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Abstract—Sparse Matrix-Vector multiplication (SpMV) is a
very challenging computational kernel, since its performance
depends greatly on both the input matrix and the underlying
architecture. The main problem of SpMV is its high demands
on memory bandwidth, which cannot yet be abudantly of-
fered from modern commodity architectures. One of the most
promising optimization techniques for SpMV is blocking, which
can reduce the indexing structures for storing a sparse matrix,
and therefore alleviate the pressure to the memory subsystem.
In this paper, we study and evaluate a number of representative
blocking storage formats on a set of modern microarchitectures
that can provide up to 64 hardware contexts. The purpose of
this paper is to present the merits and drawbacks of each
method in relation to the underlying microarchitecture and to
provide a consistent overview of the most promising blocking
storage methods for sparse matrices that have been presented
in the literature.

Keywords-sparse matrix-vector multiplication; blocking; per-
formance evaluation

I. INTRODUCTION

Sparse Matrix-Vector Multiplication (SpMV) is one of the
most important and widely used scientific kernels arising in
a variety of scientific problems. The SpMV kernel poses a
variety of performance issues both in single and multicore
configurations [4], [12], [16], which are mainly due to
the memory-intensive nature of the SpMV algorithm. To
this end, a number of optimization techniques have been
proposed, such as register and cache blocking [5], [6],
compression [8], [15], and column or row reordering [10].
The main purpose of all these techniques is to either reduce
the total working set of the algorithm, i.e., the total amount
of data that needs to be fetched from main memory, or
create more regular memory access patterns (reordering
techniques). Blocking methods fall mainly into the first cate-
gory, since their main advantage is that they can considerably
reduce the total working set of the algorithm, thus applying
less pressure to the memory subsystem. By alleviating the
memory pressure, blocking techniques leave more space for
optimizations targeting the computational part of the kernel
as well, such as loop unrolling and vectorization [7], which
can further improve performance.

In general, blocking storage formats for sparse matrices
can be divided into three categories: (a) storage formats
that apply zero-padding aggressively in order to construct
full blocks, (b) storage formats that decompose the original
matrix into k submatrices, where the k− 1 submatrices use
blocking without padding and the k-th matrix is stored in
standard Compressed Sparse Row (CSR) format [2], and
(c) storage formats that use variable size blocks without
padding, but at the expense of additional indexing structures.
Blocked Compressed Sparse Row (BCSR) [6] and Un-
aligned BCSR [14] formats are typical examples of the first
category. Both formats try to exploit small two-dimensional
dense subblocks inside the sparse matrix with their main
difference being that BCSR imposes a strict alignment to
its blocks at specific row- and column-boundaries. Agarwal
et al. [1] decompose the input matrix by extracting regular
common patterns, such as dense subblocks and partial diago-
nals. Similarly, Pinar and Heath [10] decompose the original
matrix into two submatrices: a matrix with horizontal one-
dimensional dense subblocks without padding and matrix in
CSR format containing the remainder elements. Pinar and
Heath [10] present also a one-dimensional variable-sized
blocking storage formats, while in [11] the Variable Block-
ing Row (VBR) format is presented, which constructs two-
dimensional variable blocks, at the cost of two additional
indexing structures. It is apparent from the above discussion
that there is a variety of different blocking storage formats
for sparse matrices that have been proposed so far. However,
to our best knowledge, there has not yet been any study that
comparatively presents and evaluates the different blocking
formats on modern multicore architectures, in such a way
that would expose the advantages and disadvantages of each
method.

Hence, the contribution of this paper can be summarized
in the following: (a) we present a consistent overview of
the different blocking storage formats for sparse matrices
that have been proposed in the literature so far and attempt
a categorization of them according to their structure and
construction principles (e.g., the use or not of padding),
(b) we implement five representative blocking storage for-



mats from the different categories, which we evaluate on
a set of modern multicore architectures, and (c) we show
that blocking is a promising sparse matrix optimization for
multicores, but the prediction of the best storage format—
and the best block shape for fixed size blocking methods—
for a specific matrix and architecture is quite complex
problem, which becomes even harder, as the number of
threads increases, since the single-threaded performance can
provide only a rough guidance for the majority of matrices.

