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Abstract 

 
Artificial Immune Systems (AIS) constitute an emerg-
ing and promising field, and have been applied to pat-
tern recognition and classification tasks to a limited 
extent so far. This work is a first attempt of applying 
the clonal selection principle to the training of Multi-
Layer Perceptrons (MLPs). The Clonal Selection-
based Neural Classifier (CSNC) uses the basic con-
cepts of clonal selection to evolve MLPs, which are 
represented as real-valued linear antibodies. The pro-
posed system is actually a multi-classifier, consisting 
of multiple sets of MLPs, each one devoted to the rec-
ognition of a different class of the input data. The final 
trained classifier is comprised of the best MLPs from 
each set. The proposed classifier is tested against a set 
of benchmark problems and yields promising results. 
 
1. Introduction 
 

Quite recently, the human immune system and the 
mechanisms it uses to protect the human body from 
invaders, has raised an intense interest from the com-
munity of artificial intelligence. The reason behind this 
is that the natural immune system incorporates per-
fectly a variety of different artificial intelligence tech-
niques, such as pattern recognition through a network 
of collaborating agents (e.g., immune network of B-
cells), adaptive and associative learning through mem-
ory (e.g., memory B-cells), and an advanced selection 
mechanism of the best B-cells, that mimics the natural 
selection mechanism, which is found in other biologi-
cal phenomena, such as natural selection  and physical 
evolution. 

In this work, we apply one of the most established 
techniques of artificial immune systems, the clonal 
selection principle, to the training of MLPs. We im-
plement a variation of the well-known CLONALG 
algorithm [2] by removing some features, which do not 
offer any benefit to MLP training, and by adding some 

new ones that fit better to the problem at hand. The 
original CLONALG algorithm maintains two sets of 
cells: a set of memory cells, which are used to recog-
nize new antigens, and a set of non-memory cells, 
which actually contribute to the evolution and amelio-
ration of the memory cells. Originally, CLONALG 
used a single memory cell for each different pattern 
presented. In our implementation, we eliminate the 
non-memory cells, since we found that they offered 
little benefit to the final training accuracy. Instead, we 
use a “wide” memory, where more than one memory 
cell are used for each pattern or class of input data, 
thus allowing us to train multiple MLPs in parallel for 
each class of the problem at hand. The rationale behind 
this decision is that a single MLP configuration (num-
ber of layers and hidden nodes) is not always appropri-
ate for every class of the problem, thus leading to 
lower overall accuracy. Another important aspect of 
our implementation is the representation of the cells, 
for which we use real-valued vectors, instead of the 
commonly used bit-strings. 

The rest of the paper is structured as follows. Sec-
tion 2 presents a brief overview of the previous work 
on the field, Section 3 provides an overview of the 
clonal selection principle from a biological point of 
view, Section 4 presents the proposed training algo-
rithm, and Section 5 describes the application of the 
algorithm on the training of neural classifiers. Section 
6 presents the experimental results, and Section 7 con-
cludes the paper. 

 
2. Previous Work 
 

The clonal selection principle was originally pro-
posed by Burnet [1] in 1959, in order to explain the 
reinforcement learning of the immune system of mam-
mals. According to Burnet’s theory, mammals acquire 
immunity through mutation, selection, and prolifera-
tion of the mature B-lymphocytes. The clonal selection 
principle quickly attracted the attention of computer 



scientists, since it appeared as a more flexible alterna-
tive to genetic and evolutionary algorithms. A first 
attempt to model the clonal selection principle was 
performed by Weinard [11], though from a more bio-
logical point of view. Fukuda et al. [3] presented an 
abstraction of the principle and applied it to computa-
tional problems. However, the most influential imple-
mentation of the clonal selection principle was the 
CLONALG algorithm of de Castro and Von Zuben 
[2]. CLONALG is not hard to implement and uses the 
basic concepts of clonal theory in a consistent manner. 
An important feature of the CLONALG algorithm is 
that the mutation and the cloning of antibodies depend 
on their affinity or fitness. An improvement of the 
original CLONALG algorithm is the CLONCLAS [12] 
algorithm of White and Garrett, and the algorithm of 
Nicosia et al. [8], that uses a probabilistic half-life of 
B-cells and a termination criterion based on informa-
tion theory. A more sophisticated approach of the 
clonal selection principle is the AIRS [10] supervised 
learning system, which also incorporates concepts of 
immune network theory. Finally, a generalization of 
the CLONALG algorithm is the Enhanced Clonal Al-
gorithm (ECA) [4] [5], which adds a receptor editing 
step to the original CLONALG algorithm and defines a 
more sophisticated management of the memory pool. 
In addition, the cloning of B-cells is more dynamic. 
ECA was applied to pattern recognition and data min-
ing tasks in [5] and yielded promising results, but its 
configuration may become a tedious task, since it al-
lows a bunch of parameters to be set. 

