
CSX: An Extended Compression Format for SpMV
on Shared Memory Systems

Kornilios Kourtis Vasileios Karakasis Georgios Goumas Nectarios Koziris
National Technical University of Athens

{kkourt,bkk,goumas,nkoziris}@cslab.ece.ntua.gr

Abstract
The Sparse Matrix-Vector multiplication (SpMV) kernel scales
poorly on shared memory systems with multiple processing units
due to the streaming nature of its data access pattern. Previous re-
search has demonstrated that an effective strategy to improve the
kernel’s performance is to drastically reduce the data volume in-
volved in the computations. Since the storage formats for sparse
matrices include metadata describing the structure of non-zero el-
ements within the matrix, we propose a generalized approach to
compress metadata by exploiting substructures within the matrix.
We call the proposed storage format Compressed Sparse eXtended
(CSX). In our implementation we employ runtime code generation
to construct specialized SpMV routines for each matrix. Experi-
mental evaluation on two shared memory systems for 15 sparse
matrices demonstrates significant performance gains as the number
of participating cores increases. Regarding the cost of CSX con-
struction, we propose several strategies which trade performance
for preprocessing cost making CSX applicable both to online and
offline preprocessing.

Categories and Subject Descriptors J.2 [Computer Applica-
tions]: Physical Sciences and Engineering

General Terms Algorithms, Performance

Keywords Sparse Matrix-Vector Multiplication, Shared Memory,
compression, SpMV, SMP

1. Introduction
Multicore processors have become the trend in all aspects of com-
puting (commodity products, high performance systems, and future
research directions). A factor that limits the ability of applications
to scale on a large number of cores is the sharing of the memory
hierarchy by the processing units. Applications with no data de-
pendencies and good temporal locality tend to scale well, since
each core can work independently using local data residing in its
cache without interfering with the operation of other cores. On the
other hand, applications with streaming access patterns tend to ex-
hibit poor scaling due to contention on the memory subsystem. A
technique to improve the multithreaded performance of these appli-
cations is to trade memory cycles for computation cycles via data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’11, February 12–16, 2011, San Antonio, Texas, USA.
Copyright c⃝ 2011 ACM 978-1-4503-0119-0/11/02. . . $10.00

compression. In other words, as core count increases, performing
redundant computations to avoid memory accesses has the potential
of increasing the scalability in applications with streaming memory
accesses.

An important and ubiquitous computational kernel with stream-
ing memory access pattern is the Sparse Matrix-Vector multiplica-
tion (SpMV). It is used in a large variety of applications in scientific
computing and engineering. For example, it is the basic operation
of iterative solvers, such as Conjugate Gradient (CG) and General-
ized Minimum Residual (GMRES), which are extensively used to
solve sparse linear systems resulting from the simulation of phys-
ical processes described by partial differential equations [21]. Fur-
thermore, SpMV is a member of one of the “seven dwarfs”, which
are classes of applications that are believed to be important for at
least the next decade [3].

The distinguishing characteristic of sparse matrices is that they
are dominated by a large number of zeros, making it highly ineffi-
cient to perform operations using typical (dense) array structures.
Special storage schemes are used instead, which target both the re-
duction of the storage requirements of the matrix and the efficient
execution of various operations by performing only the necessary
computations. Thus, the common approach is to store only the non-
zero values of the matrix and employ additional indexing informa-
tion representing the position of these values (index data).

Our previous work [2, 9] has identified the memory subsystem
as the main performance bottleneck of the SpMV kernel. Obvi-
ously, this problem becomes more severe in a multithreaded en-
vironment, where multiple processing cores access the main mem-
ory. An approach for alleviating this problem is the reduction of
the data volume accessed during the execution of the kernel (work-
ing set). In [15], we proposed the CSR-DU (CSR with Delta Units)
storage format as a way to reduce the index data of non-zero ele-
ments across the same matrix row by applying compression. The
approach is effective as it can significantly benefit the performance
of the multithreaded SpMV kernel [14]. CSR-DU employs a coarse
grain delta encoding technique; the sparse matrix is divided into ar-
eas, called units, with a variable number of elements, and for each
of these areas the minimum size for representing the encoded delta
values is selected. Following the same philosophy, Belgin et al. [5]
proposed a storage scheme called PBR that exploits frequently re-
peated patterns within the matrix to reduce the working set and
improve performance. However, both approaches are quite con-
servative in mining the regular patterns of sparse matrices, since
CSR-DU scans patterns along a single row, while PBR scans pat-
terns strictly row and column-aligned within specific block areas.

The work in this paper was motivated by two key observations:
first, the utilization of regular patterns within matrices leads to sig-
nificant performance improvements and, second, thorough inspec-
tion of the sparse matrix to mine as many patterns as possible can
be a viable approach in a large class of applications, where the

same matrix is used across numerous runs. For example, the typ-
ical linear system Ax = b may be solved repeatedly for the same
matrix A and different right-hand statements b. This second obser-
vation is also supported by the various preprocessing algorithms
that are used to reorder a sparse matrix in order to reduce its band-
width [21]. To this direction, we propose a generalized and elab-
orate storage format based on compression that aims at achieving
more aggressive reduction in matrix metadata. We call this storage
format Compressed Sparse eXtended (CSX). In the proposed imple-
mentation, CSX is able to represent frequently occurring substruc-
tures along the same row, column, and diagonal, as well as dense
two-dimensional blocks. To the best of our knowledge, this is the
most general and flexible representation scheme for sparse matri-
ces. We handle the above substructures in a unified way, by express-
ing each one of them as an appropriate transformation. We trans-
form the initial matrix coordinates according to this transforma-
tion, partially sort the transformed coordinates lexicographically,
and mine the non-zero elements that belong to the substructure.

