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Abstract
The Sparse Matrix-Vector Multiplication (SpMV) kernel scales
poorly on modern multicore architectures due to its high demands
on memory bandwidth. Adding more threads and keeping the pro-
cessor frequency high might not attain the expected performance
benefits, therefore leading to a waste of energy. In this paper, we
explore the performance-energy landscape of the SpMV kernel by
examining the impact of frequency scaling and thread placement on
the performance and the energy requirements of the SpMV kernel.
We use a simple power metric specifically targeted to the stream-
ing nature of SpMV to rank the different execution configurations
in terms of power dissipation, and use the notion of Pareto optimal-
ity from the theory of multi-objective optimization to analyze and
characterize the tradeoffs. Finally, we propose a prediction model
based on machine learning, which is capable of accurately predict-
ing the execution configurations leading to the best performance-
energy tradeoffs for SpMV execution.

1. Introduction
Sparse Matrix-Vector Multiplication (SpMV) is one of the most sig-
nificant and widely used scientific computational kernels arising in
a variety of application domains. Its optimization has drawn the in-
terest of the research community over the years and a variety of op-
timization techniques have been proposed [8,9,15]. The key perfor-
mance characteristic of SpMV on modern multicore machines is its
high demands on memory bandwidth [4, 16], which prevent it from
scaling to multiple cores, especially when the size of the sparse ma-
trix exceeds the aggregate cache size of the underlying architecture.
Considerable work has been done toward the direction of minimiz-
ing the memory footprint of SpMV [8, 9, 15]. Kourtis et al. [9] pro-
posed recently the CSX format that applies aggressive compression
of the column indexing structure of the standard CSR format. CSX
searches for dense substructures inside the sparse matrix and instead
of storing a single index for every nonzero element of the sparse ma-
trix, it stores a short description for each substructure found. CSX
can reduce considerably the memory footprint of the SpMV kernel
and achieve significant performance improvements over other stan-
dard sparse matrix storage formats.

Minimizing the storage requirements of the column indexing
structure of CSR, however, will soon have diminishing returns,
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since it accounts for only 1/3 of the total CSR memory foot-
print. Drawing motivation from this fact, we try to investigate the
performance-energy tradeoffs of SpMV. The idea is simple: since
SpMV is memory-bound by nature, trying to get a single bit of per-
formance will be increasingly difficult and energy consuming. In
this paper, we try to find the execution configuration (core frequency
and thread placement) that will yield the best performance-energy
tradeoff. Voltage and frequency scaling is a key parameter for re-
ducing power consumption in modern commodity processors [2,7],
while thread placement can significantly affect the performance
of memory-bound applications on modern multicore architectures
with multiple-level hierarchies of shared caches. Since modern pro-
cessors’ power dissipation scales with the third power of the fre-
quency [1,7], we expect that throttling the cores and using a careful
placement of the threads will yield comparable performance at a
lower energy budget. Additionally, blindly filling up all the cores
of a shared memory machine to solve a memory-bound application,
such as SpMV, will not necessarily yield the best performance and
will most probably be a waste of energy.

Performance and energy consumption are usually conflicting re-
quirements, especially for SpMV. In this paper, we use the notion
of Pareto optimality [12] to analyze the tradeoffs of the different
execution configurations. We also show that configurations mini-
mizing energy-delay products are indeed Pareto optimal solutions,
i.e., best tradeoffs. Finally, using the substructure metadata provided
by CSX and some characteristics of the underlying microarchitec-
ture, we propose a simple machine learning approach based on clus-
tering to predict the execution configurations that are close to the
best performance-energy tradeoffs for solving large SpMV prob-
lems. Machine learning and statistical modeling have been gaining
a growing interest in the high performance computing community
recently, since they are able to mine important relations in complex
optimization spaces. They have already been successfully used in
autotuning high-performance scientific codes [11, 14], in compiler
optimizations [10, 13], and in predicting power dissipation [2, 5] of
modern microarchitectures.

The rest of the paper is organized as follows: Section 2 provides
some basic background information about the power dissipation of
modern processors and about the CSX sparse matrix storage format.
Section 3 presents our simple power metric used to qualify the dif-
ferent execution configurations, describes the notion of Pareto op-
timality and discusses the performance-energy tradeoffs of SpMV.
Section 4 explains our approach for predicting the best execution
configurations and Section 5 presents an experimental evaluation of
this approach. Finally, Section 6 concludes the paper and proposes
future work.



