSR. Using our interleaved allocator (Section VII) for the
allocation of the matrix’s data structures, the data placement
remained completely transparent to the user level and this
vast performance improvement came with no changes in the
SpM×V algorithm whatsoever and at a minimal developer’s
cost.

C. The preprocessing cost

CSX can be programmed to detect only delta units or a
specific subset of the supported substructures, e.g., horizontal
substructures only. This a simple way to reduce the pre-
processing cost. Additionally, in this case, there is no need
for sampling as well, since the non-zero elements are not
transformed and, as a result, there is no need for the expensive
sort. Nonetheless, this kind of reduction comes at a cost of
the overall CSX performance as it is depicted in Fig. 16.
To exploit its full potential, CSX must be programmed to
detect as many substructure types as possible. In this case,
however, the preprocessing cost climbs to several hundreds of
serial CSR SpM×V operations. Though not irrational even for
on-line preprocessing, this cost is large and can eradicate the
performance benefit of CSX in the midterm. For this reason,
we employ uniform statistical sampling on the input matrix
as described in detail in Section VI. The use of sampling can
drop the preprocessing cost nearly an order of magnitude with
a minimal impact in CSX’s overall performance. A key aspect
for sampling a sparse matrix with CSX is to use a lot of
sampling windows scattered all over the matrix, in order to
obtain a ‘good look’ of the whole matrix and avoid any over-
or under-estimation of the presence of certain substructures.
In our case, we have used 48 sampling windows for sampling
only 1% of the total non-zero elements of the matrix.

Fig. 16 shows the preprocessing cost of CSX measured
in serial CSR SpM×V operations in relation to the achieved
performance improvement over the multithreaded CSR in
Dunnington using 24 threads. The cost when detecting only
delta units (CSX-delta) or horizontal substructures (CSX-
horiz) is very small ranging from 16 to 35 CSR SpM×V oper-
ations, but only a 14.8% to 23.9% performance improvement
is achieved. The use of sampling in detecting all the available
substructure types (CSX-sampling) rises to 88 CSR SpM×V
operations—an affordable number for on-line preprocessing
of the matrix—providing a 38.9% performance improvement.

15

The preprocessing cost increases significantly with the ac-
tivation of full preprocessing (no windows, no sampling)
approaching the 500 serial CSR SpM×V operations, only to
offer a mere 1.5% additional performance improvement over
CSR. Nonetheless, the cost of this case is only slightly higher
than the sampling cost of our initial CSX implementation [25]
(≈350 operations), which reveals the progress performed in
optimizing the preprocessing cost in CSX.

For the completeness of our presentation, we provide here
a note on the preprocessing cost of the other CSR alternatives
considered in the paper. VBL’s preprocessing is very small
(3–6 serial CSR SpM×V iterations), since it consists only of
the conversion cost from CSR to VBL and its performance is
comparable to CSX-horiz. For BCSR, the conversion cost is
17–65 SpM×V operations. However, we do not have an exact
number for the detection phase of BCSR, since we performed
an exhaustive search; we expect the total preprocessing cost
of BCSR using statistical block detection to exceed slightly
the statistical preprocessing of CSX.

D. Integrating CSX into multiphysics simulation software

As a further evaluation of the potential of CSX in optimizing
SpM×V in the context of a multiphysics application, we
have integrated it into the Elmer [21] multiphysics simulation
software. Elmer employs iterative Krylov subspace methods
for treating large problems using the pre-conditioned Bi-
Conjugate Gradient Stabilized (BiCGStab) method for the
solution of the resulting linear systems. Elmer supports par-
allelism across multiple nodes using MPI, but uses only a
single thread inside every node. For this reason, we have also
implemented a multithreaded CSR version for Elmer, in order
to achieve a fair comparison with CSX. Fig. 17 shows the
average speedup achieved by Elmer in a 24-node, two-way,
quad core Intel Xeon E5405/E5335 (Harpetown/Clovertown)
mixed cluster (192 cores) for five large (> 576 MiB) bench-
mark problems of the Elmer test suite. The Clovertown nodes
have less memory bandwidth and we have started using them
from the 16-node configuration, thus the knee in the speedup
diagrams for the multithreaded CSR/CSX versions. We have
also used a diagonal preconditioner, which consumed almost
half of the execution time in three of our benchmarks. We show
results after 1000 linear system iterations, since in practical
applications the solver may need thousands of iterations to
converge. CSX, including its preprocessing cost, was able to
improve the performance of the Elmer’s SpM×V component
by 37% over the multithreaded CSR, while the performance of
the overall solver was improved by a noticeable 14.8%, despite
the large preconditioning cost in three of our benchmarks. We
believe this improvement could have been much more signif-
icant, have other parts of the solver (e.g., the preconditioner)
been also multithreaded.