The rest of the paper is organized as follows: Section II
presents and discusses the different blocking storage formats
for sparse matrices. Section III discusses the performance
issues involved when applying blocking to SpMV, Sec-
tion IV presents the experimental evaluation of the different
blocking storage formats and discusses the results, and
Section V concludes the paper.

II. AN OVERVIEW OF BLOCKING STORAGE FORMATS

In this section, we consider blocking storage formats for
sparse matrices that can be applied to an arbitrary sparse
matrix, as opposed to storage formats which assume a
special nonzero elements pattern, e.g., tri-band, diagonal
sparse matrices, etc. Before proceeding with the description
of any blocking format, we describe briefly the standard
sparse matrix storage format, namely the Compressed Sparse
Row (CSR) format [2]. CSR uses three arrays (Fig. 2a) to
store a n×m sparse matrix with nnz non-zero elements: an
array val of size nnz to store the non-zero elements of the
matrix, an array col ind of size nnz to store the column
indices of every non-zero element, and an array row ptr of
size n + 1 to store pointers to the first element of each row
in the val array.

Blocking storage formats for sparse matrices can be
divided into two large categories: (a) formats with fixed-
size blocks that employ aggressively padding with zeros
to construct full blocks and (b) formats that do not pad at
all. The second category can be further divided depending
on the strategy used to avoid padding. There have been
proposed two strategies to avoid padding in the literature:
(a) decompose the original matrix into two or more matri-
ces, where each matrix contains dense subblocks of some
common pattern (e.g., rectangular, diagonal blocks, etc.),
while the last matrix contains the remainder elements in a
standard sparse storage format [1], and (b) use variable size
blocks [10], [11]. In the following, we will present each
blocking method in more detail.

A. Blocking with padding

Blocked Compressed Sparse Row: The most prominent
blocking storage format for sparse matrices that uses padding
is the Blocked Compressed Sparse Row (BCSR) format [6].
BCSR is the blocked version of CSR, which instead of
storing and indexing single nonzero elements, it stores
and indexes two-dimensional fixed-size blocks with at least

one nonzero element. BCSR will use padding in order to
construct full blocks. Specifically, BCSR uses three arrays
(Fig. 2b) to store a sparse matrix: (a) bval , which stores
linearly in row-wise or column-wise order the values of
all blocks present in the matrix, (b) bcol ind , which stores
the block-column indices, and (c) brow ptr , which stores
pointers to the first element of each block row in bval .
Another property of BCSR is that it imposes a strict align-
ment to its blocks: each r × c block should be aligned at
r row- and c column-boundaries, i.e., a r × c block should
always start at the position (i, j), such that mod(i, r) = 0
and mod(j, c) = 0. This restriction leads generally to
more padding (see Fig. 1), but it has two main advantages:
it facilitates the construction of the BCSR format and it
can have a positive impact on performance, when using
vectorization [7]. A variation of BCSR is the Unaligned
BCSR (UBCSR) [14], which relaxes the above restriction,
in order to avoid padding.

Blocked Compressed Sparse Diagonal: The Blocked
Compressed Sparse Diagonal (BCSD) format is analogous to
BCSR, but exploits small diagonal subblocks inside the ma-
trix. Like BCSR, it also uses three arrays—bval , bcol ind ,
and brow ptr—to store the input matrix (Fig. 2c), but in this
case bval stores the elements of each diagonal subblock,
while bcol ind continues to store the column index of
each subblock. BCSD also imposes an alignment restriction
as to where each diagonal block can start. Specifically,
each diagonal block of size b should start at the position
(i, j), such that mod(i, b) = 0. This restriction effectively
separates the matrix into block rows or segments of size b
(see Fig. 1). The brow ptr array then stores pointers to the
first element of each segment in the the bval array. BCSD
also uses padding to construct full blocks.

A version of this format has been initially proposed in [1]
as part of a decomposed method, which extracted common
dense subblocks from the input matrix. A similar format,
called RSDIAG, is also presented in [13], but it maintains an
additional structure that stores the total number of diagonals
in each segment. This format was also part of a decomposed
method.