2. Background
2.1 Basics of processor power consumption
The power dissipation of a CMOS device can be summarized by the
following equation [1, 7]:

P =
1

2
CV 2αf + Pleakage + Pshort-circuit. (1)

In this equation, C is the circuit capacitance, V is the supply volt-
age, α (0 ≤ α ≤ 1) is the activity factor of the circuit, i.e., how
often the device switches, and f is the operating frequency of the
circuit. The last two terms correspond to power dissipation due to
leakage and short-circuit currents and can be ignored at the operat-
ing voltage range of modern commodity processors. In this voltage
range, the operating frequency is proportional to the supply voltage
of the circuit, which reduces equation (1) down to

P = Kαf3, (2)

where K is a design-specific constant. Summing up this product for
every unit in the processor chip yields the total power dissipation
of the processor. The important aspect of this equation is that the
operating frequency of the processor greatly affects its power dis-
sipation, while the activation of the different processor components
(cores, caches, branch prediction units, etc.) play also a significant
role.

2.2 A quick overview of CSX
The Compressed Sparse eXtended (CSX) [9] sparse matrix storage
format is a recently proposed storage format focusing on the opti-
mization of the SpMV kernel. The main goal of the CSX format is
to minimize the space requirements of the column indexing struc-
ture of the traditional Compressed Sparse Row (CSR) format. The
CSR format utilizes three arrays to store the elements of the original
matrix: (a) the values array, which stores the nonzero elements of
the matrix, (b) the col ind array, which stores the column index of
each nonzero element, and (c) the row ptr array, which stores the
indices of the values array indicating the start of each row in the
original matrix. Since the number of nonzero elements in a sparse
matrix greatly exceeds the number of its rows, the col ind array
takes up a substantial part of the total size of the sparse matrix in
memory. CSX mines the matrix for dense substructures and instead
of storing a ‘full’ 4-byte integer for each nonzero element, it just
uses a 2-byte descriptor for each substructure found. The first byte
stores the size (in number of nonzeros) of the encoded substruc-
ture, while the second stores its type and some encoding-specific
metadata. This technique significantly reduces the storage require-
ments of the original col ind array, thus alleviating the pressure to
the memory subsystem. The substructures detected by CSX fall into
the following categories: (a) horizontal, contiguous elements in the
horizontal direction, (b) vertical, contiguous elements in the verti-
cal direction, (c) diagonal and anti-diagonal, contiguous elements
in the diagonal or anti-diagonal directions, and (d) two-dimensional
blocks. The remainining elements, i.e., elements not grouped in any
substructure, are encoded as delta units, which is essentially a delta-
encoding scheme for the rest of the col ind array. Finally, CSX gen-
erates at runtime optimized SpMV code for each of the encoded
substructure types.

The preprocessing done during CSX construction reveals valu-
able information about the sparse matrix structure, since different
substructures have different computational characteristics that could
affect performance [6]. In this paper, we use this information to
make an educated guess on the execution configurations that lead
to the best energy-performance tradeoffs for SpMV using CSX.

3. Performance-Energy tradeoffs
Modern shared memory architectures have multiple levels of caches
that are shared among different cores on the same die. For example,

the six-core Intel Dunnington architecture (Figure 1) has three lev-
els of caches: (a) private L1 instruction/data caches per core, (b) an
L2 cache shared by every two cores, and (c) a huge 16 MB L3
cache shared by all the six cores. The presence of so large caches
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Figure 1. A typical high-end shared memory architecture: a four-
way Intel Dunnington platform.

in modern shared memory architectures is essential in order to cope
with the limited bandwidth of the common bus and keep threads
away from accessing the main memory very often. The sharing
of caches among processing cores can also affect significantly the
performance of a memory bandwidth-bound application, such as
SpMV, since the amount of cache that each thread ‘sees’ depends
on the way the threads are placed on cores. For example, suppose a
64 MB sparse matrix is split equally among 4 threads; if we place
the threads on the same package, all threads will experience signif-
icant L3 capacity misses, since they contend for cache space. On
the other hand, if we place one thread per package, the L3 cache
will suffice. Unfortunately, this is not at free: large caches in mod-
ern architectures take up almost 50% of the total die area dissipat-
ing a significant amount of power [7], and streaming applications,
such as SpMV, make heavy use of them. Therefore, distributing
threads sparsely among the different physical packages will lead to
increased power dissipation. The increased power dissipation, how-
ever, can be compensated with a much lower execution time, leading
eventually to lower energy consumption.