The efficient training of neural networks has been 
extensively studied in the past, and a large number of 
different techniques have been proposed. Among these 
techniques, attempts have been made to use evolution-
ary algorithms in the training of neural network classi-
fiers. These techniques can be divided into two catego-
ries: (a) techniques that use evolutionary algorithms to 
evolve the structure of the neural network, but still use 
Back Propagation (BP) for the adaptation of the 
weights, and (b) techniques that employ evolutionary 
algorithms for tuning both the structure and the 
weights of the neural network. 

 
3. The Clonal Selection Principle 
 

The clonal selection principle (Figure 1) describes 
the mechanism used by the natural immune system to 
react to foreign antigens. It was proposed by Burnet 
[1] and established the idea that the lymphocytes 
which better recognize a foreign antigen have a higher 

probability of reproduction. In particular, the clonal 
selection theory establishes the following fundamental 
concepts: 

1) The new cells are clones of their parents and are 
subjected to somatic mutations with high rate 
(hyper-mutation). 

2) The new cells that recognize self cells are elimi-
nated. 

3) The mature cells are proliferated and differenti-
ated according to their stimulation by the foreign 
antigen. 

According to clonal theory, the cells that bind to the 
foreign antigen start proliferating through cell cloning 
and undergo mutation in order to differentiate. The 
number of clones that each activated B-cell will pro-
duce depends directly on its level of activation, i.e., the 
quality of its binding to the antigen. The better the 
binding is, the more the clones that will be produced. 
The opposite is true for the mutation rate, i.e., clones 
with good affinity are mutated with lower rates. This 
fact allows for the fast adaptation of the immune re-
sponse, since low affinity B-cells are differentiated 
through high mutation rates, which will probably lead 
to cells with better affinities. However, this differentia-
tion process may lead to B-cells with self-reactive re-
ceptors or B-cells with very poor affinities, but these 
cells are effectively eliminated. The elimination of 
poor quality B-cells and the affinity-proportionate 
cloning of B-cells reminds of the natural selection 
process, where only the best individuals are selected to 
reproduce. The clonal selection process, however, is 
more elaborate and more flexible. 
 

Primordial cells

Macrophage

B-lymphocyte
(antigen activated)

Helper
T-lymphocyte

Memory cells Plasma cells

Cytokines

. . .

Activation

Proliferation
&

Differentiation

Other T-lymphocytes

 
Figure 1. The clonal selection principle and the affinity 

maturation process. 



4. The training algorithm 
 

The clonal algorithm used for training the neural 
classifier is inspired by the CLONALG [2] algorithm, 
but a number of its features have been modified, in 
order to better fit to the problem in question. Specifi-
cally, the antibody pool of non-memory cells was re-
moved, and multiple memory cells for each input class 
were used instead. The quality of memory cells proved 
to be much superior to that of the non-memory cells 
right after the first few generations, thus, the memory 
cells were always selected to reproduce, and the non-
memory cells remained inactive. On the contrary, we 
used multiple memory cells for each class of the prob-
lem, each one representing an MLP of different struc-
ture, since a fixed-structure MLP may not fit all the 
problem classes equally well.  

The steps of the algorithm used are described below: 
1) All antibodies are initialized randomly using a 

normal distribution in the [0,1] interval. 
2) Each antibody is presented with the whole 

training set. 
3) The affinity of each antibody to its respective 

class is calculated.  
4) A set of clones is created for every antibody. 
5) The clones undergo a hyper-mutation process. 
6) The affinity of each of the mutated clones to its 

respective class is calculated again. 
7) For each set of mutated clones, the clone with 

the highest affinity is selected. 
8) The affinity of the best mutated clone of each 

set is compared to the affinity of the original 
(parent) antibody. If the clone is better in term 
of its affinity, it replaces the original antibody. 