B. Blocking without padding

Decomposed matrices: A common practice to avoid
padding is to decompose the original input sparse matrix
into k smaller matrices, where the first k − 1 matrices
consist of elements extracted from the input matrix that
follow a common pattern, e.g., rectangular or diagonal dense
subblocks, while the k-th matrix contains the remainder
elements of the input matrix, stored in a standard sparse
matrix storage format. In this paper, we present and evaluate
the decomposed versions of BCSR (BCSR-DEC) and BCSD
(BCSD-DEC). For these formats k = 2, i.e., the input
matrix is split into only two submatrices, the first containing
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Figure 1: How the different blocking storage formats split the input matrix into blocks.
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Figure 2: Data structures used by different blocking storage formats.

full blocks without padding and the second the remainder
elements stored in CSR format.

Variable size blocks: An alternative solution to avoid
padding when using blocking is to use variable size blocks.
Two methods have been proposed in the literature that use
variable-size blocks: one-dimensional Variable Block Length
(1D-VBL) [10], which exploits one-dimensional horizontal
blocks, and Variable Block Row (VBR) [11], which ex-
ploits two-dimensional blocks. 1D-VBL uses four arrays
(Fig. 2d) to store a sparse matrix: val , row ptr , bcol ind ,
and blk size . The val and row ptr arrays serve exactly
the same purpose as in CSR, while bcol ind stores the
starting column of each block and blk size stores the size of
each block. VBR is more complex and it actually partitions
the input matrix horizontally and vertically, such that each
resulting block contains only nonzero elements. In order to
achieve this, it uses two additional arrays compared to CSR
to store the start of each block-row and block-column.

Figure 1 summarizes how each block format forms blocks
from neighboring elements.

III. PERFORMANCE ISSUES OF BLOCKING

The SpMV kernel in modern commodity microarchitec-
tures is in most cases bound from memory bandwidth [4].
Although there exist other potential performance problems
in this kernel, such as indirect references, irregular accesses,

and loop overheads, the bottleneck in the memory subsystem
is categorized as the most important SpMV performance
problem in both single- and multithreaded configurations [4],
[7], [16]. The great benefit of blocking methods is that
they can substantially reduce the working set of the SpMV
algorithm, thus reducing the demands on memory bandwidth
and alleviating the pressure to the memory subsystem. The
reduction of the working set is mainly due to the fact that
blocking methods maintain a single index for each block
column instead of an index for each element. Therefore,
the col ind structure of CSR, which consists almost half
of the working set of the algorithm, can be significantly
reduced. A consequence of reducing the memory bandwidth
demands of the SpMV kernel is that the computational part
is then more exposed, since it consists a larger portion of
the overall execution time. Therefore, optimizations target-
ing the computational part can have significant impact on
performance [7]. However, each blocking method has its
own advantages and pitfalls, which are summarized in the
following.

Fixed size blocking with padding: The main advantage
of these methods is that they allow for efficient imple-
mentations of block-specific kernels since the size—and in
most cases the alignment—of blocks are known a priori.
However, if the nonzero elements pattern of the input matrix
is rather irregular, these methods lead to excessive padding,



overwhelming any benefit from the reduction of the size
of col ind structure. Additionally, the selection of the most
appropriate block is not straightforward, especially if vector-
ization is used, since instruction dependencies and hardware
limitations of the vector units of modern commodity archi-
tectures can significantly affect the overall performance [7].

Decomposed methods: Although decomposed methods
avoid padding, they suffer from three problems: (a) there
is no temporal or spatial locality (except in the input vector)
between the different k SpMV operations, (b) additional
operations are needed to accumulate the partial results to the
final output vector, and (c) the remainder CSR matrix will
have very short rows, which can further degrade the overall
performance due to loop overheads and cache misses on the
input vector [4].

Variable size blocking: The variable size blocking has
also the advantage of not employing padding to construct
blocks, but at the expense of additional data structures.
Therefore, any gain in the final working set of the algorithm
by eliminating padding and reducing the col ind structure
can be overwhelmed from the size of the additional data
structures. In addition, the extra level of indirection that
variable size blocking methods introduce can further degrade
performance.