3.1 A simple power metric for SpMV
In order to qualify the different execution configurations in terms
of power dissipation, we use a simple power metric based on equa-
tion (2) and similar in principle to the one presented in [5]. Our
purpose is to rank the different execution configurations in terms of
power dissipation rather than predict the exact power dissipation, so
our metric is higher level and less detailed. We view the processor as
comprising of three major components: (a) the cores, (b) the caches
(L2 and L3), and (c) the bus interface. These components take up
significant area on the chip die. For example, the six cores of the
Dunnington chip take up approximately 28% of the processor chip,
the L2 caches 17%, the L3 cache 31%, and the system bus inter-
face about 24%1. Our power metric sums up the activation of each
component multiplied by the third power of the processor frequency
for each physical package that a thread placement uses. Specifically,
our power metric is

P =
∑
pkg

∑
i∈comp.

αi · areai · f3. (3)

In this equation, αi is the activity factor of the i-th component in
the package, areai is the percentage of the total area of the chip
occupied by the i-th component, and f is the operating frequency
of the processor. Since, we are concerned about a single applica-
tion, namely SpMV, with specific computational characteristics that
do not differ a lot from matrix to matrix, we use a more qualita-
tive approach for computing activity factors: for each core we set

1 The percentages are computed from an annotated die photo of the Dun-
nington chip published by Intel.



αcore = 1, for each cache we set αcache = 1 if the sparse matrix
does not fit in this cache, otherwise we set it equal to the percent-
age of it occupied by the sparse matrix. For the bus interface, we
set αbus = 1, if the sparse matrix size is larger than 20% of the
aggregate cache size of the packages used, otherwise we set it to
zero.

Figure 2 shows the normalized performance versus our normal-
ized energy metric (power metric by execution time) for 112 dif-
ferent execution configurations (core frequency and thread place-
ment) on a four-way six-core Intel Dunnington architecture (Fig-
ure 1). The behavior between matrices that fit in the aggregate cache
and matrices that do not is quite different. For example, the most
energy-efficient configuration for matrix FEM 3D thermal2 (ap-
proximately 30 MB stored with the CSX format) is when using 4
threads, one per physical package, at 2.14 GHz, while the least ef-
ficient is when using 6 threads on the same package at 2.67 GHz.
Although the former thread placement is more power-hungry, since
it turns on more caches, it eventually pays off as it leads to a much
lower execution time, because in this configuration the matrix fits
in the aggregate cache of the system. On the other hand, ‘stuffing’
threads in the same package and keeping the frequency high yields
not only lower performance (lower than a lot of 2.14 GHz configu-
rations), but also high energy consumption. In this case, the matrix
does not fit in the cache and the execution time rises significantly.

For matrices that do not fit in the aggregate cache, as is matrix
kkt power (approximately 140 MB stored with the CSX format),
the situation is inversed. The most energy-efficient configuration is
2 threads at 2.14 GHz sharing the L3 cache (but not sharing the L2
cache). Contrary to the smaller matrix, spreading the threads across
the packages in this case does not give significant performance
benefits, since the problem still does not fit in the aggregate cache
and the penalty paid in power dissipation cannot be payed off in
reduced execution time. Another interesting observation is that the
best performance for this matrix is achieved using only 12 threads
spread across the 4 packages, assigning one thread per L2 cache;
using more threads will be a waste of energy.

3.2 Characterizing the tradeoffs
Looking at the performance-energy tradeoffs depicted in Figure 2,
it is apparent that points in the upper left corner are good trade-
offs, since they maximize performance, while keeping energy re-
quirements low. However, the question that might arise is how we
could compare tradeoffs against each other and if there exist a sin-
gle best tradeoff. Suppose two points, let (e, p) and (e′, p′), in the
energy-performance landscape of Figure 2 that correspond to exe-
cution configurations E and E′. If e < e′ and p ≥ p′ or e ≤ e′

and p > p′, then E is definitely a better tradeoff than E′, since
with lower energy requirements, it achieves at least the same per-
formance or with at most the same energy requirements achieves
strictly greater performance. In this case, we say that configura-
tion E strictly dominates configuration E′. However, if e ≤ e′ and
p ≤ p′, we cannot assess if E is a better tradeoff than E′. The set
of points (and the corresponding execution configurations) that are
not dominated by any other point in the energy-performance land-
scape form the non-dominated Pareto front [12]. The configurations
on the Pareto front form the set of optimal tradeoffs, since they are
strictly better than any other configuration in at least one objective.
An important property of the Pareto front is that when moving from
one point to another, we experience the least possible loss in energy
consumption and the greatest gain in performance and vice versa.
In that sense, all points of the Pareto front are formally equivalent
tradeoffs. This means that there is not a single best tradeoff of per-
formance and energy (unless the Pareto front collapses to a single
point), but rather a set of best tradeoffs.