Our experimental results indicate that CSX is able to provide
significant performance improvements over a number of existing
storage formats. Regarding the cost of preprocessing, the complex-
ity is kept linear to the number of the non-zero elements of the in-
put matrix. The total preprocessing time ranges from tens to a few
thousands of serial CSR SpMV operations depending on the num-
ber of patterns being detected. The higher cost of preprocessing for
CSX when trying to detect a large number of substructures makes it
practical only for offline matrix preprocessing. However, by limit-
ing the considered substructures, or searching for all substructures
in a small part of the matrix using sampling, we manage to drop the
preprocessing cost to a few hundreds of SpMV operations without
severe loss in the final CSX performance. This makes CSX suitable
also for online preprocessing of the input matrix.

The rest of the paper is organized as follows: Section 2 presents
some relevant background information. Section 3 presents the CSX
storage format together with its implementation details, while Sec-
tion 4 presents the results of the performance evaluation. Section 5
discusses related work, and Section 6 concludes the paper and dis-
cusses directions for future work.

2. Background
2.1 Sparse matrix formats and the SpMV operation
The most commonly used storage format for sparse matrices is the
Compressed Sparse Row (CSR) format [4, 21]. In CSR the ma-
trix is stored in three arrays: values, row ptr, and col ind . The
values array stores the non-zero elements of the matrix in row-
major order, while the other two arrays store indexing information:
row ptr contains the location of the first (non-zero) element of
each row within the values array and col ind contains the col-
umn number for each non-zero element. An example of the CSR
format for a 6 × 6 sparse matrix is presented in Figure 1. The size
of the values and col ind arrays are equal to the number of non-
zero elements (nnz), while the row ptr array size is equal to the
number of rows (nrows) plus one. Other generic formats for sparse
matrices are the Compressed Sparse Column (CSC), which is sim-
ilar to CSR storing columns instead of rows, and the Coordinate
format (COO), where each non-zero is stored as a triplet along with
the coordinates of its location in the matrix.

The SpMV operation (y = Ax), is the multiplication of a sparse
matrix A and a (dense) vector x, with the result stored in the (dense)
output vector y. The operation is easily implemented for matrices
stored in CSR form. The SpMV code for a matrix with N rows in
CSR format is shown in Figure 2. The working set (ws) of the CSR
SpMV operation consists of the matrix and vector data. Its size is

Figure 1. Example of the CSR storage format.

Figure 2. SpMV code for the CSR format.

expressed by the following formula:

ws =

sparse matrix︷ ︸︸ ︷
(nnz × (idx s+ val s) + (nrows+ 1)× idx s)

+

vectors︷ ︸︸ ︷
(nrows+ ncols)× val s

The idx s and val s terms represent the storage size required for
an index and a value respectively. Since for most real-life sparse
matrices it holds nnz ≫ nrows, ncols, the most dominant terms
of the working set is the size of the col ind and values arrays,
which have nnz elements. Commonly, vectors x and y have less
than 232 elements due to memory size restrictions and thus a 4-byte
integer is used for index storage. Floating point values, however,
normally require double precision, so the typical value for val s
is 8 bytes. Under these conditions, values constitute the larger
portion of the working set by a factor of 2/3, if we consider only
the col ind and values arrays. Hence, compression of index
data after a point leads to diminishing returns because value data
dominate the working set.

2.2 The CSR-DU storage format
Sophisticated sparse storage formats traditionally try to exploit
contiguous elements, either in one or two dimensions. Exam-
ples include the BCSR format [20] and the variable length one-
dimensional block format described in [19]. The index data com-
pression approach of the CSR-DU storage format is based on the
general premise that sparse matrices have dense areas, which do
not necessarily contain contiguous non-zero elements. These ar-
eas can contribute significantly to index data size reduction, when
delta encoding is used to reveal the highly redundant nature of the
col ind array [26]. In a delta encoding scheme the column indices
are replaced with deltas, each of which is defined as the differ-
ence of the current index with the previous one. Since delta values
are positive and less or equal than their corresponding column in-
dices, they can be stored in smaller size integers, leading to index
data size reduction. The CSR-DU storage format [15] is based on
a coarse grain delta encoding scheme. The matrix is divided into
areas called units, each of which is characterized by the minimum
integer size able to represent the unit’s delta-encoded column in-
dices. For example, if for the delta values of the unit stands that
δi ≤ 28, then only one byte is required for storing the delta values,
while a unit with 28 < δi ≤ 216 requires two-byte integers for
storing the column index.

Figure 3. Example of the CSR-DU storage format, where a row is split into two units.

In the implementation of CSR-DU presented in [15], unit in-
formation is stored in a single byte-array called ctl, which con-
sists of a header with the properties of the unit and the main body
that includes the delta-encoded column indices. In the most sim-
ple form of CSR-DU, the header consists of two one-byte fields:
usize, which is the number of elements the unit contains, and
uflags, which encodes its characteristics. Since usize is stored
in a single byte, the maximum possible number of elements per
unit is 28 = 256. The size in bytes (1, 2, 4 or 8 bytes) of the delta
values stored in the main body can be extracted from the uflags
field, along with a marker that designates the beginning of a new
row. Figure 3 presents an example of the CSR-DU format. In this
example a row with 8 elements is split into two units. The first unit
has 5 elements, 1-byte delta sizes and a designator for a new row
(nr), while the second unit has 3 elements and 2-byte delta sizes.
The actual implementation of CSR-DU in [15] also includes a col-
umn index offset from the previous unit in the header. The offset is
called ujmp and is stored as a (positive) variable-length integer at
the end of the header.

