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Efficient evolution of accurate classification rules using a
combination of Gene Expression Programming and Clonal Selection

Vasileios K. Karakasis, Member, IEEE and Andreas Stafylopatis, Member, IEEE

Abstract— A hybrid evolutionary technique is proposed for
data mining tasks, which combines a principle inspired by the
Immune System, namely the Clonal Selection Principle, with
a more common, though very efficient, evolutionary technique,
Gene Expression Programming (GEP).

The clonal selection principle regulates the immune response
in order to successfully recognize and confront any foreign
antigen, and at the same time allows the amelioration of the
immune response across successive appearances of the same
antigen. On the other hand, Gene Expression Programming
is the descendant of Genetic Algorithms and Genetic Pro-
gramming and eliminates their main disadvantages, such as
the genotype-phenotype coincidence, though it preserves their
advantageous features.

In order to perform the data mining task, the proposed
algorithm introduces the notion of a Data Class Antigen,
which is used to represent a class of data. The produced rules
are evolved by our clonal selection algorithm (ECA), which
extends the recently proposed CLONALG algorithm. In ECA,
among other new features, a receptor editing step has been
incorporated. Moreover, the rules themselves are represented
as antibodies that are coded as GEP chromosomes in order to
exploit the flexibility and the expressiveness of such encoding.

The proposed hybrid technique is tested on a set of bench-
mark problems in comparison to GEP. In almost all problems
considered, the results are very satisfactory and outperform
conventional GEP both in terms of prediction accuracy and
computational efficiency.

Key terms: Clonal Selection Principle, Gene Expression Pro-
gramming, Artificial Immune Systems, Data Mining.

NOMENCLATURE

Common abbreviations and terms
AIS Artificial Immune System
AIRS Artificial Immune Recognition System
CLONALG A clonal selection algorithm
CV Cross-Validation
DCA Data Class Antigen
ECA Enhanced Clonal Algorithm
ET Expression Tree
GA Genetic Algorithm
GEP Gene Expression Programming
GP Genetic Programming
MDL Minimum Description Length
MSE Mean Squared Error
ORF Open Reading Frame
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ECA-specific notation and terms
ai The mutation rate of a specific antibody.
B The set of best antibodies.
C The set of clones.
e The least mean square error.
f The affinity function.
G The set of antigens.

K
The mapping between antigens and memory
cells.

L The language of an antibody.
M The memory cells set.

Mi
The set of memory cells, which recognize a
specific antigen.

M′i The set of memory cells, which are candidate for
replacement.

nb # best antibodies of the population.
ne # antibodies to undergo receptor editing.
nm # best mutated clones.

np
# antibodies to form a pool for the receptor
editing process.

P The population set.
R The remaining cells set (non-memory).
β The clone factor.
ρ The decay factor for the mutation rate.
Σ The alphabet of an antibody.

GEP-antibody notation
h Length of antibody’s head.
L Total length of an antibody.
Leff Effective length of an antibody.
LORF Length of an ORF.
t Length of antibody’s tail.

Nc
# symbols used for the encoding of an anti-
body.

ECA+GEP-specific notation
compl(·) Completeness of a rule.
consig(·) Consistency gain of a rule.
LR Encoding length of a rule set.

Le
Encoding length of the exceptions of a
rule.

Lt Encoding length of the theory of a rule.
N # negative examples of a class.
Nfn # false negatives.
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ECA+GEP-specific notation (continued)

Nfp # false positives.

n
# negative examples of a class covered by
a rule.

P # positive examples of a class.

p
# positive examples of a class covered by
a rule.

R A rule set.
r A rule.
w Theory weight factor.

I. INTRODUCTION

Recently, the immune system and the mechanisms it
utilizes in order to protect the body from invaders has become
a new promising field in the domain of machine learning. The
natural immune system is a very powerful pattern recognition
system, which has not only the ability to recognize and
destroy foreign antigens, but also the ability to distinguish
between its own and foreign cells. Additionally, the immune
system can be characterized as a very effective reinforcement
learning system since it is capable of continuously improving
its response to antigenic stimuli, which it has encountered
in the past. The mechanisms that regulate the behaviour of
the natural immune system and how these mechanisms and
concepts can be applied to practical problems is the matter
of research in the field of Artificial Immune Systems (AIS).

In this work, we examine further an enhanced imple-
mentation of CLONALG [5], called ECA, that we have
proposed in [12]. The innovative features of our approach
may be summarized as follows. The memory update process
of CLONALG is reviewed and defined in a more formal
manner, providing some additional features. Antigens are
no longer defined as symbol strings, and the concept of
generic antigens is introduced. Antibodies are defined as
symbol strings of a language L and not as simple bit- or
real-valued vectors. Also, additional control is included in the
proliferation phase of the algorithm, and population refresh
is altered. A new feature in our implementation is a step
of receptor editing, which has been added just before the
first selection of antibodies. Receptor editing is expected to
provide wider exploration of the solution space and helps the
algorithm avoid local optima [22].

The above enhanced clonal selection algorithm is coupled
with a relatively new evolutionary technique, Gene Expres-
sion Programming (GEP), and is used to mine classification
rules in data. GEP [6] was introduced by Ferreira as the
descendant of Genetic Algorithms and Genetic Programming
(GP) in order to combine their advantageous features and
eliminate their main handicaps. The most innovative feature
of GEP is that it separates genotype from phenotype of
chromosomes, which was one of the greatest limitations of
both GAs and GP. In this paper, we isolate from GEP the
representation of chromosomes, henceforth antibodies, and
use ECA to evolve them so as to exploit its higher conver-
gence rate. The actual classification of data and the formation

of rules is based mainly on the work of Zhou et al. [27],
who have successfully applied GEP to data classification.
Specifically, the one-against-all learning technique is used in
order to evolve rules for multiple classes, and the Minimum
Description Length (MDL) principle is used to avoid data
overfitting. However, in contrast to Zhou et al., who use
a two-phase rule pruning, we use only a prepruning phase
through the MDL criterion, which, in some cases, yields
more complex rule sets. The rules generated by our system
are IF-THEN rules, which check for a condition on some
or all of the input attributes. When a new data instance is
presented, each rule of the rule set is checked in turn until
one is triggered. This rule will classify the new instance.

Finally, the concept of a Data Class Antigen (DCA) is
introduced, which represents a class of data to be mined.
Apart from generic antigens, a new multiple-point multiple-
parent recombination genetic operator is added to GEP in
order to implement receptor editing.

The proposed algorithm was tested on a set of benchmark
problems obtained from the UCI repository [16], and the re-
sults were very satisfactory both in terms of rule set accuracy,
as well as in terms of the computational resources required.
A comparison to the accuracy of the conventional GEP and
the C4.5 is presented. A more qualitative comparison to the
AIRS [24] system is also attempted, and a set of comparative
accuracy results are also presented in this case.

The rest of the paper is structured as follows. Section II
presents a brief description of previous work on the field
of data classification with Artificial Immune Systems. Sec-
tion III provides a quick overview of the clonal selection
principle and its basic concepts. Section IV describes ECA,
and Section V discusses a set of convergence issues of
the algorithm. Section VI provides a brief description of
GEP and also introduces the multiple-point multiple-parent
recombination operator. In Section VII, it is described how
the proposed hybrid technique is applied to data mining,
and Section VIII presents some experimental results on a set
of benchmark problems. The following section (Section IX)
settles a discussion over the results and compares qualita-
tively the proposed algorithm with AIRS. Finally, Section X
concludes the paper and proposes future work.