Energy-delay products A common way for finding a good perfor-
mance-energy tradeoff is trying to minimize the product of energy

by execution time, or energy-delay product (ED-product). In fact,
you can try to minimize EDn for n ≥ 1, to bias toward higher
performance. The question is whether the configuration minimizing
an EDn product is Pareto optimal, i.e., one of the best tradeoffs,
or not. The answer is positive, and it can be easily proved using the
notion of Pareto optimality descibed previously.

Assume that the execution configuration M minimizes the EDn

product for some n ≥ 0, i.e., eMdnM < eM′dnM′ for each M ′ ̸=
M . If we suppose that (eM , dM ) does not lie on the Pareto front,
then there must be a configuration C, such that either eC < eM and
dC ≤ dM or eC ≤ eM and dC < dM . Therefore, the energy-delay
product of this configuration will be eCd

n
C ≤ eMdnM for n = 0

or eCdnC < eMdnM for n > 0, which contradicts with our initial
assumption that the configuration M minimizes the energy-delay
product. Therefore, M is a non-dominated solution, i.e., a point on
the Pareto front. As a corollary, every point of the Pareto front is a
minimal energy-delay product for some n ≥ 0.

Figure 3 shows the Pareto front of matrix kkt power along with
the points corresponding to ED and ED2 products. Each Pareto
point is annotated with the corresponding execution configuration.
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Figure 3. Best performance-energy tradeoffs and the correspond-
ing execution configurations for matrix kkt power. See also Fig-
ure 2 for a description of the configuration annotations.

4. Predicting the best configurations
The definitive parameter for SpMV performance is the matrix size.
If the matrix is small enough to fit in the aggregate cache of the
underlying architecture, SpMV will experience a significant perfor-
mance improvement, otherwise performance will be severely hin-
dered by contention in the memory subsystem. As discussed in
Section 3, even the best energy-performance tradeoffs differ sig-
nificantly between these two large matrix categories. However, the
matrix size is not the only parameter to characterize SpMV perfor-
mance; previous work [6] has showed that the computational char-
acteristics of the individual substructures inside the sparse matrix
play also a role in the final SpMV performance.

The idea behind learning the execution configurations that lead
to the best performance-energy tradeoffs is that we expect matrices
with similar structural characteristics, e.g., large block-dominated
matrices, to have similar performance-energy tradeoffs. Our learn-
ing mechanism is based on an initial clustering of matrices based on
their size and the substructures encoded by CSX. For each cluster
we construct a representative Pareto front from the execution con-
figurations that lie on the Pareto fronts of the matrices in the cluster.
Each cluster is then represented by its geometric center (in the space
of the matrix attributes) and its Pareto front.
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Figure 2. The energy-performance tradeoffs of a small (fitting in the aggregate cache) and a large matrix. The thread placements of the
minimum/maximum energy consumption and maximum performance are shown; ‘p’ stands for package, ‘s’ for sub-package (shared L2) and
‘c’ for core.

4.1 Clustering the matrices
The first step toward grouping together similar matrices based on
their execution characteristics is to separate our matrix suite into
two major categories: (a) matrices that significantly exceed (more
than 20%) the aggregate cache size of the underlying architecture,
and (b) matrices that do not. We focus on the first category, since the
difference in energy consumption between the most energy-efficient
and the most performant configuration is much larger than in the
case of a small matrix. For a small matrix, power dissipation is
not of such a concern, since adding more threads translates almost
directly to a decrease in execution time, therefore keeping energy
requirements almost the same (see Figure 2). To further separate
our matrices into categories based on the encoded substructures,
we assign each matrix a vector of attributes corresponding to the
nonzero elements encoded by each major substructure type of CSX
and use a hierarchical clustering technique to actually perform the
clustering. Specifically, each matrix is assigned the following four
attributes:
(1) Percentage of nonzeros covered by horizontal and vertical sub-

structures,
(2) percentage of nonzeros covered by diagonal and anti-diagonal

substructures,
(3) percentage of nonzeros covered by block substructures, and
(4) percentage of nonzeros covered by delta units.
As a distance metric between the matrices we use the euclidean dis-
tance. Hierarchical clustering starts by considering each observation
to be in its own cluster and proceeds by merging together individ-
ual clusters until a certain distance threshold is reached. Figure 4
shows the clusters formed from our matrix suite with the distance
threshold set to 0.5.