IX. RELATED WORK

Research in sparse matrices has been active since the times
of the first computer systems. Early descriptions of the CSR
format go back in late 1960’s, where the CSR format was
described as a possible way of storing a sparse matrix [29]–
[31]. One of the first and very revealing surveys on the

indexing structures of sparse matrices, dating back in 1973,
is that of Pooch and Nieder [32]. In this paper, the authors
describe a series of different indexing structures for sparse
matrices, referred to as row-column schemes, including the
Coordinate format, the CSR and BCSR. They also describe
a bit map scheme, where the colind structure is replaced
by a bit map for identifying the non-zeros pattern inside a
row of the matrix. In the same survey, Pooch and Nieder also
designate the use of delta indexing of the column indices,
which is what CSR-DU [12] and DCSR [33] employ for the
compression of the colind structure.

Despite being used as a standard sparse matrix storage
format under different descriptions [34], [35], the term Com-
pressed Sparse Row format or CSR was ‘standardized’ by
Saad [6], [36]. In the same set of works, Saad also coins
the terms Coordinate format (COO) and Blocked Sparse Row
(BSR), which is later standardized as Blocked Compressed
Sparse Row (BCSR) by Im and Yelick [8], [37]. Im and Yelick
exploit the blocked structure of BCSR for register reuse and
also propose a heuristic for automatically selecting the best
block size for the matrix. Vuduc et al. [38] investigate the
performance bounds of SpM×V using BCSR by modeling the
cache and TLB behavior and also extend the auto-tuning capa-
bility of SPARSITY [37] by using hybrid offline/online models.
In [39], the authors extend BCSR to support unaligned blocks,
in order to minimize the BCSR’s padding, and also discuss the
Variable Block Row (VBR) format, which uses variable size
two-dimensional blocks. The work on BCSR and its variations
culminated in the OSKI sparse kernel library [28], which
provides an auto-tuning sparse matrix optimization framework.

Pinar and Heath [7] employ variable sized one-dimensional
blocks and present the Variable Block Length (VBL) format,
which we discussed in more detail in previous sections.
Agarwal et al. [9] decompose the input matrix into multiple
submatrices, each one storing a different substructure. Belgin
et al. [24] also employ the same decomposition technique in
their Pattern Block Row (PBR) format. Specifically, they store
in each submatrix an arbitrary block pattern and generate spe-
cific C SpM×V routines for each pattern. Another interesting
approach in blocking storage formats for sparse matrices is
the Compressed Sparse Block (CSB) format proposed recently
by Buluç et al. [22]. The motivation behind this format is the
efficient support of both Ax and ATx sparse matrix operations,
the second being less efficient with the row-oriented common
storage formats. For this reason, CSB divides the matrix into
large sparse square blocks, which are stored using the coordi-
nate storage scheme, but with small integers for the row and
column indices. The authors employ task parallelization using
Cilk++ and expand their format to support also symmetric
matrices in [40].

Willcock and Lumsdaine [33] take a different approach and
apply delta compression explicitly in the column indices of
CSR, proposing the Delta-Coded Sparse Row (DCSR) format.
The also apply run-length encoding for delta distances up to
four. Kourtis et al. [12], [41] take a similar approach by delta-
encoding the column indices and applying run-length encoding
for detecting arbitrary horizontal substructures in the sparse
matrix. Kourtis et al. [12] also propose a storage format for
compacting the non-zero values by keeping only unique values

16

1 2 4 8 16 24

Nodes (x8 cores)

1

10

20

30
40

S
pe

ed
up

CSX-mt
CSR-mt
CSR (orig)

(a) Speedup of the SpM×V component.