3. Compressed Sparse eXtended (CSX)
3.1 Motivation and approach
Although the SpMV kernel is essentially simple, its actual and
maximum performance depends strongly on the nature of the sparse
matrix. A generalized storage format, like CSR, does not make any
assumptions about the sparse matrix data, and thus it cannot ex-
ploit optimization opportunities that arise from special properties
of the matrix. In the following paragraphs we describe a general
optimization approach for the SpMV kernel based on a new storage
format for sparse matrices, that targets the exploitation of regular-
ities in the matrix. We call this storage format Compressed Sparse
eXtended (CSX). We argue that this approach can be used for a
wide range of optimizations that exploit matrix-specific knowledge.
Our method is based on the extension of the concept of units intro-
duced by CSR-DU to support different and arbitrary classes of reg-
ularities. Focusing on the generality and flexibility of our method,
we employ a runtime code generation technique [13], where a spe-
cialized, matrix-specific SpMV operation is created, along with the
encoded matrix data.

3.2 Exploiting substructures within the sparse matrix
Sparse matrices commonly represent physical structures of com-
putational domains. For this reason, they carry repeated substruc-
tures of non-zero elements, expressing, for example, connectivity

Direction Elements
y x

Horizontal → y0 x0 + iδ
Vertical ↓ y0 + iδ x0

Diagonal ↘ y0 + iδ x0 + iδ
Anti-diagonal ↙ y0 + iδ x0 − iδ

Table 1. Directions for delta run-length encoding. The y and x
columns contain an expression for generating the matrix elements
for the specific direction given its delta value δ. Note that 0 ≤ i <
size, where size the number of elements in the unit.

between elements of a domain. To the best of our experience, the
majority of the matrices expose these regularities along the same
row, column, diagonal or may span multiple rows (columns or di-
agonals) in a two-dimensional structure. In the proposed storage
format of CSX we consider the above kinds of substructures de-
scribed in greater detail in the following paragraphs. Nevertheless,
if necessary, other classes of regularities can be incorporated in the
format to optimize matrices with different characteristics.

Horizontal substructures
In order to mine horizontal substructures within the sparse matrix,
we extend the CSR-DU storage format to apply more aggressive
index compression by employing run-length encoding in the delta
values in multiple directions. Drawing inspiration from the variable
length one-dimensional block format described in [19], we gener-
alize the notion of sequential elements to elements with a constant
distance. As with sequential elements (α, α + 1, α + 2, . . .), ele-
ments with a constant distance (α, α + δ, α + 2δ, . . .) can be en-
coded using only the initial value, the constant distance, and their
size. Since this technique essentially applies a run-length encoding
on the delta values of the column indices, we will refer to it as delta
run-length encoding.

Vertical and diagonal substructures
To further enhance index compression, we augment our approach
to include multiple directions for the sparse matrix elements. The
directions we consider are vertical, diagonal and anti-diagonal (see
Tab. 1) with the same rationale as in the horizontal case.

Two-dimensional substructures
Two-dimensional substructures are common in sparse matrices, es-
pecially in those that arise from problems with underlying 2D/3D

geometry [1, 11, 12]. Storage formats that exploit these structures,
e.g., BCSR, can provide significant speedups over the standard
CSR implementation in many cases, since apart from reducing the
SpMV working set, they exhibit good computational characteris-
tics [12, 24]. Therefore, we further extend our approach to support
2D-blocks.

Figure 4 presents the distribution of the most dominant sub-
structures in the 15 matrices of our suite as discovered by CSX.
Delta units are designated with DUx, where x is the number of bits
used for the delta values. Dense blocks are either brow or bcol,
depending on the alignment (see Section 3.3), with the numbers in-
side parenthesis indicating the block dimensions. Finally, the rest of
the substructures are indicated with their literal name and the delta
value inside parenthesis. We observe that there is a significant rep-
resentation of the aforementioned substructures in our matrix suite,
indicating that there is space for performance improvement by uti-
lizing them. Interestingly enough, matrix rajat31 contains a rather
uncommon substructure, since more than 20% of its non-zero el-
ements lie along the same diagonal with step 11. Our approach is
able to capture this substructure. How CSX discovers the differ-
ent patterns inside a sparse matrix is discussed in the next section,
while the matrix suite is detailed in Section 4.

3.3 CSX matrix construction
Our algorithm to construct the CSX matrix handles the supported
substructures in a uniform way. The algorithm is based on a delta
run-length encoding detector for the horizontal direction, which
detects sequences (runs) of the same delta value. If the number of
elements in a run is larger or equal than a specific configuration
parameter, then the items are grouped together in a single unit. The
detector can be easily implemented if we assume that the elements
can be iterated in lexicographical order. To simplify the detection
process, detection of overlapped runs is not supported. An example
is presented in Figure 5, where the detector has been configured to
detect runs of size larger than or equal to 4. Note that it does not
detect the run of the indices 41, 61, 81, since its size is 3, and it
also does not detect the run of the indices 1, 21, 41, 61, 81 since
it overlaps with other elements. The algorithm for the detector of
horizontal substructures is given in Alg. 1.

Figure 5. Horizontal detection example.

Algorithm 1: Horizontal detector.
Input: indices: array of size n column indices
Input: lim: the minimum size for DRLE units

deltas = deltaEncode(indices)
deltarle ← deltas[0]
freqrle ← 1

for i← 1 to n do
if deltas[i] == deltarle then

freqrle ← freqrle + 1

else
if freqrle ≥ lim then encode in DRLE units
else keep individual indices
deltarle ← deltas[i]
freqrle ← 1

In order to detect the rest of the substructures discussed in
the previous section, we use the horizontal detector and apply
appropriate transformations on the matrix points coordinates. For
example, to detect vertical runs we swap the coordinates of the
elements. The transformations for the substructures implemented
within CSX are shown in Table 2.

(1, 1)

(3, 1)
. . .

. . .

..
.

(a) Row-aligned block
detection.

(1, 1)

(1, 3)

..
.

..
.

. . .

(b) Column-aligned block
detection.

Figure 6. Detection of two-dimensional dense substructures
(black dots are non-zero elements).