II. PREVIOUS WORK

Early work on Artificial Immune Systems examined their
potential in machine learning and compared them to known
techniques, such as artificial neural networks and conven-
tional genetic algorithms (GAs) [11], [3], [4], [22], [23]. One
of the first features of the natural immune system, which
was modelled and used in pattern recognition tasks, was
the Clonal Selection Principle, first introduced by Burnet [1]
in 1959, upon which reinforcement learning in the immune
system is based. Later research in immunology has enhanced
Burnet’s theory by introducing the notion of receptor edit-
ing [18], which will be discussed further in Section III-B.
A first attempt to model the clonal selection principle was
made by Weinard [25], though from a more biological point
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of view. Fukuda et al. [8] were the first to present a more
abstract model of the clonal selection principle, which they
applied to computational problems. However, it was the work
of De Castro and Von Zuben [22], [5] on the CLONALG
algorithm that considerably raised the interest around the
clonal selection principle and its applications. CLONALG is
an easy to implement and effective evolutionary algorithm,
which may be applied both to optimization and pattern
recognition tasks. CLONALG maintains a population of
antibodies, which it evolves through selection, cloning, and
hypermutation. The most important features of CLONALG
are that selection is a two-phase process, and that cloning
and hypermutation depend on the fitness of the cloned or mu-
tated antibodies, respectively. Improvements and variations of
CLONALG were later introduced by White and Garrett [26],
who proposed the CLONCLAS algorithm, and by Nicosia
et al. [17], who proposed a variation of the CLONALG,
which used a probalistic half-life of B-cells and a termination
criterion based on information theory. A more sophisticated
application of the clonal selection principle is the AIRS [24]
supervised learning system, which in its first implementation
combined aspects of immune network theory [22] with the
concept of the clonal selection principle. Later simplifications
on the AIRS system led to better resource utilization of the
algorithm and even better performance. A more detailed dis-
cussion of the AIRS system will be performed in Section IX.
Polat et. al [19] presented an elaboration on the AIRS algo-
rithm, which used a fuzzy resource allocation mechanism.
Their method achieved comparable classification accuracy
to the original AIRS system but with a limited number of
resources. Finally, AWAIS [21] is another implementation
of the clonal selection principle, which uses a weighting
mechanism of input attributes, in order to exclude irrelevant
attributes from playing a significant role in determining a
class, which is an inherent problem of affinity measures
based on the euclidean distance, such as the one used in
AIRS.

III. OVERVIEW OF THE CLONAL SELECTION PRINCIPLE

The clonal selection principle refers to the algorithm
employed by the immune system to react to an antigen.
The clonal selection theory was originally proposed by
Burnet [1] and establishes the idea that those lymphocytes
that better recognize the antigen have a higher probability of
reproduction.

When an antigen invades the organism, the first immune
cells to be activated are the T-lymphocytes, which have
the ability to recognize the foreign organism. Once they
have successfully recognized the antigen, they start secreting
cytokines, which in turn activate the B-lymphocytes. After
activation, B-lymphocytes start proliferating and, finally, ma-
ture and differentiate into plasma and memory cells. Plasma
cells are responsible for the secretion of antigen-specific
antibodies, while memory cells remain inactive during the
current immune response; they will be immediately activated
when the same antigen appears again in the future.
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Fig. 1. The clonal selection principle.

The clonal selection principle can be summarized in the
following three key concepts:

1) The new cells are clones of their parents and are
subjected to somatic mutations of high rate (hypermu-
tation).

2) The new cells that recognize self cells are eliminated.
3) The mature cells are proliferated and differentiated

according to their stimulation by antigens.
When an antigen is presented to the organism, apart from T-
lymphocytes, some B-lymphocytes bind also to the antigen.
The stimulation of each B-lymphocyte depends directly on
the quality of its binding to the specified antigen, i.e., its
affinity to the antigen. Thus, the lymphocytes that better
recognize the antigen leave more offspring, while those that
have developed self-reactive receptors or receptors of inferior
quality are eliminated. In that sense, the clonal selection
principle introduces a selection scheme similar to the natural
selection scheme, where the best individuals are selected
to reproduce. The clonal selection principle is depicted in
Figure 1. In the following, learning in the immune system
and the mechanisms for the immune response maturation are
briefly described. A more detailed presentation can be found
in [22], [5].

A. Learning in the immune system

During its lifetime an organism is expected to encounter
the same antigen many times. During the first encounter,
there exist no specific B-lymphocytes, and thus, only a
small number of them are stimulated and proliferate (primary
immune response). After the infection is successfully treated,
the B-lymphocytes that exhibited higher affinities are kept in
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Fig. 2. Antibody concentration during the primary, the secondary and the
cross-reactive immune response.

a memory pool for future activation. When the same antigen
is encountered again in the future, memory B-lymphocytes
are immediately stimulated and start proliferating (secondary
immune response). During their proliferation, B-lymphocytes
are subjected to a hypermutation mechanism, which may
produce cells with higher affinities. After the suppression of
the immune response, the best lymphocytes enter the memory
pool. The process of “storing” the best cells into memory
may lead to the reinforcement of the immune responce across
successive encounters of the same antigen, as better cells
will always be the subject of the evolution. In that sense, the
immune response could be considered as a reinforcement
learning mechanism.

This notion could be schematically represented as in
Figure 2, where the x-axis represents time, and the y-axis
represents the antibody concentration. In this figure, A1,
A2, and A′1 represent different antigens that are successively
presented to the organism. When A1 is first encountered at
moment t1, there exist no specific lymphocytes for this anti-
gen, so a lag phase (∆τ1) is introduced until the appropriate
antibody is constructed. At moment t2, A1 appears again,
along with the yet unknown antigen A2. The response to A2

is completely similar to the primary response to A1, which
proves the specificity of the immune response, while the
current response to A1 is considerably faster (∆τ2 � ∆τ1)
and more effective (higher antibody concentration). The third
phase depicted in Figure 2 reveals another important feature
of the immune memory. It is an associative memory. At
moment t3, antigen A′1, which is structurally similar to
antigen A1, is presented to the immune system. Although
A′1 has never been encountered before, the immune system
responds very effectively and directly (∆τ3 ≈ ∆τ2). This
can be explained by the fact that the A1-specific antibodies
can also bind to the structurally similar A′1, hence providing
a quality basis for the A′1 antibodies, which leads to a more
effective immune response. This type of immune response is
called cross-reactive immune response.

The gradual amelioration of the immune response, which
is achieved through successive encounters of the same anti-
gen, is described by the term maturation of the immune
response or simply affinity maturation. The mechanisms
through which this maturation is achieved, are described in
the following Section.

A

C

B

C‘

B‘

A‘

Fig. 3. Two dimensional representation of the antibody-antigen binding
space. Hypermutation discovers local optima, whereas receptor editing can
discover the global optimum.

B. Affinity maturation mechanisms

The maturation of the immune response is basically
achieved through two distinct mechanisms:

1) hypermutation, and
2) receptor editing.
Hypermutation introduces random changes (mutations)

with high rate into the B-lymphocyte genes, which are
responsible for the formation of the antibodies’ variable
region. The hypermutation mechanism, apart from the dif-
ferentiation of the antibody population, permits also the fast
accumulation of beneficial changes to lymphocytes, which,
in turn, contributes to the fast adaptation of the immune
response. On the other hand, hypermutation, due to its
random nature, may often introduce deleterious changes to
valuable lymphocytes, thus degrading the total quality of the
antibody population. Therefore, a mechanism that regulates
hypermutation should exist, which would allow mutations
with high rate to lymphocytes that produce poor antibodies,
and impose a very small or null rate to lymphocytes with
“good” receptors.

Receptor editing was introduced by Nussenzweig [18],
who stated that B-lymphocytes undergo also a molecular
selection. It was discovered that B-lymphocytes with low
quality or self-reactive receptors destroy those receptors and
develop completely new ones by a V(D)J recombination.
During this process, genes from three different gene libraries,
namely libraries V, D, and J, are recombined in order to
form a single gene in the B-lymphocyte genome, which
is then translated into the variable region of antibodies.
Although this mechanism was not embraced in Burnet’s
clonal selection theory, it can be easily integrated as an
additional step before the selection of lymphocytes.