4.2 Constructing the cluster Pareto front
Assuming a good clustering of the matrices, the cluster Pareto front
would consist of the most common execution configurations present
in the Pareto fronts of every matrix in the cluster. To construct
the cluster Pareto front, we start iterating the Pareto fronts of the
matrices in the cluster from the most performant configuration to
the most energy-efficient, i.e., from the last Pareto point down to
the first. At each iteration, we record the execution configurations
that correspond to the current point for every matrix in the cluster
and select the most frequent. If two or more configurations have
the same frequency, we select all of them if their frequency is more
than 25% of the cluster size, otherwise we select the one with the
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Figure 4. Clustering of the largest matrices of our matrix suite
based on the substructures encoded by CSX. The different clusters
are characterized by their dominating substructure.

least number of threads, in order to cover better the low-energy
configurations. We also use this technique to provide predictions
about the configurations minimizing the ED and ED2 products.

Avoiding overfitting The Pareto fronts of the different matrices
in a cluster do not necessarily have the same amount of points,
so with our method for constructing the cluster Pareto, there is a
risk of creating a Pareto front with so many points that will not be
representative of the cluster, since it will cover every ‘corner case’
in the matrix cluster. To avoid this situation of overfitting, we stop
the construction of the Pareto front as soon as we ‘run out’ of points
for more than half of the matrices in the cluster. Figure 5 shows an
example of the construction of the cluster Pareto front.

4.3 Classification and testing
After having trained our model, we store the cluster centers and
the associated cluster Pareto fronts for future use. When a new
matrix appears, we run CSX to retrieve the metadata about the
encoded substructures and classify it to the closest cluster based
on its euclidean distance from each of the cluster centers. The best
performance-energy configurations for this matrix are then assumed
to be the configurations of the Pareto front of the selected cluster.

In order to assess the quality of our prediction, we need a
metric to characterize the predicted execution configurations as



Matrix 0 Matrix 1 Matrix 2 Cluster Pareto

4p12s24c@2.67 4p12s24c@2.67 4p12s24c@2.67 4p12s24c@2.67
4p12s12c@2.67 4p12s12c@2.67 4p12s12c@2.67 4p12s12c@2.67

4p8s8c@2.67 4p8s8c@2.67 4p8s8c@2.67 4p8s8c@2.67
4p12s24c@2.14 4p12s24c@2.14 4p12s24c@2.14 4p12s24c@2.14
4p12s12c@2.14 4p12s12c@2.14 4p12s12c@2.14 4p12s12c@2.14

4p8s8c@2.14 4p8s8c@2.14 4p8s8c@2.14 4p8s8c@2.14
2p6s6c@2.14 1p2s2c@2.14 2p6s6c@2.14 2p6s6c@2.14
1p3s3c@2.14 n/a 1p3s6c@2.14 1p3s3c@2.14
1p2s2c@2.14 n/a 1p2s4c@2.14 1p2s2c@2.14

n/a n/a 1p2s2c@2.14 n/a

Figure 5. Construction of the cluster Pareto front assuming a clus-
ter of three matrices. Bold typeface shows the configurations that
are selected to be part of the constructed Pareto front.

Matrix Size Problem Matrix Size Problem

thermal2 86 thermal TSOPF RS b2383 123 power
bmwcra 1 83 structural af 5 k101 135 structural
Si87H76 85 chemistry af shell9 135 structural
hood 84 structural Ga41As41H72 151 chemistry
ohne2 100 semicond. Freescale1 201 circuit sim.
bmw3 2 89 structural msdoor 163 structural
pwtk 91 structural rajat31 173 circuit sim.
crankseg 2 114 structural F1 214 structural
nd12k 115 2d/3d fdif202x202x102 213 other
random100000 143 n/a inline 1 291 structural
Si41Ge41H72 121 chemistry ldoor 358 structural
kkt power 140 optim. boneS10 431 model red.