For the 2D substructures, we need a non-linear transformation
that will transform the 2D space into an 1D space. Since the input
matrix is sparse, we chose not to map the 2D coordinate space of
the whole matrix to 1D using a typical space-filling curve, e.g.,
Morton-order curve, because such an order (a) would require a
linear space of O(nrows2) size, which is impractical for very large
and sparse matrices, and (b) would imply a strict requirement on
alignment and size of blocks, since such transformations are based
on bit transformations. For that reason, we segment the matrix into
horizontal (or vertical) bands of a specific width and apply a simple
space-filling transformation inside that band. Figure 6 presents
that schematically for bands of width 2, and Table 2 presents
the exact formulas of the transformations, when segmenting the
matrix horizontally or vertically. In a single detection phase, we
are now able to detect all r × c blocks, with r or c constant,
aligned at either r-rows or c-columns boundaries, respectively,
depending on the orientation of the segmentation of the matrix.
Although it is possible to detect totally unaligned blocks, this would
induce additional space and time complexity. In detecting dense
sub-blocks of the matrix, we instruct our detector to search only for
substructures with δ = 1.

Our generic substructure detector processes the input matrix in
windows of w non-zero elements as it is depicted in Alg. 2. For
each processing window, we transform the matrix elements and
sort them lexicographically before passing them to the horizontal
detector. After the detection phase completes, we transform back
the window elements. The asymptotic complexity is determined
by the complexity of sorting the elements of a window and the
total number of processing windows. Assuming non-overlapping
windows, the asymptotic complexity of the horizontal detector
is ⌈nnz

w
⌉O(w log(w)) = O(nnz). Note that even when using

overlapping windows, the asymptotic complexity does not change.
Finally, increasing the processing window so that it approaches
nnz lets us mine almost every substructure in the matrix, but
increases considerably the preprocessing time.

In order to mine all the considered substructures/patterns from
the matrix, we run the generic detector for each supported class of
patterns (e.g., horizontal, diagonal, blocks with 2-row alignment,
etc.) and record an estimate of the gain in the total size of the
matrix (we ignore all patterns that cannot encode more than 10%
of the non-zero elements of the matrix). The class of patterns that
maximizes this estimate is selected for encoding and the procedure
is repeated for the rest, unencoded, elements of the matrix until
no other encoding can be applied. The remaining elements are

Figure 4. Distribution of substructures in the matrices of our suite.

Substructure Transformation
Horizontal (i′, j′) = (i, j)

Vertical (i′, j′) = (j, i)

Diagonal (i′, j′) = (nrows+ j − i,min(i, j))

Anti-diagonal (i′, j′) =

{
(nrows+ j − i, j), i < nrows

(j, i+ j − nrows), i ≥ nrows

Block (row aligned) (i′, j′) = (⌊ i−1
r

⌋+ 1,mod(i− 1, r) + r(j − 1) + 1)

Block (column aligned) (i′, j′) = (⌊ j−1
c

⌋+ 1, c(i− 1) + mod(j − 1, c))

Table 2. The transformations used to convert the different substructures to horizontal, in order to feed the CSX pattern detector. The number
of rows of the matrix is denoted by nrows, and r and c are the required alignments for row- and column-aligned blocked substructures.

Algorithm 2: Generic detector.
Input: elems: array of size nnz of matrix elements
Input: w: size of processing window
Input: f : transformation function
Input: lim: the minimum size for DRLE units

nw ← ⌈nnz
w
⌉

for i← 1 to nw do
welems← extract window(elems,w)
welems← f (welems)
sort(welems)
horizontal detector(welems, lim)
welems← f−1(welems)

then stored in delta units in row-major order. The estimate used
to score the different encodings is based on the idea that the major
gain in the size of the matrix would come from the reduction of
the col ind structure. In order to keep our estimate simple, we
assume that we keep one index for each pattern and one index for
each unencoded element. So, if npatt is the number of the encoded
patterns and nnzenc the number of the non-zeros encoded by this
pattern, the selection criterion is

G =

initial︷︸︸︷
nnz−(

encoded︷ ︸︸ ︷
npatt+

unencoded︷ ︸︸ ︷
nnz − nnzenc)

= nnzenc − npatt

(1)

3.4 Multiplication routines
After the matrix construction is complete, the ctl byte-array and
the SpMV code needs to be generated. We use an encoding similar

to CSR-DU where, as depicted in Figure 3, each unit starts with
two bytes: uflags and usize. In CSX, each unit represents an en-
coded pattern. The usize byte contains the number of elements for
the specified unit and the uflags its type along with some book-
keeping information. From the 8 bits of uflags, 6 are reserved for
the encoding of the type, and 2 are used for a new row marker and a
row offset marker. If the row offset bit is set, the header is followed
by a variable-length integer equal to the number of empty rows.
This is necessary, because the use of CSX units in directions other
than the horizontal may lead to empty rows. For each unit type
available, a unique 6-bit identifier is allocated for the type encod-
ing, therefore limiting the maximum number of different unit types
to 64. Different unit types may belong to the same class of patterns,
e.g., horizontal(1) and horizontal(2) are different unit types, but
belong to the horizontal class of patterns.

Our dynamic code generation approach uses the LLVM [16]
compiler infrastructure. A core component of LLVM is its inter-
mediate representation (IR), which resembles a RISC-like assem-
bly, and it can be manipulated by optimization passes and used to
produce native code for a number of different ISAs. The code for
the SpMV operation is generated programmatically in LLVM’s IR
and is specific to each unit type. Subsequently, it is optimized and
dynamically compiled into native code. An on-disk cache of gen-
erated versions can be used to reduce the overhead of compilation
and optimization.

3.5 Restrictions and extensions
Overall, CSX is a very flexible storage format supporting several
different substructures within the sparse matrix simultaneously.
However, to simplify the implementation and reduce the run-time
cost of preprocessing, a number of restrictions have been applied.