The existence of two mechanisms for the differentiation
of the antibody population is not a redundancy, but they
operate complementarily [22]. As depicted in Figure 3, the
hypermutation mechanism can only lead to local optima
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of the antibody-antigen binding space (local optimum A′),
whereas receptor editing can provide a more global explo-
ration of the binding space (“jumps” to B and C). Thus,
hypermutation can be viewed as a refinement mechanism,
which—in combination with receptor editing, which provides
a coarser but broader exploration of the binding space—can
lead to the global optimum.

IV. THE ENHANCED CLONAL ALGORITHM

The basis of the hybrid evolutionary technique presented
in this paper is an implementation of CLONALG, which
was first introduced by Von Zuben and De Castro [5], [22].
Although the basic concept of the algorithm remains the
same, our implementation, which we call Enhanced Clonal
Algorithm (ECA), is built upon a slightly different theoretical
background in order to be easily coupled with the GEP
nomenclature. ECA was briefly described in [12]; here a
deeper investigation is attempted.

ECA maintains a population P of antibodies1, which are
the subject of evolution. An antibody is defined to be a string
of a language L, such that

L = {s ∈ Σ∗ and |s| = l, l ∈ N},
where Σ is a set of symbols and l is the length of the
antibody. Both Σ and l are parameters of the algorithm and
are set in advance.

The population of antibodies, P , can be divided into two
distinct sets, M and R, such that

M∪R = P and M∩R = ∅,
where M contains the memory cells and R contains the
remaining cells.

A set G of antigens to be recognized is also defined. It
is worth mentioning that the only restriction imposed on
G is that it should be a collection of uniform elements,
i.e., elements of the same structure or representation; no
assumption is made as to the structure or the representation
themselves. For that reason, these antigens are called generic
antigens. Generic antigens may allow ECA to be used in a
variety of pattern recognition problems.

Between sets G andM a mapping K is defined, such that

K : G →M.

This mapping associates antigens with memory cells, which
are capable of recognizing them. Generally, the mapping
K may not be a function since a single antigen may be
recognized by a set of different memory cells, or, stated
differently, a set of memory cells may be “devoted” to the
recognition of a specific antigen. For example, let G =
{g0, g1} andM = {m0,m1,m2}, then a mapping K, which

1In the remaining of the paper no distinction will be made between
antibodies and lymphocytes since the former constitute the gene expression
of the latter.

is defined as

K(g0) = m0,

K(g1) = m1,

K(g1) = m2,

states that memory cell m0 recognizes antigen g0, and
memory cells m1, m2 recognize antigen g1. The fact that K
is not a function may impose a difficulty during the phase of
memory updating since it will not be clear to the algorithm
which memory cell to replace. For that reason, apart from
the mapping K, a memory update policy will be needed in
order to update memory in a consistent manner. This policy
is responsible for selecting the memory cells that will be
candidate for replacement, and the way this replacement will
take place, as it is possible that more than one memory cells
are updated during the memory update phase (see algorithm
step 8 below). On the other hand, if K is a function, there is
no need for a memory update policy, and a single memory
cell could recognize more than a single antigen, providing
in such a way a means for generalization.

The mapping K divides the memory set M into a set of
distinct subsets Mi such that

Mi = {m : m = K(gi), gi ∈ G}, 1 ≤ i ≤ n = |G|.
If
⋃n
i=1Mi =M, then K defines a partition over the setM

andM is called minimal since every memory cell recognizes
an antigen. It can easily be proved that a population set P
with a non minimal memory set can always be converted
to an equivalent population set P ′ with a minimal memory
set. Although in a reasonable algorithm configuration non-
mininal memory set is not the case, the above statement
is presented and proved formally for the sake of algorithm
analysis.

Lemma IV.1. Every population set P with a non-minimal
memory set can be reduced to an equivalent population set
with a minimal memory set.

Proof. Let Mu = M − ⋃ni=1Mi, then Mu contains all
the memory cells that do not recognize any antigen. By
definition, these are the cells, for which K−1 is not defined.
If the elements of R and M are rearranged such that

R′ = R∪Mu, and (1)

M′ =M−Mu =
n⋃
i=1

Mi, (2)

then the set M′ is minimal and the new population P ′ =
R′∪M′ is equal to the former population P both structurally
and functionally, as it contains exactly the same cells, and
its memory can recongize exactly the same antigens.

Practically, a non-minimal memory set contains redundant
cells that do not recognize any antigen, therefore, these cells
can be part of the non-memory cells of the population.

Finally, the affinity function between antibodies and anti-
gens is defined as

f : L × G → R.
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Fig. 4. The ECA algorithm; a modified version of the CLONALG
algorithm.

The function f should return higher values when an antibody
binds well to an antigen and lower ones when the binding
is inadequate. Usually, f is normalized in the interval [0, 1].
The way the “binding” between an antibody and an antigen
is defined depends mainly on the representation of the
antigens and the semantics of the antibody language L, which
makes this concept rather problem specific. The definition of
“binding” for the problem of data mining considered in this
paper is presented in Section VII-B.

Having described the theoretical background of ECA, a
more detailed description of the algorithm follows (see also
Figure 4).
Step 1. [Initialization] Each member of the population is

initialized as a random string of language L. Addition-
ally, a temporary set Gr is defined such that Gr = G.

Step 2. [Antigen presentation] An antigen gi is selected
randomly from the set Gr and is presented to the
population. For each member of the population, the
affinity function f is computed, and the affinity measure
produced is assigned to that member. Finally, antigen gi
is extracted from set Gr.

Step 3. [Receptor editing] The ne antibodies with the low-
er affinities are selected to undergo the receptor editing
process. The best np antibodies are also selected to form
a pool, from which certain substrings will be drawn dur-
ing the V(D)J recombination. The exact procedure of the
V(D)J recombination is described later in this section.
The currently presenting antigen gi is then presented to
edited clones, and their affinity is recomputed.

Step 4. [Selection of best antibodies] The best nb antibod-
ies in terms of their affinity are selected and form the
set B.

Step 5. [Proliferation of best antibodies] Each antibody of
the set B is cloned according to its affinity. Antibodies
with higher affinities produce more clones. This set of
clones is called C.

Step 6. [Maturation of the clones] Each clone cj of set C
is mutated with a rate aj , which depends on the affinity

of the clone. Antibodies with higher affinities should be
mutated at a lower rate. The mutated clones form the
set Cm.

Step 7. [Affinity of clones] The antigen gi is presented to
the set of mutated clones, Cm, and the affinity function
f is computed for each clone.

Step 8. [Memory update] The nm best mutated clones are
selected according to their affinity and form the set B′.
The mapping K is then applied to antigen gi, and the
set Mi of memory cells that recognize gi is obtained.
Next, the memory update policy is applied, and a set
M′i, such that |M′i| = nm ≤ |Mi| is produced, which
is the set of the candidate for replacement memory cells.
These cells will be replaced by selected clones with
higher affinities, so that at the end of this process the
following inequality holds:

f(m, gi) ≥ f(a, gi), ∀m ∈M′i,∀a ∈ B′.
The way the replacement will take place, i.e., how the
selected memory cells will be replaced by the best
clones, is also a matter of the memory update policy
described later.

Step 9. [Population refresh] At this step the population is
refreshed in order to preserve its diversity. The nd worst
cells in terms of their affinity to antigen gi are replaced
by completely new ones, which are random strings of
the language L.

Step 10. [End conditions check] If Gr 6= ∅, then the algo-
rithm is repeated from Step 2. Otherwise, the satisfac-
tion of a convergence criterion between the memory and
the antigen set is checked. At this point, an evolution
generation is said to be complete. If no convergence
has been achieved, then Gr ← G, and the algorithm
is repeated from Step 2, otherwise the algorithm is
terminated. z

1) Proliferation control and regulation of the hypermu-
tation mechanism: The success of the ECA algorithm in
a pattern recognition problem depends heavily on the reg-
ulation of the proliferation of the best antibodies and the
maturation of the clones. Thus, a control mechanism should
be established, which could firstly augment the possibility
that a “good” clone will appear, and secondly guarantee to
the most possible extent that the already “good” clones will
not disappear.