1 2 4 8 16 24

Nodes (x8 cores)

1

10

20

30

S
pe

ed
up

CSX-mt
CSR-mt
CSR (orig)

(b) Speedup of the Elmer solver.

Fig. 17. Speedup of the Elmer multiphysics simulation software by employing CSX (preprocessing time is included) after 1000 linear system iterations.

and an associated indexing structure. Escudero [42] has also
presented a similar approach in his Super-Sparse (SS) format.

Considerable research has also been conducted recently in
characterizing the performance behavior of SpM×V. Williams
et al. [4] perform a performance evaluation of the SpM×V
kernel in modern commodity and emerging multicore archi-
tectures and evaluate the performance impact of a set of
different optimizations. Goumas et al. [3] provide an in-
depth experimental evaluation of the SpM×V kernel in modern
commodity SMP and NUMA arhictectures identifying and
classifying the different performance problems of the kernel.
Karakasis et al. [26], [43] expand this evaluation in blocked
storage formats and investigate the impact of block shapes on
the performance of the SpM×V kernel.

X. CONCLUSIONS

In this paper, we have presented in detail and evalu-
ated the performance of the Compressed Sparse eXtended
(CSX) sparse matrix storage format in a variety of modern
multicore architectures. CSX integrates in a single storage
format the most commonly encountered substructures inside
sparse matrices, including horizontal, vertical, diagonal and
two-dimensional substructures. In conjuction with the highly
compressed representation of the substructure indexing infor-
mation, CSX is able to minimize the memory footprint of the
sparse matrix, therefore alleviating the pressure exerced to the
memory subsystem, induced by the highly streaming nature
of the SpM×V kernel. Compared to other CSR alternatives,
like BCSR and VBL, CSX is able to provide considerable
performance improvements not only in symmetric shared
memory architectures, but also in NUMA platforms, where
the computational part of the kernel is more prominent. Even
in cases that it does not achieve the best overall performance,
CSX manages to stay very close to the best, exposing stability
that lacks from other, more monolithic, formats. Most notably,
this performance advantage does not come at an excessive
preprocessing cost, since CSX employs advanced techniques
for minimizing this cost. Indeed, CSX was able to consider-
ably accelerate the performance of a multiphysics simulation,
despite its initial bootstrap cost.

As a future research direction, we plan to investigate alter-
native parallelization schemes for CSX, e.g., task-parallelism

techniques, and experiment with more advanced heuristics
for the selection of the substructures for encoding in CSX,
especially in architectures where the computational part of the
kernel is more exposed. Finally, we plan to exploit the insight
of the matrix structure that CSX offers during its preprocessing
phase, in order to guide the SpM×V execution for achieving
high performance and increased energy-efficiency.

REFERENCES

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick, “The landscape of parallel computing research: A
view from berkeley,” University of California, Berkeley, Tech. Rep.
UCB/EECS-2006-183, 2006.

[2] P. Colella, “Defining software requirements for scientific computing,”
2004, DARPA’s High Productivity Computer Systems (pres.).

[3] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris,
“Performance evaluation of the sparse matrix-vector multiplication on
modern architectures,” The Journal of Supercomputing, vol. 50, no. 1,
pp. 36–77, 2009.

[4] S. Williams, L. Oilker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms,” in Proceedings of the 2007 ACM/IEEE conference on
Supercomputing. Reno, NV, USA: ACM, 2007.

[5] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Communications
of the ACM – A Direct Path to Dependable Software, vol. 52, no. 4, pp.
65–76, Apr. 2009.

[6] Y. Saad, Numerical methods for large eigenvalue problems. Manchester
University Press ND, 1992.

[7] A. Pinar and M. T. Heath, “Improving performance of sparse matrix-
vector multiplication,” in Proceedings of the 1999 ACM/IEEE conference
on Supercomputing. Portland, OR, USA: ACM, 1999.