As discussed above, our implementation does not detect overlap-
ping substructures and fully unaligned two-dimensional blocks
(row or column alignment is required). Even with these restrictions,
however, CSX is able to group the vast majority of the non-zero el-
ements in our matrix suite (see Fig. 4) in utilizable substructures.
Quite importantly, our detection approach based on transforma-
tions provides a straightforward mechanism to incorporate further
meaningful substructures, provided they can be expressed as a co-
ordinate transformation as well.

The preprocessing phase for CSX is broken down into two
steps: substructure detection and matrix construction (encoding).
Both steps require sorting of the processed elements. However, as
discussed before, processing non-zero elements in windows keeps
the overall complexity of the preprocessing phase linear to the num-
ber of non-zero elements of the matrix, without wasting a signifi-
cant number of substructures. However, in the current implemen-
tation of CSX, processing in windows is performed only for the
first step (detection) while the encoding step sorts all processed el-
ements. This adds some additional cost to the preprocessing, which
will be removed in future versions of the preprocessor.

The algorithm used by the detector to select the substructures
to be encoded in the final CSX format is greedy in that it always
selects the local optimal solution based on the criterion (1). This
might lead to a suboptimal set of encoded substructures. Finally,
our selection criterion considers only the reduction in the size of the
encoded matrix and ignores any differences in the computational
characteristics of the different substructures. We are also investi-
gating improvements on these topics, such as faster search methods
and more elaborate selection criteria.

4. Experimental evaluation
4.1 Experimental setup and methodology
We performed an experimental evaluation of the proposed storage
format on two SMP platforms: (a) a 2-way quad-core system (total-
ing 8 cores) based on Intel Harpertown processors, and (b) a 4-way
six-core system (totaling 24 cores) based on Intel Dunnington pro-
cessors. Figure 7 and Table 3 present the cache hierarchies and the
basic microarchitectural characteristics of our platforms.

C

L1

C

L1

C

L1

C

L1

L2 L2

CPU CPU

(a) Intel Harpertown.

C

L1

C

L1

C

L1

C

L1

C

L1

C

L1

L2 L2 L2

CPU

L3

CPU

L3

CPU

L3

CPU

L3

(b) Intel Dunnington.

Figure 7. Cache hierarchies of used hardware platforms.

Both systems run a 64-bit version of the Linux OS (kernel ver-
sion 2.6). We used version 2.5 of the LLVM compiler infrastruc-
ture and llvm-gcc 4.2.1 (a modified version of gcc that acts as a
front-end for LLVM) as a static compiler. The parallelization of all
versions of the SpMV kernel was done explicitly, using the POSIX

Harpertown Dunnington
Model E5405 X7460
Frequency (GHz) 2.0 2.66
L1 (data/instr.) 32K/32K 32K/32K
L2 (unified) 6M (1/2 cores) 3M (1/2 cores)
L3 (unified) – 16M
Number of cores 2× 4 = 8 4× 6 = 24

Table 3. System characteristics of used hardware platforms.

threads interface of the GNU C library (NPTL 2.7). Moreover, the
sched setaffinity() system call was used to bind the various
threads to predefined cores.

The experiments were conducted by measuring the execution
time of 128 consecutive SpMV operations with randomly created
input vectors. We made no attempt to artificially pollute the cache
after each iteration, in order to better simulate iterative scientific
application behavior, where matrix data are present in the cache hi-
erarchy, because either they have just been produced or they were
recently accessed. By using multiple iterations, we induce tempo-
ral locality to our benchmark, and thus the streaming behavior of
the SpMV kernel is maintained only if the working set, and more
specifically the matrix data, are larger than the system’s cache. For
the multithreaded versions of the kernel, we used row partition-
ing and a static balancing scheme based on the non-zero elements,
where each thread is assigned approximately the same number of
non-zero elements and, thus, the same number of floating-point op-
erations. The threads are always scheduled to run as “close” to the
processors as possible, e.g., on Harpertown 2 threads are scheduled
on the cores sharing the L2 cache, while 4 threads are scheduled
on the same physical package (similarly for Dunnington). For the
CSX matrix construction, we initially partition the data based on
the number of non-zero elements and for each partition we perform
the analysis and generate different SpMV versions for each thread.

We consider four different formats in our tests: CSR as the base-
line standard format, BCSR as a state-of-the-art improvement over
CSR, CSR-DU and CSX. The code for the CSR SpMV kernel was
optimized to write the y[i] value at the end of each innermost
loop, by keeping the intermediate result in a register. For BCSR we
use block-specific optimized routines and report the best perform-
ing block shape out of a large number of candidates. Finally, we use
a window of w = 32K non-zero elements for the analysis of the
matrix for CSX. We used 64-bit numerical values for all formats
and 32-bit indices for CSR and BCSR.

The matrix suite that we used for the performance evaluation
of our proposed technique consists of 15 matrices selected from
the University of Florida sparse matrix collection [7]. We made an
effort to include matrices that arise from different kind of prob-
lems. Table 4 presents our matrix suite and the characteristics of
every matrix. For the sake of presentation, we have arranged the
sparse matrices so that the first matrices are dominated by one-
dimensional substructures while the latter from two-dimensional.

4.2 CSX SpMV performance
This section discusses the effect of the CSX storage format on
the performance of the SpMV kernel. Figure 8 demonstrates the
average speedup of the considered formats over serial CSR for all
matrices on our platforms, while Fig. 9 presents the performance
improvement of different versions of CSX over the multithreaded
CSR.

The serial version of CSR-DU and BCSR on Harpertown lead
to −8% and −2% performance degradation on average, respec-
tively, while CSX manages to achieve a marginal 1% performance
improvement. On Dunnington, CSR-DU almost matches the per-

(a) Intel Harpertown (b) Intel Dunnigton

Figure 8. Average speedup of SpMV execution time over the serial CSR version for all considered formats.