The ECA algorithm uses almost the same control mech-
anisms as CLONALG. Namely, in order to control the
proliferation of the best antibodies, it first sorts the set B
of best antibodies in descending order, and then applies the
formula

ni = round
(
β · nb
i

)
, 1 ≤ i ≤ nb (3)

to compute the number of clones that each antibody will
produce. In this formula, round(·) is the rounding function,
β is a constant, called clone factor, nb is the total number of
antibodies selected in Step 4 of the algorithm, and i is the
rank of each selected antibody in the ordered set B. What is
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Fig. 5. An implementation of the V(D)J recombination.

important here is that the number of clones depends on the
number of antibodies selected before cloning and not on the
total size of population as in CLONALG. This allows finer
control over the proliferation of the best clones, which may
lead to better resource utilization.

Hypermutation is controlled through the exponential func-
tion

α(x) = αmaxe
−ρ·x, αmax ≤ 1, (4)

where α is the mutation rate, αmax is a maximum mutation
rate, ρ is a decay factor, and x is the affinity normalized in
the interval [0, 1].

2) Memory update policy: In general, the memory update
policy depends directly on the cardinality of the memory
and antigen sets, the mapping K, and the number of best
clones, nm, which are candidate for entering the memory
pool. In the problem at hand, a rather simple mapping K and
a straightforward memory update policy were used. First, we
require that |M| = |G|, and the mapping K is defined to be
a one-to-one mapping:

M = K(G).

In the implementation presented here, only one clone is al-
lowed to enter the memory in each generation, and therefore,
the memory update policy is straightforward; the cell to be
replaced is the one denoted by the mapping K, or, more
formally stated, it holds that

M′i =Mi, 1 ≤ i ≤ |G|.
Finally, as a convergence criterion between memory and the
antigen set, the Mean Squared Error (MSE) criterion is used,
considering

e =
1
|M|

|M|∑
i=1

(mi − gi)2, mi = K(gi). (5)

3) Receptor editing: The notion behind the implementa-
tion of the receptor editing process is to form new antibodies
from random substrings of different antibodies of reasonably

Fig. 6. The Lippman character set.

high quality. For that reason, during the receptor editing
process, the np best antibodies are selected to form a pool of
strings. These strings will be recombined through the V(D)J
recombination in order to form the new antibody. V(D)J
recombination is a five step process, which is described by
the following algorithm (see also Figure 5), where lc is the
current length of the antibody under construction, lg is the
length of the substring selected, and L is the length of the
entire antibody.
Step 1. [Initialization] lc ← 0.
Step 2. [Antibody selection] An antibody is selected ran-

domly from the pool of antibodies.
Step 3. [Substring extraction] A substring of random

length lg is extracted from the selected antibody. For
the length lg should hold

lg ≤ L− lc.
Step 4. [Antibody formation] The extracted substring is

appended to the new antibody, and the length lc is
updated:

lc ← lc + lg

Step 5. [End condition] If lc = L, then the algorihtm
terminates. Otherwise, it is repeated from Step 2. z

V. CONVERGENCE ISSUES OF ECA

The ECA algorithm has plenty of parameters and, as a
result, its tuning may be rather tedious. In this section, a
primary approach toward managing the algorithm parameters
will be performed. A character recognition problem will be
used in order to exprerimentally examine some of the main
parameters of ECA, and how these affect its convergence.
An in-depth theoretical investigation of convergence issues
will be the subject of further work.

The character recognition problem consists of 8 characters,
as depicted in Figure 6 [13]. In this step, receptor editing
is disabled, and we seek to understand how the remaining
ECA parameters affect convergence. More specifically, we
will examine how mutation rate decay and clonal expansion
affect performance and accuracy. We will assume that the
algorithm converges, if and only if it does so within 200
generations. As a convergence criterion, we use the Mean
Squared Error (MSE) criterion, formally defined as

e =
1
n

n∑
i=1

d2
i ,

where di is the normalized Hamming distance between the
memory cells and the presented antigens or patterns, and
n = |M|. In the character recognition benchmark problem,
we impose a minimum MSE of 10−3.



8

0 50 100 150 200

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
S

E

Generations

 ρ = 5
 ρ = 2
 ρ = 10
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One critical parameter of ECA, which can considerably
affect convergence, is mutation rate decay ρ, as depicted
in Figure 7, where the MSE is plotted against generation
number. When ρ = 5, ECA converges rather fast within
about 70-75 generations, but when ρ = 2 or ρ = 10, the
algorithm does not succeed to converge within the window of
200 generations. When ρ = 10, the new antibodies are quite
similar to those of previous generations, so it will take the
algorithm longer to form a set of memory cells of adequate
quality. The exact opposite happens when ρ = 2. The high
mutation rate imposed to new antibodies in early generations
will soon create a set of quality cells. However, while these
high mutation rates are beneficial at the beginning, they tend
to hinder the overall performance of the algorithm through
generations, since they may insert deleterious changes to
quality cells obtained so far. The algorithm will eventually
converge because the best cells are always kept in memory,
but at a very slow rate. This hindering behaviour of high
mutation rates can be also deducted from Figure 7, where
the ρ = 10 curve gets lower than the ρ = 2 curve from
generation 70 and forth.

Another critical parameter of the algorithm is the product
βnb, which controls the creation of clones (see Equation 3).
As depicted in Figure 8, larger values of βnb lead to faster
convergence, although differences are rather small as this
product increases. This behaviour could be explained by the
fact that the more the clones, the better the chances for a
quality antibody to appear. However, after a certain number
of clones is attained, more out of them would not benefit at
all because they are already numerous enough to accomodate
any beneficial mutation introduced for a given mutation rate.
This fact imposes a subtle tradeoff between convergence
speed and computational resources needed, as more clones
would not improve convergence rate but, in contrast, they
would reduce the overall performance of the algorithm.

Finally, another interesting issue concerns whether and
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Fig. 9. How independent variation of β and nb affect convergence.

how convergence rate is affected by separately modifying β
or nb while keeping the βnb product constant. In Figures 9
and 10, the average convergence rate and its standard devia-
tion are plotted against the product βnb. Each figure displays
two curves, one corresponding to varying nb keeping β
constant (β = 20), and the other corresponding to varying β
keeping nb constant (nb = 4). Although average convergence
rate seems not to be influenced by β and nb separately,
especially for higher values of their product, the choice of β
and nb seems to affect the standard deviation of convergence
rate, and hence, stability of the algorithm.

VI. GEP ANTIBODIES

In the hybrid data mining approach presented here, an-
tibodies are represented as GEP chromosomes and, hence-
forth, will be referred to as GEP antibodies in order to be
distinguished from classical linearly encoded and expressed
antibodies. GEP antibodies may not be considered as fully
functional GEP chromosomes, in that they do not support
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all the genetic operators (see Section VI-B) defined by
GEP. Nonetheless, such support could be easily integrated
since GEP antibodies maintain the exact structure of GEP
chromosomes.

Gene Expression Programming was first introduced by
Ferreira [6], [7] as the descendant of Genetic Algorithms
(GAs) and Genetic Programming (GP). It fixes their main
disadvantage, the genotype-phenotype coincidence, though
preserving their main advantages, namely the simplicity of
the GAs’ chromosome representation and the higher expres-
sion capabilities of GP. This dual behaviour is achieved
through a chromosome representation, which is based upon
the concepts of Open Reading Frames (ORFs) and non-
coding gene regions, which are further discussed in the
following section.