Steps 2–8 are repeated for each training generation. 
After the training is complete, the best antibody of 
each set is selected to build the final classifier. 

 
5. Application to classification problems 
 

The algorithm presented above implements a gener-
alized evolutionary process, in which antibodies repre-
sent abstract entities, which can be cloned, mutated, 
evaluated, and selected in each generation. The actual 
use of the algorithm and its efficiency, however, 
largely depend upon the exact entities represented by 
these antibodies. The nature of the data used to repre-
sent the antibodies (e.g., bit strings, real-valued vec-
tors, etc.) designates the choice of genetic operators to 
be applied, while the represented entity determines the 
evaluation criterion to be used. 

In the present paper, the algorithm is applied to a 

common classification problem, and the antibodies 
represent neural networks. An important characteristic 
of the immune algorithm is that certain antibodies cor-
respond to certain patterns or classes of the dataset. 
Thus, instead of implementing a single neural classi-
fier, the system implements a multi-classifier system, 
consisting of a single-output MLP for each class of the 
dataset. The output of each such classifier can be either 
1 or −1, depending on whether the pattern in question 
belongs to the specific class of data or not, respec-
tively. The multi-classifier assigns a pattern to a spe-
cific class if the output of the classifier corresponding 
to that class is 1 and the outputs of the classifiers cor-
responding to the remaining classes equal −1. 

For each data class, MLPs of different sizes are 
trained simultaneously and are evaluated at the end of 
the training process. Therefore, the final multi-
classifier may consist of classifiers of various sizes, 
different for each class of the data.  

The weights and biases of the MLPs are coded into 
real-valued antibodies. The mutation process uses the 
non-uniform mutation operator [6]. Finally, the evalua-
tion of the trained MLPs is based on the least square 
error metric. In the following, these concepts are fur-
ther explained. 

 
5.1. Antibody representation 

 
An antibody is a real-valued vector, representing a 
neural network with an input layer of n nodes, a hidden 
layer of p nodes, and one output node. The MLP used 
consists of n·p weights connecting the input to the hid-
den layer, p hidden layer biases, p weights connecting 
the hidden layer to the output, and the bias of the out-
put node. Hence, the length of the resulting vector will 
be 

( )2 1l n p= + +  
Let xi be the value of the i-th input node, zj the value of 
the j-th hidden node, y the output, wij the weight con-
necting the i-th input with the j-th rule node, vj the 
weight connecting the j-th hidden node with the output 
node, bj the bias of the j-th hidden node, and b the 
bias of the output node. If Ab is the vector representing 
the antibody, then 
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Figure 2 illustrates an example of the representation 
and the encoding discussed. 
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Figure 2. Encoding (b) of a MLP (a) into an antibody. 
 

The activation function used to calculate the values 
of the hidden and output layer nodes is the logistic 
function: 

( ) 1
1 xf x

e−=
+

 

The values of the hidden nodes are computed by the 
following formula: 

1

n

j ij i j
i

z f w x b
=

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑  

Finally, the output of the network is then given by the 
equation below: 

1

p

j j
j

y f v z b
=
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5.2 Mutation process 
 

During their lifetime, the antibodies undergo an evo-
lutionary process, which is capable of producing off-
spring of greater fitness than that of the parent antibod-
ies. In general, the evolution process is implemented 
by applying genetic operators to every antibody. The 
most frequently used operators are variations of (a) 
crossover and (b) mutation. 

In the particular problem, the crossover operators 
were tried, but did not produce satisfying results. This 
is mainly due to the nature of the network representa-
tion. Since the antibodies represent networks devoted 
to recognizing different classes of data, they evolve 
into very dissimilar real-valued vectors after the first 
few generations. Consequently, a crossover between 
such distant vectors cannot produce new antibodies of 
high affinity. For this reason, we focused on the muta-
tion operators. Among the common mutation opera-
tors, the non-uniform operator produced the best re-
sults. The idea behind the non-uniform mutation proc-
ess is that we start mutating antibodies to a large ex-

tent, and as the training proceeds and the affinity of the 
antibodies increases, the extent of the mutation process 
decreases. Thus, in essence, the lower the quality of an 
antibody, the larger the extent of the modification it is 
subjected to. The formal definition of the operator will 
be discussed next. 
 