Matrix rows cols nnz size (MB) Problem
stomach 213360 213360 3021648 35.39 2D/3D
torso3 259156 259156 4429042 51.67 2D/3D
apache2 715176 715176 4817870 57.86 Structural
cage13 445315 445315 7479343 87.29 Graph
G3 circuit 1585478 1585478 7660826 93.72 Circuit Sim.
atmosmodj 1270432 1270432 8814880 105.72 CFD
Si87H76 240369 240369 10661631 122.93 Chemistry
rajat31 4690002 4690002 20316253 250.39 Circuit Sim.
thermomech dK 204316 204316 2846228 33.35 Thermal
xenon2 157464 157464 3866688 44.85 Materials
thread 29736 29736 4470048 51.27 Structural
F1 343791 343791 26837113 308.44 Structural
inline 1 503712 503712 36816342 423.25 Structural
ldoor 952203 952203 46522475 536.04 Structural
boneS10 914898 914898 55468422 638.28 Model Reduction

Table 4. The matrix suite used for the experimental evaluation.
The size column displays the size of the matrix in MB when stored
in the CSR format.

formance of CSR, BCSR falls further behind at −10%, and CSX
gains 7% over CSR. When moving to multiple threads, however,
the memory bandwidth problem becomes dominant and the com-
pression formats show their potential. CSX achieves a 2.21 speedup
on Harpertown (33% performance improvement over CSR) when
all 8 cores are utilized and 11.27 speedup (25% improvement over
CSR) on Dunnington when all 24 cores are utilized. The speedups
for CSR-DU are 1.85 (+11.6% over CSR) and 10.1 (+10.3% over
CSR) for the Harpertown and Dunnington platforms, respectively.
BCSR cannot provide any speedup over CSR on average, since it
suffers from excessive padding. However, BCSR can provide sig-
nificant performance improvement over CSR for individual sparse
matrices with a lot of dense sub-blocks (see Fig. 10). As depicted
in Fig. 9, the best performance improvement over CSR on Dun-
nington is achieved when using 12 threads and not 24, as it might
be expected. This happens because 6 matrices of our suite, even
in CSR format, fit into the platform’s aggregate cache, which to-
tals 64MB. This also explains the superlinear speedup encountered
when moving from 12 to 24 threads on Dunnington for almost all
the formats. For this reason, we will focus on the 12-thread config-
uration on Dunnington in the following, where only two matrices
(stomach and thermomech dK) are close to the aggregate cache
(32MB). In the 12-thread configuration, when the memory bottle-

neck is the most apparent, the performance improvement of CSX
over CSR reaches 42%.

Figure 10 presents also the performance improvement of two
lighter versions of CSX, namely CSX-horiz and CSX-linear, which
detect only horizontal or one-dimensional patterns. CSX-full is the
full version of CSX, which also detects two-dimensional patterns. It
is apparent that both these lightweight versions of CSX can provide
considerable performance improvement over CSR and CSR-DU.
Although Fig. 4 shows that horizontal patterns are not dominant in
our suite, the block patterns are mined as horizontal when block
detection is disabled. However, the diagonal patterns discovered by
CSX-linear and CSX-all cannot be discovered by CSX-horiz and
are encoded as CSR-DU delta units in this case. This explains the
escalation in performance as we move from the pure CSR-DU to
CSX-horiz and then to more elaborate pattern detection schemes.

Figure 10 presents a detailed per matrix view of the performance
improvement achieved by BCSR, CSR-DU, and the different CSX
variants when 8 cores are used on Harpertown and 12 cores on
Dunnington. CSX managed to achieve the best performance in all
but one matrix, namely thermomech dK, where BCSR achieved
the best performance. This is not a surprise, since this matrix has
almost all of its non-zero elements in 2×2 dense blocks (see Fig. 4),
which, apparently, BCSR easily exploits without paying the cost of
decompression performed by CSX. However, BCSR’s performance
is rather poor for the first 8 matrices of our suite, that exhibit mainly
one-dimensional substructures, and are actually responsible for the
poor average performance of BCSR.

As far as the different CSX variants are concerned, we observe
that CSX-horiz falls back to CSR-DU performance for the first
matrices of our suite, since these contain mainly diagonal struc-
tures. For the same reason, CSX-full cannot provide any addi-
tional speedup over CSX-linear. The last 7 matrices of the suite are
block-dominated and CSX-all gives considerable improvements
over the other two variants. The performance of CSX-horiz and
CSX-linear is similar for these matrices, since they detect the same
patterns (horizontal). Interestingly, these variants can detect the
one-dimensional ‘sub-patterns’ comprising the blocks and provide
considerable improvements over pure CSR-DU.

4.3 CSX preprocessing cost
The preprocessing time for CSX when detecting all available pat-
terns (CSX-full variant) is comparable to a few thousands of serial
CSR SpMV operations (the wall-clock time ranges from a few sec-

(a) Intel Harpertown (b) Intel Dunnigton

Figure 9. Average performance improvement over multithreaded CSR for different CSX detection schemes.

(a) Intel Harpertown (b) Intel Dunnigton

Figure 10. Per matrix performance improvement over multithreaded CSR for Harpertown (8 threads) and Dunnington (12 threads).

ond to less than 10 minutes for the largest of our matrices). Since
typical applications using SpMV may involve less than a thousand
iterations, CSX preprocessing for all substructures is reasonable
only for offline preprocessing. Even in this case, however, we ar-
gue that for real-life applications, where the sparse matrix is reused
many times across numerous runs (e.g. solution of linear system
Ax = b with various values of b), this preprocessing cost is still
practical.

However, for applications that require online CSX preprocess-
ing and need to amortize this cost, we can trade performance for
lower preprocessing time. An approach is to restrict the search to
fewer substructures, as is the case of the CSX-horiz and CSX-linear
variants discussed previously. Both these lightweight variants of
CSX outperform significantly existing storage formats, although
they do not reach the performance of the ‘full’ CSX. A second
approach is to sample the input matrix, scanning only a represen-
tative part of it, in order to decide which substructures to encode
in CSX. Figure 11 shows the preprocessing cost (in serial CSR
SpMV operations) for CSR-DU and the aforementioned strategies.
We applied uniform sampling over the whole matrix for CSX-linear
and CSX-full (denoted as CSX-linear-s and CSX-full-s in Fig. 11).