A. The GEP antibody genome

The GEP genome is a symbol string of constant length,
which may contain one or more genes linked through a
linking function. A GEP gene is the basic unit of a GEP
genome and consists of two parts: the head and the tail. In
the head, any symbol is allowed, either terminal or function.
In the tail, only terminal symbols are allowed. The length of
the tail depends on the actual length of the head of the gene
according to the formula [6]

t = h(n− 1) + 1, (6)

where t is the length of tail, h is the length of head, and n
is the maximum arity of the function symbols in the GEP
alphabet. This formula guarantees that the total gene length
will be enough to hold any combination of function symbols
in the head of the gene, while at the same time preserving
the validity of the produced expression.

To better illustrate the concepts of GEP, consider the
following example. Let F = {Q, ∗, /,−,+} be the function
symbol set, where Q is the square root function, and let

0123456789012345678901234567890
/aQ/b*ab/Qa*b*-ababaababbabbbba

a b

*b

/

Qa

/

Fig. 11. Translation of a GEP gene into an ET.

T = {a, b} be the terminal symbol set. Let also h = 15, and
thus, from equation (6), t = 16, since the maximum arity of
function symbols is n = 2, which is the arity of ∗, /,− and
+. Consider, finally, the following GEP gene with the above
characteristics (the gene tail is denoted in an italic font):

0123456789012345678901234567890
/aQ/b*ab/Qa*b*-ababaababbabbbba

This gene is decoded to an expression tree (ET), as depicted
in Figure 11. The decoding process is rather straightforward.
The ET is constructed in a breadth-first order, while the
gene is traversed sequentially. The expansion of the ET stops
when all leaf nodes are terminal symbols. However, the most
important issue in the decoding process is that only a part
of the GEP gene is translated into an expression tree. This
part is called an Open Reading Frame (ORF) and has variable
length. An ORF starts always at position 0 and spans through
the position where the construction of the corresponding ET
has finished. The rest of the GEP forms the non-coding
region.

Using such a representation of genes, it is obvious that
GEP distinguishes the expression of genes (phenotype), from
their representation (genotype). Additionally, it succeeds in
a rather simple and straightforward manner to couple the
higher expression capabilities of expression trees and the
effectiveness of the pure linear representation.

Finally, GEP antibodies may contain multiple genes. In
such a case, each gene is translated independently, and they
are finally combined by means of a linking function [7]. The
structure of a multigene antibody is depicted in Figure 12.

B. Genetic operators

The flexibility of GEP antibodies allows the easy adoption
of almost any genetic operator that is used by GAs. The only
additional requirement is that these operators should preserve
the structure of the GEP genes, i.e., no operator may insert
non-terminal symbols in the gene tails.

For the purposes of this work, only two genetic operators
are used: the mutation operator, as was originally defined for
GEP [6], [7], and a multiple-parent multiple-point recombi-
nation operator, which is introduced here.



10

012345678901234
+bQ**b+bababbbb
--b/ba/aaababab

*Q*a*-/abaaaaab

a b

+ b

* b

*

Qb

+

a a

/a

/ b

- b

-

+

a a

/ a

*a

Q

b a

-

*

*

+

Fig. 12. A multigene antibody with 3 genes. Individual genes are linked
through addition.

The mutation operator, which is used to perform the hyper-
mutation of antibodies, is rather trivial and is not discussed
here. The multiple-parent multiple-point recombination op-
erator is analogous to one- and two-point recombination
operators used by the standard GEP with the difference that
more than two parents are used and more than two gene split
positions are allowed. This operator was introduced in order
to support the V(D)J recombination mechanism, which was
presented in Section IV, and to provide a better exploration
of the solution space, as well.

The way this operator acts over GEP antibodies resembles
the way V(D)J recombination is performed. Initially, p anti-
bodies are randomly selected to form the set of parents. The
number of parents, p, is a paremeter of the algorithm. Next, a
split point in every parent is randomly generated. Split points
should be in ascending position order, i.e., the split point of
a parent antibody should be at the right of the split point of
the previously split parent. Split point generation is repeated
until a split point coincides with the end of a parent antibody.
If all parents are split once, and the last split point has not
reached the end of an antibody, the split operation proceeds
to the first split parent antibody adding a new split point to it.
In that way, the parent antibodies are splitted multiple times.
The offspring of this recombination is an antibody consisting
of the gene segments between split points of their parents.

The multiple-parent multiple-point recombination could
be better illustrated by the following example. Consider the
antibody alphabet Σ = {Q, ∗, /−,+, a, b}, where Q is the
square root function, ∗, /,+,− have their usual meaning, and
a, b are terminal symbols. Let also h = 5, and p = 3. Finally,
assume that the selection process yields the following three
antibodies:

012345678900123456789001234567890

Q+bb*bbbaba-**--abbbaaQ*a*Qbbbaab
/-++QbababbQ**abbabbaaQ*ab+abaaab
-+Qbabaaabb/Q*+aababbab*+*Qaaabab

If the set of the generated split points is P =
{(6, 1, 1), (2, 2, 2), (9, 2, 3), (3, 3, 1), (10, 3, 2)}, where the
triplet (i, j, k) signifies a split point at position i of the j-
th gene of the k-th parent antibody, then the resulting gene
segments are the ones underlined in the above scheme. The
offspring of this recombination will be the combination of
these 5 gene segments:

012345678900123456789001234567890
Q+bb*bababbQ**+aababaaQ*ab+abaaab

The multiple-parent multiple-point recombination may offer
considerable benefits to population diversity, as it mimics in
a rather consistent manner the process of the natural V(D)J
recombination.

VII. APPLICATION TO DATA MINING

In this section, the ECA algorithm and the basic repre-
sentation concepts of GEP described above are combined
in order to be applied in data mining problems. Additional
issues, such as antigen representation, affinity function, and
data covering algorithm, as well as overfitting avoidance and
generation of the final rule set are also treated in more detail
in this section.

A. Antigen representation

The ECA algorithm is a supervised learning technique
where antigens play the role of patterns to be recognized.
In a data mining task, a description of the data classes
may represent the patterns for recognition. For that reason
the concept of Data Class Antigens (DCAs) is introduced.
A DCA represents a single data class of the problem and
consists of a sequence of data records, which belong to the
same class. DCAs conform to the generic antigen definition
introduced in Section IV, according to which antigens must
be represented as a sequence of arbitrary objects of similar
structure. In our case, these arbritrary objects are the data
records of a class of the problem. In order to fully integrate
the notion of DCAs into the ECA algorithm, an appropriate
“binding” between DCAs and GEP antibodies should be
defined, as well as a consistent affinity measure. These issues
are treated next.

B. Antibody-antigen binding

The binding between antigens and antibodies is depicted
in Figure 13. Each antibody is a GEP encoded rule, which
translates to an expression tree. Each antigen represents a
single class and is a collection of data records belonging
to this class. Therefore, a GEP antibody is said to better
recognize a DCA, namely a data class, when it can produce
a better classification of its instances. This is equivalent to
stating that the GEP antibody, which best binds to a specific
DCA, will be the one that identifies exactly every instance
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Fig. 13. The antibody-antigen binding in the ECA+GEP algorithm. Every antibody is a GEP-encoded rule, and every antigen represents a single data
class of the problem. The binding between antibodies and antigens depends on how well an antibody classifies the class instances of an antigen. The values
on the arrows connecting antibodies and antigens denote the affinity of the two entities.

of the class represented by that DCA as being instance of
this actual class. A quality rule will cover as many positive
examples and as few negative examples as possible. Using
AIS nomenclature, this means that a “good” memory cell
(rule) should bind well to a specific antigen (specific problem
class) and remain inactive for the rest of input antigens (other
problem classes).