[8] E.-J. Im and K. A. Yelick, “Optimizing sparse matrix computations
for register reuse in SPARSITY,” in Proceedings of the International
Conference on Computational Sciences – Part I. Springer-Verlag, 2001,
pp. 127–136.

[9] R. C. Agarwal, F. G. Gustavson, and M. Zubair, “A high perfor-
mance algorithm using pre-processing for the sparse matrix-vector
multiplication,” in Proceedings of the 1992 ACM/IEEE conference on
Supercomputing. Minneapolis, MN, USA: IEEE Computer Society,
1992, pp. 32–41.

[10] R. Vuduc, “Automatic performance tuning of sparse matrix kernels,”
Ph.D. dissertation, University of California, Berkeley, 2003.

[11] R. Geus and S. Röllin, “Towards a fast parallel sparse matrix-vector
multiplication,” Parallel Computing, vol. 27, pp. 883–896, 2001.

[12] K. Kourtis, G. Goumas, and N. Koziris, “Optimizing sparse matrix-
vector multiplication using index and value compression,” in Proceed-
ings of the 5th conference on Computing frontiers. Ischia, Italy: ACM,
2008.

[13] C. Lattner, “LLVM and Clang: Advancing Compiler Technology,”
in Free and Open Source Developers’ European Meeting, Brussels,
Belgium, Feb. 2011. [Online]. Available: http://clang.llvm.org/

http://clang.llvm.org/

17

[14] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in International
Symposium on Code Generation and Optimization (CGO’04). San
Jose, CA, USA: IEEE Computer Society, 2004. [Online]. Available:
http://www.llvm.org/

[15] Y. Saad, “Krylov subspace methods for solving large unsymmetric linear
systems,” Mathematics of Computation, vol. 37, no. 155, pp. 105–126,
1981.

[16] ——, Iterative Methods for Sparse Linear Systems. SIAM, 2003.
[17] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual

algorithm for solving nonsymmetric linear systems,” SIAM Journal on
Scientific and Statistical Computing, vol. 7, no. 3, pp. 856–869, 1986.

[18] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,” Journal of Research of the National Bureau of
Standards, vol. 49, no. 6, pp. 409–436, 1952.

[19] M. Hoemmen, “Communication-avoiding Krylov subspace methods,”
Ph.D. dissertation, University of California, Berkeley, 2010.

[20] H. A. van der Vorst, “Bi-CGSTAB: A fast and smoothly converging
variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM
Journal on Scientific and Statistical Computing, vol. 13, no. 2, pp. 631–
644, 1992.

[21] M. Lyly, J. Ruokolainen, and E. Järvinen, “ELMER – a finite element
solver for multiphysics,” in CSC Report on Scientific Computing,
1999–2000. [Online]. Available: http://www.csc.fi/english/pages/elmer

[22] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multiplication
using compressed sparse blocks,” in Proceedings of the twenty-first
annual Symposium on Parallelism in Algorithms and Architectures
(SPAA’09). Calgary, Canada: ACM, 2009, pp. 233–244.

[23] A. W. Wulf and S. A. McKee, “Hitting the memory wall: implications
of the obvious,” ACM SIGARCH Computer Architectures News, vol. 23,
no. 1, 1995.

[24] M. Belgin, G. Back, and C. J. Ribbens, “Pattern-based sparse matrix rep-
resentation for memory-efficient SMVM kernels,” in Proceedings of the
23rd international conference on Supercomputing (ICS’09). Yorktown
Heights, NY, USA: ACM, 2009, pp. 100–109.

[25] K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris, “CSX: An
extended compression format for SpMV on shared memory systems,”
in Proceedings of the 16th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming (PPoPP’11). San
Antonio, Texas, USA: ACM, 2011, pp. 247–256.

[26] V. Karakasis, G. Goumas, and N. Koziris, “Exploring the effect of
block shapes on the performance of sparse kernels,” in 2009 IEEE
International Symposium on Parallel & Distributed Processing. Rome,
Italy: IEEE Computer Society, 2009, pp. 1–8.