IV. EXPERIMENTAL EVALUATION

Matrix suite: The matrix suite used for our experiments
is a set of sparse matrices obtained from Tim Davis’ sparse
matrix collection [3]. We made an effort to include matri-
ces from different application domains, which could reveal
the capabilities and possible shortcomings of the different
blocking storage formats under evaluation. The matrix suite
consists of 30 matrices (Tab. I). Matrices #1 (dense) and
#2 (random) are special purpose matrices, while the rest 28
are divided into two large categories: matrices #3–#16 come
from problems without an underlying 2D/3D geometry,
while matrices #17–#30 have a 2D/3D geometry. In general,
sparse matrices with an underlying geometry exhibit more
regular structure, so we expect blocking methods to perform
better for these matrices. Finally, all selected matrices have
large enough working sets (>25 MiB in CSR format), so
that none of them fits in the processor’s cache.

System platforms and experimental process: For our ex-
perimental evaluation we used three representative modern
microarchitectures, namely, Intel Core (Harpertown), Intel
Nehalem (Nehalem), and Sun Niagara2 (Niagara2). The
actual characteristics of each architecture are presented in
Tab. II. Nehalem is the latest microarchitecture from Intel,
features integrated memory controllers supporting NUMA,
and each core is SMT capable by using the HyperThreading
technology. Thus, for the dual processor configuration used
for our experiments (Nehalem), this leads to a total of 16
threads. Niagara2 is an eight core SMT processor with eight
hardware contexts per core, thus leading to a maximum

of 64 concurrent threads. However, the implementation of
each Niagara2’s core is simple and straightforward compared
to the rather sophisticated Intel cores and lacks also the
huge L2 and L3 caches of the Intel processors. Therefore,
Niagara2’s performance relies on hiding main memory la-
tency by using a large number of threads. All platforms ran
GNU/Linux, kernel version 2.6.26, and all programs were
compiled using gcc, version 4.3, with the highest level of
optimizations (-O3). For the evaluation of each blocking
storage format, we ran 100 consecutive SpMV operations
using randomly generated input vectors. Finally, for the
case of Niagara2, we omitted matrices #10, #11, #12, and
#15 from our evaluation, since the standard single-threaded
loading and transformation processes that we employed for
all platforms were extremely time consuming in the case of
these matrices on Niagara2. Nevertheless, this omission is
not significant and cannot alter the overall conclusions.

Implementation details: We have implemented five dif-
ferent blocking storage formats: two with fixed size blocks
using padding (BCSR and BCSD), two decomposed with
fixed size blocks (BCSR-DEC and BCSD-DEC), and one
with variable size blocks (1D-VBL). We also implemented
the standard CSR format, in order to have a common base-
line. We used four-byte integers for the indexing structures
of every format, and one-byte entries for the additional data
structure of 1D-VBL, which contains the block sizes. This
restricts the number of maximum elements per block to
255, but in the rare case a greater block is encountered,
it is split into 255-element chunks. For the fixed size
blocking methods, we used blocks with up to eight elements,
and we have implemented a fully unrolled block-specific
multiplication routine for each particular block. We did not
use larger blocks, since preliminary experiments showed that
such blocks cannot offer any speedup over standard CSR.

For the multithreaded versions of the blocked kernels we
used the native POSIX threads library (NPTL, version 2.7).
Threads are assigned work by splitting the input matrix row-
wise in as many portions as the number of threads. We apply
a static load balancing scheme, according to which we split
the input matrix, such that each thread is assigned the same
number of nonzeros. For the case of methods with padding,
the load balancing scheme accounts also for the extra zero
elements used for padding. This scheme proved to provide
a fair distribution of work with a less than 5% difference in
workload of threads in any case.

Evaluation of blocking storage formats: In order to exam-
ine how beneficial blocking can be on modern microarchi-
tectures, Figure 3 plots the mininum, maximum, and average
speedup over CSR of all blocking methods (including differ-
ent blocks for fixed size blocking) per matrix basis for the
single-threaded implementation for each microarchitecture
on our experimental setup. This figure presents the ‘big
picture’ of blocking on modern architectures and some
interesting observations can be made:



Matrix Domain # rows # nonzeros ws (MiB) Matrix Domain # rows # nonzeros ws (MiB)
01.dense special 2,000 4,000,000 30.54 16.bone010 Other 986,703 36,326,514 288.44
02.random special 100,000 14,977,726 115.42 17.kkt power Power 2,063,494 8,130,343 121.05
03.cfd2 CFD 123,440 1,605,669 24.95 18.largebasis Opt. 440,020 5,560,100 45.01
04.parabolic fem CFD 525,825 2,100,225 34.05 19.TSOPF RS Opt. 38,120 16,171,169 123.81
05.Ga41As41H72 Chemistry 268,096 9,378,286 74.62 20.af shell10 Struct. 1,508,065 27,090,195 223.94
06.ASIC 680k Circuit 682,862 3,871,773 37.35 21.audikw 1 Struct. 943,695 39,297,771 310.62
07.G3 circuit Circuit 1,585,478 4,623,152 76.59 22.F1 Struct. 343,791 13,590,452 107.62
08.Hamrle3 Circuit 1,447,360 5,514,242 58.63 23.fdiff Struct. 4,000,000 27,840,000 258.18
09.rajat31 Circuit 4,690,002 20,316,253 208.67 24.gearbox Struct. 153,746 4,617,075 71.04
10.cage15 Graph 5,154,859 99,199,551 815.82 25.inline 1 Struct. 503,712 18,660,027 148.13
11.wb-edu Graph 9,845,725 57,156,537 548.75 26.ldoor Struct. 952,203 23,737,339 192.00
12.wikipedia Graph 3,148,440 39,383,235 336.50 27.pwtk Struct. 217,918 5,926,171 47.71
13.degme Lin. Prog. 659,415 8,127,528 65.94 28.thermal2 Other 1,228,045 4,904,179 51.47
14.rail4284 Lin. Prog. 1,096,894 1,000,000 90.31 29.nd24k Other 72,000 14,393,817 110.64
15.spal 004 Lin. Prog. 321,696 46,168,124 353.54 30.stomach Other 213,360 3,021,648 25.50

Table I: Matrix suite. The working set (ws) column represents the working set of the matrix stored in CSR format.

Characteristic Harpertown Nehalem Niagara2
Processor Name Intel Core 2 Xeon Quad E5405

(Harpertown)
Intel Xeon X5560 (Gainestown) UltraSPARC T2 (Niagara2)

Core clock frequency 2.00 GHz 2.80 GHz 1.2 GHz
Cores 4 4 8
Hardware contexts per core 1 2 8
L1 cache 32 KiB I-cache, 32 KiB D-cache,

8-way both per core
32 KiB I-cache (4-way), 32 KiB
D-cache (8-way) per core

16 KiB I-cache, 8 KiB D-cache
per core

L2 cache 3 MiB unified cache (24-way) per
two cores

256 KiB unified cache (8-way) per
core

4 MiB unified cache (16-way), 8
banks

L3 cache – 8 MiB unified cache (16-way),
banked

–

Memory interface 1333 MHz FSB 3× Integrated DDR3 memory
controllers 1333 MT/s

4× dual channel memory
controllers

Multiprocessor configuration 2 processors, SMP 2 processors, NUMA –

Table II: Experimental platforms.

Architecture BCSR BCSR-DEC BCSD BCSD-DEC 1D-VBLmin max min max min max min max
Harpertown 0.55 1.04 0.94 1.10 0.85 0.97 0.98 1.03 0.80
Nehalem 0.57 1.14 0.89 1.18 0.90 1.04 1.01 1.10 0.74
Niagara2 0.54 1.11 0.97 1.17 0.88 1.03 1.01 1.12 1.05

Table III: Average of minimum and maximum performance of each format over all matrices (one thread, double-precision).

• Blocking can be as good as providing more than 50%
performance improvement over CSR, but as poor as
leading to more than 70% performance degradation in
some cases, if not used with caution.

• Selecting a blocking method and a corresponding block
without any prior knowledge of the input matrix and
the underlying architecture should lead to lower perfor-
mance than standard CSR for the majority of matrices,
especially for Harpertown and Nehalem.

• Matrices that come from a problem domain with an
underlying 2D/3D geometry (matrices with IDs larger
than #15) are good candidates for blocking and can gain
more than 20% in SpMV performance over standard
CSR. However, the average performance of blocking
for these matrices can still be lower than CSR’s perfor-
mance.