Table 1. Matrix suite. The ‘Size’ column corresponds to the size
of the matrix in MB when encoded with the CSX format.

performance-energy tradeoffs. According to our discussion in Sec-
tion 3, the set of configurations lying on the Pareto front are all
equivalent optimal tradeoffs. If we take out these configurations
and recompute the Pareto front with the remaining configurations,
then we have the set of the second best configurations, if we also
omit these and recompute, we have the third best and so forth. We
can therefore assign each predicted configuration a distance value
d ≥ 0 denoting how far from the optimal set it lies. For example,
d = 0 means that our prediction is optimal, while d = 2 means
that our prediction is one of the third best configurations. If we take
an average of the distance of every configuration on the predicted
Pareto front from the optimal one, we have a metric of how far from
the optimal the predicted Pareto front is.

5. Experimental evaluation
For the evaluation of our prediction method, we used a four-way
six-core Intel Xeon X7460 (Dunnington) as a target architecture
(see also Figure 1). Each processor runs at 2.67 GHz, has private
32 KB instruction and data caches, a 3 MB L2 data cache shared by
every two cores, and a 16 MB L3 cache shared by all cores in the
package. Each core supports two different frequency steps: one at
2.14 GHz and one at the full speed of 2.67 GHz. For scaling the core
frequency we use the cpufrequtils userspace tools for Linux. All
experiments were run on a GNU/Linux 2.6.30.5 system and for the
matrix encoding we used the publicly available CSX sparse matrix
storage format compiled with GCC 4.3.2 and LLVM 2.7.

The matrix suite used for our experiments is the same as the one
used in [8] and consists of matrices from the University of Florida
Sparse Matrix Collection [3]. We will list here only the 24 matrices
that do not fit in the 64 MB aggregate cache of our target platform
(see Table 1) and are of our main concern in this paper according to
the discussion in Section 4.1.

Execution configurations The thread placements that we con-
sider fall into three categories: (a) full sharing, in which threads are
placed as close as possible, sharing all the levels of the cache hierar-

Fold No. Avg. Dist. 95% C.I. Dist. ≤ 2 Dist. ≤ 3

Fold 1 0.822 0.783 99.8% 100.0%
Fold 2 1.410 1.235 82.5% 99.4%
Fold 3 0.225 0.168 100.0% 100.0%
Fold 4 1.253 1.412 85.0% 99.2%
Fold 5 0.294 0.350 100.0% 100.0%

Table 2. Cross-validation results. The average Pareto distance and
a 95% confidence interval are depicted for each fold. The probabil-
ity for the average Pareto distance to be lower than a threshold is
also depicted.

chy, (b) semi sharing, in which threads are placed so that they share
the L3 cache, but not the L2, and (c) no sharing, in which threads are
placed as sparsely as possible, so as to minimize the sharing of the
cache hierarchy. In the following, to describe the different thread
placements we will use the notation ‘PpSsCc’, denoting that we
use C cores, S sub-packages (i.e., shared L2 cache) and P phys-
ical packages. For example, the possible thread placements for 4
threads would be 1p2s4c, 2p4s4c, and 4p4s4c. We consider 56 dif-
ferent thread placements ranging from 1 to 24 threads for both fre-
quency steps, giving us a total of 112 execution configurations. For
each configuration we run 128 consecutive SpMV operations with
the CSX format for every matrix in our suite and store the results to
train and test our model.

Training and testing The training of the model is performed
offline, since we must perform a large number of SpMV operations
to record the energy-performance tradeoffs of the matrices in the
training set, a procedure which can last several hours. In order to
build our model, we used SciPy (Scientific Tools for Python) 0.7.0,
which is a collection of Python modules for mathematics, science,
and engineering. The method we use to test our model is a 5-
cross-validation (5-CV) technique, which consists of the following
steps: (a) shuffle uniformly the initial matrix suite and split it into
five equal parts (a.k.a. folds), (b) keep one fold for testing and
use the rest for training, and (c) repeat until all folds are tested.
Cross-validation is a common statistics technique for assessing the
prediction accuracy of a predictive model.