In order to quantify that antigen-antibody binding, we
have used a measure combining both rule completeness and
consistency gain, as in [27]. More precisely, the affinity
function is defined by the formula

f(R) =
{

0, consig(r) < 0
consig(r) · ecompl(r)−1, consig(r) ≥ 0

, (7)

where consig(r) is the consistency gain of the rule r, and
compl(r) is the completeness of the rule r, which can be
defined as in [14], [27]:

compl(r) =
p

P
, (8)

consig(r) =
(

p

p+ n
− P

P +N

)
P +N

N
. (9)

In the above equations, p is the number of positive examples
covered by rule r, n is the number of negative examples
covered by rule r, P is the total number of positive examples,
i.e., all examples belonging to the class under consideration,
and N is the total number of negative examples, i.e., all
the counter-examples of the class under consideration. It is
easy to understand that this affinity function favors rules with
greater consistency rather than rules with high completeness.
The use of a consistency gain measure, instead of a pure
consistency one, was preferred because the consistency gain
actually compares the consistency of a prediction rule to a
totally random prediction [14]. This is the reason why the
affinity function f is set to 0 every time consig(r) is negative,
which signifies that the rule r is worse than a random guess.
Finally, f is normalized in the interval [0, 1].

The positive and negative examples covered by a single
GEP antibody are obtained through an one-against-all learn-
ing technique [2], [9], [27], where every data instance is
classified as belonging to the class of the currently presenting
DCA or not. More formally, this classification mechanism
can be described by the following definition.

Definition VII.1. A record r of a DCA g, which represents
a data class Cg , will be classified in this class by a GEP
antibody, which is translated to the expression P , if and only
if P (r) > 0. Otherwise, it is classified as not belonging to
Cg .

This definition along with equation (7) completely define
the antibody-antigen binding, which then makes the applica-
tion of the ECA algorithm to a data classification problem
rather straightforward; data classes of the problem are coded
as DCAs and are successively presented to ECA. Then, ECA
evolves the GEP antibody population and produces a rule for
the specified data class (DCA).

C. Towards more complete rules
In real-life problems, a single rule is usually not adequate

to describe a data class. For that reason, multiple rules are
evolved for each class, so as to cover as many positive
examples of the class as possible, avoiding, if possible, data
overfitting. The covering algorithm used is rather simple and
is briefly described in [27]. For each class in the problem, one
rule is initially evolved using the affinity criterion described
above. If this rule fails to cover all positive examples of the
class, then the covered examples are removed, and another
rule is evolved on the remaining examples. This process
continues until all positive examples are covered, or data
overfitting occurs (see Section VII-D). This algorithm is
depicted in Figure 14, where R, in this case, is the rule
set under construction, C is the class under consideration,
and Cp are the positive examples covered by the just evolved
rule.
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Fig. 14. The covering algorithm used for the coverage of all positive
examples of a data class. Overfitting detection is not presented in this figure.

D. Avoiding overfitting

A serious problem that should be confronted in a data
mining task is data overfitting. The affinity function de-
scribed in Section VII-B tends to overfit noisy data, since it
favors consistent rules over complete ones. For that reason,
an overfitting criterion should be adopted in order to generate
accurate rules. The overfitting criterion used in the algorithm
presented here is based on the Minimum Description Length
(MDL) principle [10], [20], which states that shorter rules
should be preferred to longer ones [15]. More formally, if H
is a set of hypotheses or rules, and D is the data, then the
MDL principle states the following.

Minimum Description Length principle: The most pre-
ferrable hypothesis from a set of hypotheses H should be a
hypothesis hMDL, such that

hMDL = argmin
h∈H

(LC1 + LC2),

where L denotes length, C1 is the encoding for the hypothe-
ses set, and C2 is the encoding for the data set.

It is important to state here that the MDL principle
can only provide a clue for the best hypothesis or rule.
Only in the case where C1 and C2 are optimal encodings
for the sets of hypotheses and data, respectively, does the
hypothesis hMDL equal the maximum a posteriori probability
hypothesis, which is the most likely hypothesis of the set
H . However, if encodings C1 and C2 reflect consistently
the possible complexities of hypotheses or data, then the
hypothesis hMDL may be a good choice [15].

A rule in our hybrid technique can be easily and con-
sistently encoded using the already defined GEP antibody
encoding. More precisely, the length of a rule h will be the
length of its ORF multiplied by the total number of bits
needed to encode the different symbols of the GEP alphabet,
that is,

Lh = log2(Nc) · LORF, (10)

where Nc is the total number of symbols, terminal or not, in
the alphabet. Therefore, the length of the whole rule set or
the length of the theory Lt will be the sum of the lengths of

all rules in the rule set, thus,

Lt = log2(Nc)
∑
i

Leffi
, (11)

where Leffi
is the effective length, or the length of the ORF,

of the i-th rule in the rule set.
In order to consistently and effectively encode the data,

we used an approach similar to the one presented in [27].
Only the false classifications are encoded, since the correct
ones could be computed from the theory, which is already
encoded. As well as this, in contrast to the general approach
in [15], no encoding for the actual class of the missclassifi-
cation is needed. Indeed, since an one-against-all approach
is used for rule generation, we are only interested in whether
the rule classifies correctly an example or not. Therefore, the
length Le of the exceptions of a rule can be computed by
the formula

Le = log2

(
Nr
Nfp

)
+ log2

(
N −Nr
Nfn

)
, (12)

where Nr is the total number of examples covered by the
rule, Nfp

is the number of false positives, Nfn
is the number

of false negatives, and N is the total number of examples.
Equation (12) can also be applied to a whole rule set,
provided the coverage of a set of rules is defined properly.
In our approach, in order to find the coverage of a rule set,
all rules in the set are applied sequentially to an example
until one is triggered. In such a case, the example is added
to the coverage. If no rule is triggered, then the example is
not covered by the rule set.

For the total encoding length of the rule set (theory and
exceptions), a weighted sum is used, as in [27], in order to
provide more flexibility to the MDL criterion. Specifically,
the encoding length LR of a rule is

LR = Le + w · Lt, 0 ≤ w ≤ 1, (13)

where w is the theory weight. If w = 0, then theory does
not contribute in the total rule set length. This is equivalent
to saying, that the MDL criterion is not applied at all, since
the covering algorithm presented in Section VII-B and in
Figure 14 guarantees that the rule set will always cover
more examples, therefore leading to less exceptions. In the
problems considered in this paper we set w = 0.1 or w = 0.3
depending on the noise in the data.

The MDL criterion is easily integrated to the covering
algorithm already presented by maintaining the least descrip-
tion length, Lmin, encountered so far and by updating it
accordingly at each iteration, as depicted in Figure 15.

E. Generation of final rule set

The final step of the data mining technique presented here,
is the combination of the independent class-specific rule sets
to form a final rule set that will be able to classify any new
example, which will be later presented to the system. Two
problems should be coped with in this last part of the process:
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Fig. 15. The covering algorithm with the MDL overfitting criterion.

• classification conflict, where two or more rules classify
the same example into different classes, and

• data rejection, where an example is not classified at all.
In order to solve the first problem, all produced rules

are placed in a single rule set and are sorted according to
their affinity. When a new example is presented, all rules are
tried sequentially until one is triggered. The class of the first
triggered rule will be the class of the new example. If no
rule is triggered, then the problem of data rejection arises,
which is solved by defining a default data class.

The default class is defined after the final sorted rule
set is formed, as in [27]. All examples of the problem are
presented to this rule set and are classified. If an example
cannot be classified, then its actual data class is queried, and
a counter, which counts the unclassified examples of this
class, is augmented by one. After all examples are presented
to the rule set, the class with the most unclassified examples
is selected to become the default data class of the problem.
Ties are resolved in favor of the class with the most instances.
This process is depicted by the flow chart in Figure 16.

It should also be noted that no additional pruning is
performed in this stage of the algorithm as is the case in [27].
This may lead to more complex rule sets, but adds to the
simplicity of the algorithm.