• On Nehalem and Niagara2 microarchitectures blocking

performs better than on the Harpertown. For the case of
Nehalem, this is mainly due to the much higher attained
memory bandwidth (≈10 GiB/s instead of ≈3.5 GiB/s
of Harpertown according to the STREAM [9] bench-
mark). Therefore, the impact of the gain in the total
working set of SpMV, which blocking generally offers,
is greater in the case of Nehalem. For the Niagara2
case, on the other hand, the average benefit of blocking
over standard CSR is mainly due to the fact that the
less sophisticated execution core of Niagara2 cannot
effectively hide some performance issues of CSR (e.g.,
cache misses on input vector, loop overheads, indirect
references), as is the case of Intel processors [4]. There-
fore, since blocking tackles these problems in a certain
degree by providing better spatial locality on input
vector, reduced loop overheads and indirect references
through the fully unrolled block multiplication code, the
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Figure 3: Overview of blocking. The minimum, maximum, and average speedup over standard CSR per matrix for all
blocking methods (one thread, double-precision).

impact of blocking over standard CSR becomes more
apparent.

Table III provides a per method look to the single-threaded
execution behavior of blocking. Specifically, it presents the
mininum and maximum speedup of each method relative to
CSR averaged over the 30 matrices of our matrix suite. This
table reveals also some interesting characteristics of blocking
methods:

• The performance of methods that employ padding
aggressively (BCSR, BCSD) can vary significantly.
Especially in the case of BCSR, which uses two-
dimensional blocks, this variation can reach up to 50%
of the baseline CSR performance. It is obvious now
that the mininum performance points depicted in Fig. 3
are due to the very poor BCSR performance, when
selecting improper blocks.

• Decomposed methods present more stable behavior
across the matrix suite and better average maximum
speedups. Decomposed methods, therefore, can be con-
sidered as a safe blocking solution, when adequate

knowledge of the input matrix structure and the un-
derlying architecture is not available. Even an im-
proper block selection can lead to a moderate 10%
performance degradation from CSR on average. We
should also note here that the highest average maximum
speedups achieved by BCSR-DEC do not necessarily
mean that it achieved the absolutely highest perfor-
mance on the majority of matrices (see Fig. 4 and
subsequent discussion).

• The variable block length method, 1D-VBL, is not very
competitive for the single-threaded configuration in any
of the considered microarchitectures, however, this is
not the case as the number of threads increases, as it
will be shown in the following.

Table IV presents in detail the storage method that
achieved the best performance for each microarchitecture
and for both double- and single-precision arithmetic. The re-
sults presented in this table are from multithreaded execution
using the maximum available hardware thread contexts pro-
vided by the underlying microarchitecture, i.e., eight threads