Since the substructure detection phase of CSX is already performed
using windows, sampling the matrix is rather straightforward: we
scan only a certain number of preprocessing windows uniformly
distributed all over the input matrix. Specifically, we searched for
patterns in 5 windows of 32K non-zero elements, i.e., we sam-
pled 160K of non-zero elements of the matrix, which is less than
6% of the non-zero elements of the smallest matrix in our suite
(thermomech dK). We observe in Fig. 11 that the preprocessing
cost is drastically reduced, leading to practical preprocessing times
even for online computations. Sampling the matrix is very effective,
since it leads to a large reduction in the preprocessing cost with a
minor effect on performance. We should also note that the current
implementation of the CSX preprocessing can be further reduced
with some additional implementation effort, e.g., avoiding the cost
of sorting the matrix during the encoding (see Section 3.5) by us-
ing processing windows, and providing a multithreaded implemen-
tation of the preprocessing. We expect that these optimizations will
further reduce the preprocessing cost to less than a hundred serial
CSR SpMV operations, making CSX more suitable for online pre-
processing of the matrix.

(a) Intel Harpertown (b) Intel Dunnigton

Figure 11. Tradeoff between preprocessing time and performance improvement over multithreaded CSR. The reported performance
improvement is for 8 threads on Harpertown and 12 threads for Dunnington.

5. Related Work
Due to the importance of SpMV, there is an abundance of scientific
work targeting the optimization of the serial version of the kernel.
Several of these efforts [11,19,22–24] aim at the optimization of the
irregular and indirect accesses on the input vector using methods
such as matrix reordering, register blocking, and cache blocking.
Other works [17,25] are concerned with the performance problems
that arise in matrices with a large number of rows with small length.

A significant part of the SpMV optimization techniques re-
ported in the related literature result in index data reduction. Typical
examples are blocking methods such as BSCR [20] that store only
per-block index information. A problem with these approaches is
that, depending on the structure of the matrix, they may require ap-
propriate padding with zero values. One of the first works that ex-
plicitly targets the compression of the index data is [26]. In this pa-
per, Willcock and Lumsdaine propose two methods: DCSR, which
compresses column indices using a byte-oriented delta encoding
scheme to exploit the highly redundant nature of the col ind ar-
ray and RPCSR, which generates matrix-specific dynamic code by
applying aggressive compression on column indices patterns for
the whole matrix. In [15] we propose the CSR-DU format, which
employs a delta encoding scheme to group areas of non-zero ele-
ments. CSR-DU is restricted to non-zero elements along the same
row. Another recent work that targets performance improvement
by reducing the index data volume is [5], where Belgin et al. pro-
pose a matrix representation that exploits repeated block patterns.
The approach here divides the matrix into sub-blocks and searches
for frequently encountered block patterns within these sub-blocks.
The proposed storage format exhibits good serial performance, but
is not so successful with multiple cores.

As far as the multithreaded version of the code is concerned,
past work focuses mainly on SMP clusters, where researchers either
apply and evaluate known uniprocessor optimization techniques
(e.g., register and cache blocking) on SMPs or examine reordering
techniques to improve locality of references and minimize commu-
nication cost [6, 8, 10, 18]. Williams et. al [27] presented an evalu-
ation of SpMV on a set of emerging multicore architectures. Their
study covers a wide and diverse range of high-end chip multipro-
cessors, including recent multicores from AMD (Opteron X2) and
Intel (Clovertown), Sun’s Niagara2, and platforms comprised of
one or two Cell processors. Their work includes a rich collection
of optimizations, including some that are targeted specifically at

multithreading architectures, on a set of 14 matrices. Although this
work focuses on a different class of optimizations, the authors state
that they generate different kernel versions for different architec-
tures. Hence this work, along with [5], conforms with our general
approach and reveals the necessity for specialized SpMV routines,
based on the execution environment (e.g., underlying architecture)
or the matrix data for maximizing performance.

6. Conclusions – Future work
In this paper we present a new storage format for sparse matrices
called Compressed Sparse eXtended (CSX) that targets the opti-
mization of the SpMV kernel. CSX utilizes a variety of substruc-
tures within the sparse matrix, falling in two main categories: one-
dimensional substructures across the same row, column or diag-
onal compressed using a delta run-length encoding scheme, and
two-dimensional blocks. CSX is a very flexible storage format that
can be further extended to incorporate other families of substruc-
tures if necessary. Experimental evaluation on 15 matrices and two
multicore platforms has demonstrated that CSX can lead to signif-
icant and steady performance improvements over CSR and other,
state-of-the-art storage formats. Regarding preprocessing, CSX in-
corporates a unified approach for the supported substructures based
on transformations and exhibits a complexity linear to the number
of non-zero elements of the input matrix. Thorough inspection of
the matrix to collect the vast majority of substructures leads to a
preprocessing cost that is practical for offline preprocessing. To ex-
tend the applicability of CSX to online preprocessing, we propose
preprocessing strategies that scan a subset of the considered sub-
structures or perform sampling of the matrix. In this way we are
able to trade a small part of performance for a large part of pre-
processing cost. Our view is that the above two characteristics of
CSX (superior performance and low preprocessing cost) make this
storage format the best approach for SpMV. For future work we
intend to further reduce the preprocessing cost of CSX and report
results from the incorporation of SpMV with CSX in applications
like iterative solvers (CG, GMRES, etc.).

Acknowledgements
This paper is part of the 03ED255 research project, implemented
within the framework of the ‘Reinforcement Programme of Human
Research Manpower’ (PENED) and co-financed by National and

Community Funds (20% from the Greek Ministry of Development-
General Secretariat of Research and Technology and 80% from
E.U. – European Social Fund).