VIII. EXPERIMENTAL RESULTS

The hybrid data mining technique presented so far, was
tested against a set of benchmark problems from the UCI
repository [16]. Some important information about each
benchmark problem is presented in Table I. The purpose of
this test was to track the differences in prediction accuracy
and in required resources, in terms of convergence rate and
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Fig. 16. Algorithm for defining the default data class.

Benchmark Description
Dataset Instances Attributes Classes

balance-scale 625 4 3
breast-cancer 683 9 2
glass 214 9 7
ionosphere 351 34 2
iris 150 4 3
pima-indians 768 8 2
lung-cancer 32 56 3
waveform 5000 21 3
wine 178 14 3

TABLE I
BENCHMARK PROBLEMS USED.

population size, between the hybrid technique proposed here
and the standard GEP technique proposed in [27]. For that
reason, an attempt was made to maintain the sequence of
presentation in that work.

A. Experimental process

Before running the algorithm, a preprocessing step was
necessary for some datasets, since some of their attributes
were missing. More particularly, in the ‘breast-cancer’
dataset, 16 tuples with missing attributes were eliminated,
while in the ‘wine’ dataset some missing attributes were
replaced by some random reasonable value.

In order to evaluate the proposed algorithm, we performed
five independent five-fold cross-validation (5-CV) tests for
each problem, thus performing a total of 25 runs of the
algorithm for each problem. Before performing any 5-CV
test, the dataset of the problem was “shuffled” by randomly
permutating its tuples. This was necessary because some
datasets were ordered per class, and we also wanted each
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CV test to present the algorithm with a different mixture
of training and testing examples, so as to avoid any over-
or under-representation of a particular data class. The 5-CV
technique consisted of splitting each (shuffled) dataset into
five equal subsets. In each run of the algorithm dedicated to
the same CV test, one such subset was used as the testing
set, while the remaining four constituted the training set.

The accuracy results of the algorithm for every problem,
which will be presented later in Table III, refer to the average
accuracy over all five 5-CV tests that were performed for that
problem.

B. Algorithm evaluation

In our previous work [12], we have tested ECA+GEP
against the MONK and the ‘pima-indians’ problems, and the
results were rather satisfactory. In this work, we have tried
to tune some algorithm parameters in order to maximize ac-
curacy and at the same time minimize—as far as possible—
the resources used by the algorithm. Although this was not
the result of a thorough investigation of every algorithm
parameter (see Section X), we experimentally selected a set
of parameter values that could be critical in this tradeoff.

The set of datasets chosen is rather diverse and covers a
large spectrum of problem configurations ranging from 2-
class up to 7-class problems and from a modest number of 4
attributes to a relatively large description set of 56 attributes
in the ‘lung-cancer’ problem. The algorithm was uniformly
configured for almost every benchmark problem, as all of
them have numerical attributes. The general configuration is
detailed in Table II. Comparing this configuration with the
one presented in our earlier work [12], we have increased
the population size from 20 to 40 individuals, so as to
let diversity emerge more easily. As well as this, antibody
length was decreased from 100 to only 40 symbols in total.
Although this may imply some loss of expressiveness, it
turned out not to be so critical. On the other hand, the gain in
rule clarity, since rules are much shorter now, and the impact
of the decrease of antibody length to the execution time of
the algorithm are much more significant. As a function set for
the GEP-antibodies, we used a set F of algebraic functions,
such that F = {+,−,×,÷, Q, I}, where Q is the square
root function, and I is the IF function, which is defined as

I(x, y, z) =
{
y, x > 0
z, x ≤ 0

. (14)

The set of terminal symbols consisted of as many symbols
as each problem’s attributes plus a set of 4–5 constants,
whose values were chosen according to prior knowledge
of each benchmark problem’s attribute values. Finally, the
algorithm was allowed to run for only 50 generations, since
the increased population yields better diversity.

The results of this configuration have been very satis-
factory, as the proposed algorithm has outperformed the
standard GEP in almost every benchmark. The results in
terms of rule set accuracy are summarized in Table III,
where a 95% confidence interval over the multiple runs is

Algorithm Configuration
Parameter Value

Maximum generations 50

Maximum rules/class 3

Gene head length (h) 13

Antibody length (L) 40

Genes/antibody 1

Population size (|P|) 50

Memory size (|M|) 1

Selected antibodies (nb) 5

Replaced antibodies (nr) 0

Refreshed antibodies (nd) 0

Edited antibodies (ne) 5

Antibody pool size (np) 2

Maximum mutation rate (αmax) 1.0

Mutation rate decay (ρ) 5.0

Clone factor (β) 15.0

Theory weight (w) 0.1

TABLE II
GENERAL ALGORITHM CONFIGURATION.

also presented. In the same table the corresponding accuracy
values of C4.5 are also given as they can be found in [27].
ECA+GEP achieves better accuracy in every benchmark,
except the ‘balance-scale’ and ‘pima-indians’ datasets. In the
‘balance-scale’ dataset ECA+GEP is 6.5% less accurate than
conventional GEP, but it still outperforms C4.5. In the ‘pima-
indians’ dataset, C4.5 outperforms both GEP and ECA+GEP,
which perform comparably. However, the differences in favor
of ECA+GEP grow up to about 40% in the ‘lung-cancer’
dataset and remain above 9% in the ‘glass’ and ‘waveform’
datasets. Finally, another important issue is that ECA+GEP
exhibits a more stable behaviour than pure GEP, as it
generally achieves tighter confidence intervals.

Moreover, this increased prediction accuracy does not
come at the expense of computational efficiency, since
ECA+GEP uses a population of 40 (172 at peak) individuals,
which is evolved for only 50 generations. Instead, GEP uses
a constant population of 1000 individuals, which is evolved
for 1000 generations.

An example ruleset generated by ECA+GEP is presented
in Common Lisp notation in the following listing. This rule
set is obtained from the ‘iris’ benchmark and achieves 100%
accuracy2.

(cond
((> (* (If (* (/ 5 sw) 3)

(- (+ pl pl) (- 5 1))
(+ pw pl))

(- (/ sl 2) (+ sl pl))) 0)
’Iris-setosa)

((> (If pw (/ 5 (- (* pw 3) 5)) sl) 0)
’Iris-virginica)

((> (sqrt (- (/ (sqrt (sqrt 2)) (- 2 pw))
(sqrt (sqrt (- (+ sw 2)

pl))))) 0)

2This accuracy value is achieved on a specific test set obtained after the
preprocessing step described and may slightly vary for different subsets of
‘iris’.
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Rule Accuracy
Benchmark GEP ECA+GEP C4.5

balance-scale 100.0± 0.0% 93.5± 2.1% 78.7± 6.8%

breast-cancer 96.2± 1.8% 98.1± 0.7% 94.7± 1.5%

glass 63.9± 8.8% 72.9± 8.5% 65.7± 5.6%

ionosphere 90.2± 2.4% 96.2± 2.3% 91.1± 8.6%

iris 95.3± 4.6% 98.8± 0.5% 93.9± 8.1%

lung-cancer 54.4± 15.6% 93.5± 1.9% 44.3± 23.6%

pima-indians 69.7± 3.8% 66.8± 0.5% 74.8± 4.7%

waveform 76.6± 1.4% 91.6± 0.9% 76.2± 1.8%

wine 92.0± 6.0% 96.6± 1.1% 91.6± 8.1%

TABLE III
RULE ACCURACY COMPARISON OF GEP AND ECA+GEP.

Execution Times
Benchmark Time (mm:ss.ss)

balance-scale 04:43.73
breast-cancer-wisconsin 05:36.27
glass 03:22.18
ionosphere 02:30.00
iris 00:56.00
lung-cancer 00:07.88
pima-indians 04:51.61
waveform 44:59.42
wine 01:23.43

TABLE IV
EXECUTION TIMES OF ECA+GEP.