[27] T. Davis and Y. Hu, “The university of Florida sparse matrix collection,”
ACM Transactions on Mathematical Software, vol. 38, pp. 1–25, 2011.

[28] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A library of auto-
matically tuned sparse matrix kernels,” Journal of Physics: Conference
Series, vol. 16, no. 521, 2005.

[29] W. Tinney and J. Walker, “Direct solutions of sparse network equa-
tions by optimally ordered triangular factorization,” IEEE Proceedings,
vol. 55, no. 11, pp. 1801–1809, 1967.

[30] A. R. Curtis and J. K. Reid, “The solution of large sparse unsymmetric
systems of linear equations,” IMA Journal of Applied Mathematics,
vol. 8, pp. 344–353, 1971.

[31] F. G. Gustavson, “Some basic techniques for solving sparse systems of
linear equations,” in Sparse Matrices and Their Applications. Plenum
Press, 1972, pp. 41–52.

[32] U. W. Pooch and A. Nieder, “A survey of indexing techniques for sparse
matrices,” ACM Computing Surveys, vol. 5, pp. 109–133, 1973.

[33] J. Willcock and A. Lumsdaine, “Accelerating sparse matrix computations
via data compression,” in Proceedings of the 20th annual International
conference on Supercomputing. Cairns, QLD, Australia: ACM, 2006,
pp. 307–316.

[34] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, “Yale
sparse matrix package I: The symmetric codes,” International Journal
for Numerical Methods in Engineering, vol. 18, pp. 1145–1151, 1982.

[35] S. Pissanetzky, Sparse Matrix Technology. London, UK: Academic
Press, 1984.

[36] Y. Saad, “SPARSKIT: A basic tool kit for sparse matrix computations,”
1994.

[37] E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization framework
for sparse matrix kernels,” International Journal of High Performance
Computing Applications, vol. 18, pp. 135–158, 2004.

[38] R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil, R. Nishtala, and
B. Lee, “Performance optimizations and bounds for sparse matrix-
vector multiply,” in Proceedings of the 2002 ACM/IEEE conference on
Supercomputing. Baltimore, MD, USA: IEEE Computer Society, 2002,
pp. 1–35.

[39] R. W. Vuduc and H.-J. Moon, “Fast sparse matrix-vector multiplication
by exploiting variable block structure,” in High Performance Computing
and Communications, ser. Lecture Notes in Computer Science, vol.
3726. Springer Berlin/Heidelberg, 2005, pp. 807–816.

[40] A. Buluç, S. Williams, L. Oliker, and J. Demmel, “Reduced-bandwidth
multithreaded algorithms for sparse matrix-vector multiplication,” in
IEEE International Parallel & Distributed Processing Symposium. An-
chorage, AK, USA: IEEE Computer Society, 2011, pp. 721–733.

[41] K. Kourtis, G. Goumas, and N. Koziris, “Exploiting compression oppor-
tunities to improve SpMxV performance on shared memory systems,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 7, no. 3, 2010.

[42] L. F. Escudero, “Solving systems of sparse linear equations,” Advances
in Engineering Software, vol. 6, pp. 141–147, 1984.

[43] V. Karakasis, G. Goumas, and N. Koziris, “A comparative study of
blocking storage methods for sparse matrices on multicore architec-
tures,” in 12th IEEE International Conference on Computational Science
and Engineering. Vancouver, Canada: IEEE Computer Society, 2009.

http://www.llvm.org/
http://www.csc.fi/english/pages/elmer

	Introduction
	Background & Motivation
	Significance of the SpMV and performance bottlenecks
	Sparse matrix storage formats and their compression potential
	Trends in modern mainstream computer architectures

	The Compressed Sparse eXtended format
	The need for an integrated storage format
	The data structures

	Detection and encoding of substructures
	Mining the matrix for substructures
	Selecting substructures for final encoding

	Generating the SpMV code
	Tackling the preprocessing cost
	Porting to NUMA architectures
	Experimental Evaluation
	Setup and methodology
	The performance of the CSX format
	The preprocessing cost
	Integrating CSX into multiphysics simulation software

	Related work
	Conclusions
	References