References
[1] R. C. Agarwal, F. G. Gustavson, and M. Zubair. A high performance

algorithm using pre-processing for the sparse matrix-vector multipli-
cation. In Supercomputing’92, pages 32–41, Minn., MN, November
1992. IEEE.

[2] W. K. Anderson, W. D. Gropp, D. K. Kaushik, D. E. Keyes, and
B. F. Smith. Achieving high sustained performance in an unstruc-
tured mesh CFD application. In SC ’99: Proceedings of the 1999
ACM/IEEE Conference on Supercomputing, page 69, New York, NY,
USA, 1999. ACM.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The landscape of parallel computing research: A
view from berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, December 18 2006.

[4] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst. Templates
for the Solution of Linear Systems: Building Blocks for Iterative Meth-
ods. SIAM, Philadelphia, 1994.

[5] M. Belgin, G. Back, and C. J. Ribbens. Pattern-based sparse ma-
trix representation for memory-efficient smvm kernels. In ICS ’09:
Proceedings of the 23rd international conference on Supercomputing,
pages 100–109, New York, NY, USA, 2009. ACM.

[6] U. V. Catalyuerek and C. Aykanat. Decomposing irregularly sparse
matrices for parallel matrix-vector multiplication. Lecture Notes In
Computer Science, 1117:75–86, 1996.

[7] T. Davis. University of Florida sparse matrix collection. NA Digest,
97(23):7, 1997.

[8] R. Geus and S. Röllin. Towards a fast parallel sparse matrix-vector
multiplication. In Parallel Computing: Fundamentals and Applica-
tions, International Conference ParCo, pages 308–315. Imperial Col-
lege Press, 1999.

[9] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris.
Performance evaluation of the sparse matrix-vector multiplication on
modern architectures. The Journal of Supercomputing, 2008.

[10] E. Im and K. Yelick. Optimizing sparse matrix-vector multiplication
on SMPs. In 9th SIAM Conference on Parallel Processing for Scien-
tific Computing. SIAM, March 1999.

[11] E. Im and K. Yelick. Optimizing sparse matrix computations for
register reuse in SPARSITY. Lecture Notes in Computer Science,
2073:127–136, 2001.

[12] V. Karakasis, G. Goumas, and N. Koziris. A comparative study of
blocking storage methods for sparse matrices on multicore archi-
tectures. In 12th IEEE International Conference on Computational
Science and Engineering (CSE-09), Vancouver, Canada, 2009. IEEE
Computer Society.

[13] D. Keppel, S. J. Eggers, and R. R. Henry. A case for runtime
code generation. Technical Report UWCSE 91-11-04, University
of Washington Department of Computer Science and Engineering,
November 1991.

[14] K. Kourtis, G. Goumas, and N. Koziris. Improving the performance
of multithreaded sparse matrix-vector multiplication using index and
value compression. In 37th International Conference on Parallel
Processing (ICPP’08), pages 511–519, Sept. 2008.

[15] K. Kourtis, G. Goumas, and N. Koziris. Optimizing sparse matrix-
vector multiplication using index and value compression. In CF ’08:
Proceedings of the 2008 conference on Computing frontiers, pages
87–96, New York, NY, USA, 2008. ACM.

[16] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the

2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[17] J. Mellor-Crummey and J. Garvin. Optimizing sparse matrix-vector
product computations using unroll and jam. International Journal of
High Performance Computing Applications, 18(2):225, 2004.

[18] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera. Improving
the locality of the sparse matrix-vector product on shared memory
multiprocessors. In PDP, pages 66–71. IEEE Computer Society,
2004.

[19] A. Pinar and M. T. Heath. Improving performance of sparse matrix-
vector multiplication. In Supercomputing’99, Portland, OR, Novem-
ber 1999. ACM SIGARCH and IEEE.

[20] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations.
Technical report, Computer Science Department, University of Min-
nesota, Minneapolis, MN 55455, June 1994. Version 2.

[21] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM,
Philadelphia, PA, USA, 2003.

[22] S. Toledo. Improving the memory-system performance of sparse-
matrix vector multiplication. IBM Journal of Research and Devel-
opment, 41(6):711–725, 1997.

[23] R. Vuduc, J. Demmel, K. Yelick, S. Kamil, R. Nishtala, and B. Lee.
Performance optimizations and bounds for sparse matrix-vector mul-
tiply. In Supercomputing, Baltimore, MD, November 2002.

[24] R. W. Vuduc and H. Moon. Fast sparse matrix-vector multiplication
by exploiting variable block structure. In High Performance Comput-
ing and Communications, volume 3726 of Lecture Notes in Computer
Science, pages 807–816. Springer, 2005.

[25] J. White and P. Sadayappan. On improving the performance of
sparse matrix-vector multiplication. In HiPC ’97: 4th International
Conference on High Performance Computing, 1997.

[26] J. Willcock and A. Lumsdaine. Accelerating sparse matrix compu-
tations via data compression. In ICS ’06: Proceedings of the 20th
annual International Conference on Supercomputing, pages 307–316,
New York, NY, USA, 2006. ACM Press.

[27] S. Williams, L. Oilker, R. Vuduc, J. Shalf, K. Yelick, and J. Dem-
mel. Optimization of sparse matrix-vector multiplication on emerging
multicore platforms. In SC ’07: Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, Reno, NV, November 2007.

	Introduction
	Background
	Sparse matrix formats and the SpMV operation
	The CSR-DU storage format

	Compressed Sparse eXtended (CSX)
	Motivation and approach
	Exploiting substructures within the sparse matrix
	CSX matrix construction
	Multiplication routines
	Restrictions and extensions

	Experimental evaluation
	Experimental setup and methodology
	CSX SpMV performance
	CSX preprocessing cost

	Related Work
	Conclusions � Future work