’Iris-versicolor)
((> (+ (- (If 3 (/ (- 2 3) pl) 2)

(+ (* pw sw) (/ sw 2))) pl) 0)
’Iris-virginica)

((> (- pl (+ 5 (/ 2 3))) 0)
’Iris-virginica)

(t ’Iris-versicolor))

In that listing If is a special function defined as in
Equation (14) and sl, sw, pl, and pw, are the attributes
‘sepal length’, ‘sepal width’, ‘petal length’, and ‘petal width’,
respectively.

C. Resource utilization

In order to obtain a rough estimate of the resources utilized
by the proposed algorithm, we have recorded execution
times of the algorithm on every benchmark, as well as the
maximum resident working set size. The algorithm and the
entire framework supporting it was written in the Java pro-
gramming language (JDK 1.5) and was compiled with Sun’s
javac compiler, version 1.5.0 05. The algorithm was run
on a Pentium 4 machine (2.16Ghz, 1.0GB RAM) running
Windows XP Professional SP2. The reported execution time
is the total elapsed wall-clock time including initialization
times (read input, algorithm setup, etc.), testing times, output
dumping, and any overhead incurred by the shell script used
to batch-run the algorithm on every benchmark. It is worth
noticing that none of the benchmarks needed more than
an hour to run, although no special concern for software
optimization issues was taken. Execution times range from

just about 8sec for small datasets, such as the ‘lung-cancer’
dataset (32 tuples), and rise up to about 45min for larger
ones, such as the ‘waveform’ dataset (5000 tuples). Despite
the fact that we had no direct implementation of GEP in
order to comparatively evaluate execution times, we believe
that ECA+GEP is quite fast for an evolutionary technique.
Table IV summarizes execution times for each benchmark
problem. As far as memory utilization is concerned, we
have not encountered important variation between different
benchmarks, as the maximum resident set size depends
mainly on the configuration of the algorithm, which was
essentially the same for every benchmark examined. More
precisely, the process of ECA+GEP consumed a maximum
of 131MB of memory during its lifetime.

IX. DISCUSSION

ECA+GEP is a hybrid evolutionary algorithm that borrows
and enhances concepts from different bio-inspired machine
learning fields. In the core of ECA+GEP lies a clonal
selection algorithm, which constitutes the driving force of
the evolution. Although CLONALG is the base of our clonal
selection algorithm, a comparison to the AIRS system would
be rather interesting. AIRS, or Artificial Immune Recognition
System [24], is a supervised learning system, which is
another implementation of the clonal selection principle but
has borrowed some concepts from immune networks.

AIRS and ECA share enough AIS concepts but they differ
on the way they practically apply them. The subject of evolu-
tion in AIRS is the Artificial Recognition Ball (ARB), which
is equivalent to ECA’s antibodies. Both algorithms maintain a
set of memory cells, which in AIRS is dynamically expanded,
while in ECA it is fixed. This may seem restrictive to some
extent and adds another parameter for the user to define,
however, in the problem at hand, ECA is used to evolve a
single rule for each class (antigen) at a time, so a memory
pool equal to the total number of problem classes is enough.
The evolutionary pressure of the two algorithms is exerted by
different means. AIRS uses a constant number of resources,
for which ARBs compete, while in ECA the evolutionary
pressure is only exerted on entering the constant memory—
only the fittest cell will enter. Another difference exists on
the proliferation phase of the clonal algorithms. In AIRS only
memory cells initially proliferate and undergo mutation (later
the rest of population may be also mutated), while in ECA
all cells proliferate and are mutated according to their affinity
to the antigen. A common concept of both algorithms is that
both are “one-shot” algorithms, i.e., the system is trained for
a single antigen at a time.

A significant difference between our system and AIRS
is the representation of antibodies. Antibodies in AIRS are
real-valued vectors, whose elements consist of the attribute
values of each data class. Instead, ECA defines antibodies
more generally, as being strings of an arbitrary language
L. This fact gives ECA the opportunity to use a more
expressive representation of antibodies, namely the flexible
representation introduced by GEP. As a result, ECA is able
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Rule Accuracy
Benchmark AIRS GEP ECA+GEP

ionosphere 94.2% 90.2% 96.2%

iris 96.7% 95.3% 98.8%

pima-indians 74.1% 69.7% 66.9%

TABLE V
COMPARISON OF CLASSIFICATION ACCURACY BETWEEN AIRS AND

ECA+GEP.

to produce a set of classification rules for every data class
of the problem.

In Table V comparative results of AIRS and ECA+GEP
on three UCI benchmark problems are presented; the figures
for AIRS accuracy are taken from [24]. In the same Table
the corresponding data of GEP is also listed as can be found
in [27] and in Table III. It is worth noticing that both immune
inspired algorithms, AIRS and ECA+GEP, achieve higher
classification accuracies in almost each problem, which is an
indication of the potential of the immune inspired techniques.
Although a more thorough investigation would be appropriate
for this statement, the clonal selection principle seems to
be quite promising and has enough potential as a novel
evolutionary technique. The results of AIRS and ECA+GEP
are comparable and ECA+GEP outperforms AIRS in two
of the three problems considered. We believe that this is
mainly due to better expressiveness of the GEP encoding
of antibodies. It should also be noted here, however, that
ECA+GEP used a generic configuration, while AIRS was
specially tuned for every problem.

X. CONCLUSIONS AND FUTURE WORK

The immune system is an extremely complex system,
which must provide a set of very effective and reliable
services and techniques, in order to protect the body from any
kind of infection. In contrast to other bio-inspired techniques,
such as genetic algorithms or ant and swarm optimization,
artificial immune systems are based on a physical system,
which inherently performs classification and pattern recogni-
tion. Modelling the techniques utilized by the natural immune
system and applying them to machine learning problems is
a very challenging task. In this paper, we have modelled the
clonal selection mechanism by implementing an enhanced
version of the CLONALG algorithm, which we call ECA, in
order to perform data classification tasks. The new or revised
features in ECA can be summarized as follows:

• A receptor editing step was added just before the
first selection of antibodies in order to achieve better
exploration of the antibody-antigen binding space.

• The update process of the population memory is defined
in a more formal manner.

• Antigens are no longer defined as simple symbol strings.
The concept of generic antigens is instead introduced,
which allows application of the algorithm to a variety
of machine learning problems.

• Antibodies are represented as symbol strings and not as
bit strings or real-valued vectors.

• Cloning of best cells depends also on the number nb of
clones selected in the first selection phase. This allows
for a finer and more accurate control over the clones
produced, since two variables (nb and clone factor)
control the cloning process.

• The algorithm is more configurable than the pure
CLONALG. Specifically, it allows more memory cells
to recognize a single antigen and more memory cells to
be updated simultaneously.

By coupling this clonal selection model with Gene Expres-
sion Programming, we have achieved a considerable reduc-
tion in the resources required by the data mining algorithm.
By applying a set of changes to the conventional CLONALG
algorithm, we have achieved a considerable amelioration in
the convergence rate of the algorithm. Additionally, the pro-
posed algorithm, using a more fine-grained proliferation con-
trol, succeeds in maintaining and manipulating a very small
initial population, which, even at peak, may become five
times less than the population maintained by the conventional
GEP technique. By carefully selecting algorithm parameters,
a considerable improvement of prediction accuracy compared
to conventional GEP may be achieved while, at the same
time, sparing computational resources.

However, it is obvious that a proper algorithm config-
uration is essential in obtaining good results. ECA+GEP
involves a bunch of parameters that should be tuned, hence,
deeper investigation of the algorithm’s behaviour against
each parameter is a future research prospect. The use of
a simpler and dynamically expanding memory as in [24]
will be considered as a possible alternative in our case, as
well. A second step would be to examine different overfitting
criteria, and how antibodies with multiple genes and their
corresponding linking function affect prediction accuracy and
convergence rate. As already stated, a theoretical investi-
gation of convergence issues constitutes a topic of future
research. Finally, receptor editing will be further investigated,
and its benefit to the algorithm will be better quantified.
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