Table 2 summarizes the results of the 5-CV test for our model.
For each fold, it depicts the average distance (as described in Sec-
tion 4.3) of the predicted Pareto front from the original one along
with a 95% confidence interval. It also depicts the probability that
the average distance of the predicted Pareto is below a certain
threshold. Specifically, the distance of the predicted Pareto will
be less than or equal to 2 for more than 80% of the time, while
it is almost certain that its distance will be less than 3. In prac-
tice, this means that the predicted execution configurations are very
likely to lie in the first three sets of optimal configurations. Fig-
ure 6 shows graphically the predicted execution configurations for
matrix Freescale1 along with the ED and ED2 predictions. Ta-
ble 3 shows the execution configurations for minimizing the ED
and ED2 products for 10 representative matrices. In most cases we
either predict correctly or our prediction lies on the real Pareto front,
which means that it still is an optimal tradeoff. Specifically, for more
than 80% of the matrices in our suite, our model predicted either the
correct configuration or a configuration lying on the Pareto front for
energy (83%), ED (88%), and ED2 (79%) products.

Limitations Although our method can predict fairly accurately
the execution configurations leading to the best energy-performance
tradeoffs, it cannot currently predict how far these configurations
are in the energy-performance landscape. For example, although
the configurations 4p8s8c, 4p12s12c, and 4p12s24c in Figure 3
are equivalent in terms of Pareto optimality, the last two are not
so interesting, since they lead to a 20% increase in energy con-
sumption without any significant performance benefit. This could
be improved by a more careful analysis of the points on the Pareto
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Figure 6. The predicted Pareto front for matrix Freescale1. The
predicted best ED and ED2 configurations are also shown.

Energy ED ED2

Matrix Real Pred. Real Pred. Real Pred.

thermal2 1p2s3c@2.14 No(1) 1p2s3c@2.14 No(3) 4p12s23c@2.67 No(4)
bmwcra 1 1p2s2c@2.14 Yes 4p12s12c@2.14 No(0) 4p12s12c@2.67 Yes
Si87H76 1p2s2c@2.14 No(0) 4p12s12c@2.67 No(4) 4p12s12c@2.67 No(1)
pwtk 1p2s2c@2.14 Yes 4p8s8c@2.14 Yes 4p12s12c@2.67 Yes
nd12k 1p2s2c@2.14 No(2) 4p8s8c@2.14 No(0) 4p12s12c@2.67 Yes
af shell9 1p2s2c@2.14 Yes 4p8s8c@2.14 Yes 4p8s8c@2.67 No(0)
rajat31 1p2s2c@2.14 Yes 4p8s8c@2.14 Yes 4p12s12c@2.67 No(0)
Freescale1 1p1s2c@2.14 No(0) 4p8s8c@2.14 Yes 4p8s8c@2.67 No(2)
F1 1p2s2c@2.14 Yes 4p8s8c@2.14 Yes 4p12s12c@2.67 Yes
ldoor 1p2s2c@2.14 Yes 4p8s8c@2.14 Yes 4p12s12c@2.67 Yes

Table 3. Configurations for minimizing the ED products for 10
selected matrices. It is also noted whether they were predicted by
our model or not. In case of incorrect predictions, the distance of
the predicted configuration from the real Pareto front is showed
inside parenthesis.

front, possibly ignoring such configurations. Additionaly, the pre-
diction accuracy for two CV folds (see Table 2) is not so high; this
is mainly due to the fact that our initial dataset is small enough to
leave some clusters with very few observations, thus deteriorating
the quality of training.

6. Conclusions and Future Work
In this paper, we took a first step toward exploring the performance-
energy tradeoffs of Sparse Matrix-Vector Multiplication showing
that the matrix and the underlying platform play a significant role
in determining the best tradeoffs. For the purpose of our analysis,
we used a simple power metric based on the activation of the dif-
ferent physical packages of the underlying platform. We tried to
characterize the performance-energy tradeoffs using the concept of
Pareto optimality from the multi-objective optimization theory and
showed that energy-delay products are indeed best tradeoffs in the
Pareto sense. Finally, we proposed a machine learning-based tech-
nique for creating a model for predicting the optimal performance-
energy tradeoffs depending on the input matrix and the underlying
architecture.

In the future, we plan to ameliorate our prediction model, since it
still has some limitations. We currently work on identifying the key
performance parameters of CSX, in order to obtain a better cluster-
ing of the matrices, more biased on their performance characteris-
tics. Finally, we plan to test our prediction methodology on a variety
of multiprocessor architectures.
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