The non-uniform mutation operator 
 
Let { }1 2, , , nx x x x= …  be the vector on which the op-

erator will be applied, where [ ], , .i imin imaxx x x x∈ ∈\  
The mutation operator assigns to ix the value 

( )
( )

, ,   0.5

, ,   0.5
i imax i

i
i i imin

x t x x Z
x

x t x x Z

+ Δ − ≥⎧⎪= ⎨
+ Δ − ≤⎪⎩

. 

In the above equation, Z is a uniformly distributed ran-
dom variable in the interval [0,1] and ( ),t aΔ  is de-
fined as 

( ) ( )( )1, 1
btt a a Z −Δ = − , 

where a is the mutation range, t is the percentage of the 
training that has been completed, that is, 
 

number of current generation
total number of generations

t = , 

 
and b is a system parameter, which determines the de-
gree of dependency on the value of t. 

( ),t aΔ  returns a value in the range [0,1], but the 
probability of this value being close to zero increases 
as t increases. This property causes the operator to ini-
tially search the space uniformly, but very locally at 
later stages by generating a new number close to its 
predecessor. 

The only theoretical issue with the use of this opera-
tor is that the actual minimum and maximum values of 
a neural network weights are not known a priori. In 
practice, however, this is hardly a problem. Extensive 
experimentation in the literature has shown that the 
resulting weights of trained neural classifiers almost 
always lie in tight intervals. Thus, we can easily over-
come the problem by assigning large enough mutation 
margins to the operator. This does not decrease its abil-
ity to search locally, since, as explained before, the 
probability distribution of the mutation gets narrower 
with every generation. 

 
 



5.3 Evaluation criterion 
 
The second important feature of the evolutionary proc-
ess is the selection of the antibodies with the greatest 
affinity. Having defined an antibody as a single-output 
MLP devoted to recognizing a specific class of data, 
we base our evaluation criterion on the most usual 
method of evaluating the performance of a neural clas-
sifier, the least square error. Let xi = {xi1,xi2,…,xin}, 

ijx ∈\  be the i-th pattern, di = {di1,di2,…,dim}, ijd ∈\  
be the desired output for that pattern, and yi be the ac-
tual output of the network for that pattern. The square 
error for the classifier devoted to recognizing the j-th 
class is then defined as   

( )2

1

N

i ij
i

e y d
=

= −∑  

The error e varies in the interval [0,+∞]; lower values 
of e denote a network of greater classification accu-
racy. However, the affinity measure of an antibody 
should lie in the interval [0,1] and increase as the clas-
sification accuracy of the network it represents in-
creases. Therefore, we define the affinity measure as 

1affinity
1 e

=
+

 

 
6. Experimental results 

 
The proposed algorithm was tested on a set of bench-
mark problems form the UCI repository [7]. We meas-
ure the classification accuracy of the trained neural 
network and compare the results with MGNN [9], 
AIRS [10], and C4.5. The MGNN algorithm was cho-
sen because it also employs a mutation-based evolution 
of the neural network weights. We also compared with 
AIRS, since it is a typical immune-based classifier. On 
the other hand, we also used C4.5 as a typical example 
of a classification algorithm. This work is one of the 
first attempts to apply principles of the immune system 
to neural network training, and the first results are sat-
isfactory and promising, since they are comparable to 
well-known classifiers. 

In order to evaluate the classification accuracy of the 
proposed training algorithm, the 5-CV (cross valida-
tion) method was used. Specifically, each dataset was 
split into five equal subsets. In every run of the algo-
rithm, one of the subsets was used as test set, and the 
remaining four comprised the training set. Before split-
ting each dataset into subsets, the tuples were shuffled, 
and any tuples containing missing values were re-
moved. We performed ten runs of the algorithm in 
total. The differences between each run were negligi-
ble, so we present the results of a single 5-CV test. The 

reason behind this decision is that the number of rules 
of the evolving network may differ from run to run, 
although the classification accuracy does not vary sig-
nificantly. 