Matrix Harpertown Nehalem Niagara2
dp sp dp sp dp sp

01.dense 1D-VBL BCSR-DEC(7,1) BCSR-DEC(2,4) BCSR-DEC(2,4) BCSR(8,1) BCSR(8,1)
02.random CSR CSR BCSD-DEC(6) CSR BCSR-DEC(1,2) CSR
03.cfd2 BCSD-DEC(6) BCSR(2,1) BCSD-DEC(4) BCSR-DEC(2,1) BCSD-DEC(4) BCSD(4)
04.parabolic fem BCSD-DEC(8) BCSD-DEC(8) CSR BCSD-DEC(8) CSR BCSR(3,1)
05.Ga41As41H72 1D-VBL 1D-VBL 1D-VBL BCSR-DEC(2,1) BCSD-DEC(6) BCSD-DEC(4)
06.ASIC 680k BCSR-DEC(7,1) BCSR-DEC(5,1) 1D-VBL BCSR-DEC(6,1) BCSR-DEC(1,8) BCSR-DEC(1,8)
07.G3 circuit 1D-VBL BCSD-DEC(8) CSR BCSD(2) CSR CSR
08.Hamrle3 BCSR(2,2) BCSR(2,2) 1D-VBL BCSR(2,1) BCSR(2,2) BCSR(2,2)
09.rajat31 1D-VBL 1D-VBL BCSR-DEC(2,2) CSR CSR CSR
10.cage15 BCSD-DEC(4) BCSD-DEC(4) CSR CSR
11.wb-edu 1D-VBL 1D-VBL 1D-VBL BCSR-DEC(3,1)
12.wikipedia-20061104 CSR CSR CSR BCSR-DEC(3,1)
13.degme CSR BCSR-DEC(1,2) CSR BCSR-DEC(6,1) CSR CSR
14.rail4284 BCSR-DEC(1,6) 1D-VBL BCSR-DEC(1,8) 1D-VBL BCSR-DEC(1,6) BCSR-DEC(1,6)
15.spal 004 1D-VBL 1D-VBL 1D-VBL 1D-VBL
16.bone010 1D-VBL 1D-VBL 1D-VBL BCSR-DEC(3,2) BCSR(3,1) BCSR(3,2)
17.kkt power CSR CSR CSR CSR CSR CSR
18.largebasis 1D-VBL BCSR-DEC(2,2) 1D-VBL 1D-VBL BCSR(2,2) BCSR(2,2)
19.TSOPF RS b2383 1D-VBL 1D-VBL 1D-VBL BCSD-DEC(8) BCSR(8,1) BCSR(8,1)
20.af shell10 1D-VBL 1D-VBL 1D-VBL 1D-VBL BCSR(5,1) BCSR(5,1)
21.audikw 1 1D-VBL 1D-VBL 1D-VBL BCSR-DEC(2,3) BCSR(3,1) BCSR(3,1)
22.F1 1D-VBL 1D-VBL BCSR-DEC(1,3) BCSR-DEC(3,1) BCSR(3,1) BCSR(3,1)
23.fdiff202x202x102 BCSD(8) BCSD(7) BCSD(8) BCSD(8) BCSD(6) BCSD(6)
24.gearbox BCSR-DEC(3,2) BCSR-DEC(3,1) 1D-VBL BCSR(3,1) BCSR(3,1) BCSR(3,1)
25.inline 1 1D-VBL 1D-VBL 1D-VBL BCSR(3,1) BCSR(3,1) BCSR(3,1)
26.ldoor 1D-VBL 1D-VBL 1D-VBL BCSR-DEC(2,2) BCSR(7,1) BCSR(7,1)
27.pwtk 1D-VBL 1D-VBL 1D-VBL 1D-VBL 1D-VBL BCSR(5,1)
28.thermal2 CSR BCSD-DEC(8) CSR BCSD-DEC(7) CSR CSR
29.nd24k 1D-VBL 1D-VBL 1D-VBL BCSR-DEC(3,1) BCSR(3,2) BCSR(3,2)
30.stomach BCSD(7) BCSD(7) BCSD-DEC(4) BCSD(7) BCSD(7) BCSD(7)

Table IV: Best storage format for each microarchitecture (all threads). The numbers inside parentheses for fixed size blocking
methods denote the block that achieved the best performance. Results are depicted for both single (sp) and double (dp)
precision.

for Harpertown, 16 for Nehalem, and 64 for Niagara2. The
most important observation from this table is that there is
not a single method that could yield the best performance
for a specific matrix across the different microarchitectures.
Additionally, even if the method remains the same across
the different architectures or precision modes, the specific
block that achieves the highest performance can still vary
significantly. It is obvious, therefore, that predicting the cor-
rect blocking method and block for a specific combination
of sparse matrix, microarchitecture, and thread configuration
is rather hard, and the problem becomes even harder when
considering how the best performing blocking storage for-
mats vary as the number of threads increases. This aspect
of blocking performance is discussed in the following.

Figure 4 presents the percentage of matrices that each
method ‘wins’, i.e., achieved the highest performance, as
the number of threads increases. Threads were assigned to
hardware contexts as follows:

• On Harpertown up to the four-thread configuration, we
assigned threads to cores, such that none of them shared
the unified L2 cache.

• On Nehalem we tried two thread-assignment policies
in order to examine the behavior of blocking methods

when using simultaneous multithreading. The first pol-
icy assigns a single thread per core, while the second
one assigns two threads per core. In both cases, how-
ever, the 16-thread configuration uses Hyperthreading.
We should also note here that we did not implement
NUMA-aware versions of any blocking method.

• On Niagara2, finally, we assigned threads sequentially
to cores, i.e., threads 1–8 were assigned to the first core,
9–16 to the second, and so forth.

Figure 4 reveals a number of important aspects of the
different blocking method as the number of cores increases
and renders the problem of selecting the correct method
for a specific architecture and thread configuration even
more complex. First, a difference in behavior of blocking
methods on Intel processors and the Niagara2 is to be
observed. On Niagara2, BCSR achieves the overall best
performance for more than 40% of matrices independent
of the number of threads, and in general, the distribution of
wins between different formats does not change significantly
as the number of threads increases. The dominance of BCSR
on Niagara2 is not a surprise, since its execution core is
not as sophisticated as Intel cores (shallower pipeline, no
data hardware prefetching, lower clock frequency, etc.), and,
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Figure 4: Percentage of matrices that each method achieved the highest performance relative to the number of threads
(double-precision).

additionally, BCSR is generally a more lightweight kernel
than the other blocking kernels (no additional data structures
and floating-point operations, better spatial locality, better
register reuse, easily optimized code, etc.).

In the case of Harpertown and Nehalem, however, the
distribution of best performing blocking methods varies
dramatically as the number of threads increases. The variable
size blocking method, 1D-VBL, achieves the best overall
performance for more than half the matrices of our matrix
suite at eight- and 16-thread configurations, respectively,
despite the moderate performance for one- and two-thread
configurations. On the other hand, BCSR performs rather
poorly as the number of threads increases and the memory
subsystem is further stressed. The portion of BCSR-DEC
‘wins’ decreases also considerably. The main problem of
BCSR and methods with aggressive padding is that they
sacrifice memory bandwidth, in order to construct full
blocks, hoping that the better computational characteristics
of the block kernels will overwhelm the difference and lead
to higher performance. However, when the pressure to the
memory subsystem becomes excessive, as is the case of the
dual SMP Harpertown configuration and the non-NUMA
implementation that we used on Nehalem, the effective
memory bandwidth decreases considerably and becomes the

major performance bottleneck of these methods. On the
other hand, 1D-VBL, which for more than half the matrices
has the least working set, takes advantage of its lower
demands on memory bandwidth and manages to achieve the
best overall performance. The distribution of best performing
blocking methods is similar when using Hyperthreading on
Nehalem, but in this case the performance advantage of 1D-
VBL is not so dominant. This is expected, since the 1D-VBL
kernel need to perform more computations and the threads
contend for processor resources.

Finally, we present on Fig. 5 how each blocking method
scales with the number of threads. First, we should note
that the best average performance (≈3.2 Gflop/s) is achieved
by Nehalem at eight-thread configuration without Hyper-
threading using the 1D-VBL format. The performance of
Niagara2 is noteworthy, since due to its almost linear scaling
as the number of threads increases, it achieves an average
≈1.7 Gflop/s, compared to the rather moderate ≈1.1 Gflop/s
of Harpertown. From this figure it is obvious how better
than the other blocking formats 1D-VBL scales for Harper-
town and Nehalem, a fact which is in accordance with the
distribution of best performing formats presented in Fig. 4.
Similarly, BCSR is the format that scales best on Niagara2.
The degradation of performance on Nehalem as we move
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Figure 5: Performance scaling of each format. Each point represents the average maximum performance achieved from each
storage format over all matrices (double-precision).

from eight to 16 threads (Fig. 5c) is due to excessive pressure
to the memory subsystem, which is further aggravated by
resource sharing inside the processor due to Hyperthreading,
which is inevitably used when moving to 16 threads.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we conducted a comparative study and
evaluation of blocking storage formats for sparse matrices
on modern multicore architectures. Blocking methods for
sparse matrices have been introduced in the literature in
the past, but it lacked an extensive evaluation on contem-
porary multicore architectures. In this paper, we provided
a consistent overview of the different blocking methods
for sparse matrices and evaluated the performance of five
representative blocking methods. The conclusions of our
evaluation are interesting, since we show that blocking is
still a promising sparse matrix optimization for multicores,
but the prediction of the correct blocking method to use and
the correct tuning of that method is a hard and intricate
problem that becomes even more complex as the number of
cores and threads increases. Therefore, performance models

and advanced heuristics should be sought, which could
accurately predict the correct blocking optimization and
also adapt to new microarchitectures. Our future research
will focus on using machine learning techniques to aid at
the optimization of SpMV on modern and future multicore
architectures.
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