Table 1 lists the dimension of the input vector, the 
number of classes, and the number of instances of each 
dataset. 

Table 1. Dataset information 
 

Dataset #inputs #classe
s 

#instances 

Iris 4 3 150 
Cancer 9 2 683 
Diabetes 8 2 768 
Spiral 2 2 1000 
Wine 13 3 178 

 
Regarding the parameters of the algorithm used for 

the training, the number of clones was set to 100 for 
each antibody, the range of weights and biases was set 
to the interval [-50,50], and the dependency of the mu-
tation operator on the iteration number was set to 

2.b = The total number of training generations and the 
sizes of MLPs trained for each class were specific to 
each problem and are listed in Table 2. 

 
Table 2. Training parameters specific to each dataset. 

 
Dataset #generations #rules 
Iris 50 2, 4, 8 
Cancer 100 1, 2, 4 
Diabetes 100 2, 5, 10 
Spiral 20 20, 50, 100 
Wine 200 4, 12, 20 

 
The average training execution time for neural net-

work training is presented in Table 3. The algorithm 
was implemented using the MATLAB programming 
environment, and the tests were run on an Intel Core 2 
Quad processor running Windows Vista. It is apparent 
that the performance of the proposed algorithm in 
terms of training execution time is very satisfactory. 
We should note that the presented execution times cor-
respond to the training of multiple MLPs, and much 
better results can be achieved if a single MLP is 
trained for each class. For example, the training of the 
“Iris” and the “Diabetes” datasets using a single MLP 
with two hidden nodes lasted 1.51s and 5.12s, respec-
tively, and yielded very satisfactory results. 

 
 



Table 3. Training times and size of the resulting classi-
fiers per class. 

Dataset Training time (s) #rules per class 
Iris 10.63 2, 8, 8 
Cancer 23.58 1, 1 
Diabetes 38.26 4, 2 
Spiral 458.65 50, 50 
Wine 50.29 12, 12, 20 

 
The classification accuracy results obtained by the 

proposed training technique in comparison to the clas-
sifiers previously mentioned are presented in Table 4. 
The accuracy values for the other classifiers are those 
reported in the literature, wherever available. We also 
present the standard deviation of the accuracy for our 
algorithm among the different folds of the test set. The 
classification accuracy of the proposed training tech-
nique outperforms the other algorithms in the “Iris” 
and “Wine” datasets and yields results that are very 
close to the best performance in the “Cancer” and 
“Diabetes” datasets. The results obtained for the “Spi-
ral” dataset are considered very satisfactory compared 
to results found in the literature, but no results were 
available for the rest of the algorithms in Table 4. 
 

Table 4. Classification accuracy. 
 

Dataset CSNC MGNN AIRS C4.5 
Iris 96.00 ± 2.49 95.32 96.00 93.90 
Cancer 96.20 ± 1.69 96.77 – 94.70 
Diabetes 74.50 ± 3.47 – 74.20 74.80 
Spiral 95.90 ± 2.08 – – – 
Wine 96.01 ± 2.99 95.32 – 91.60 
 
 
7. Conclusions and Future Work 
 
The clonal selection principle is responsible for the 
adaptation and the regulation of the immune response 
in the natural immune system and has already been 
successfully applied to a number of pattern recognition 
and classification tasks. In this paper, we present a first 
approach to applying the clonal selection principle to 
the training of a neural multi-classifier. Our training 
algorithm is inspired by the well-known CLONALG 
algorithm, but it discards some features that prove to 
be redundant in the context of neural network training 
and introduces the concept of an extended memory, 
where more than one memory cells are simultaneously 
maintained for each input class. The proposed tech-
nique yields very satisfactory results in terms of classi-

fication accuracy and appears to be a promising alter-
native method for training neural classifiers. 

In the future, generalization criteria will be exam-
ined, in order to neutralize the effect of overfitting in-
herent to MLPs. In addition, more effective evolution 
strategies will be examined, in order to avoid local 
optima in the search space. Finally, we will examine 
the potential of the proposed technique to the training 
of different types of pattern recognition tasks. 
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