
Efficient evolution of accurate classification rules using a
combination of Gene Expression Programming and Clonal Selection

Vasileios K. Karakasis and Andreas Stafylopatis, Member, IEEE

Abstract— A hybrid evolutionary technique is proposed for
data mining tasks, which combines a principle inspired by the
Immune System, namely the Clonal Selection Principle, with
a more common, though very efficient, evolutionary technique,
Gene Expression Programming (GEP).

The clonal selection principle regulates the immune response,
in order to successfully recognize and confront any foreign
antigen, and at the same time allows the amelioration of the
immune response across successive appearances of the same
antigen. On the other hand, Gene Expression Programming
is the descendant of Genetic Algorithms and Genetic Pro-
gramming and eliminates their main disadvantages, such as
the genotype-phenotype coincidence, though it preserves their
advantageous features.

In order to perform the data mining task, the proposed
algorithm introduces the notion of Data Class Antigens, which is
used to represent a class of data. The produced rules are evolved
by a clonal selection algorithm, which extends the recently
proposed CLONALG algorithm. In the present algorithm,
among other new features, a receptor editing step has been
incorporated. Moreover, the rules themselves are represented
as antibodies, which are coded as GEP chromosomes, in order
to exploit the flexibility and the expressiveness of such encoding.

The proposed hybrid technique is tested on some bench-
mark problems of the UCI repository. In almost all problems
considered, the results are very satisfactory and outperform
conventional GEP both in terms of prediction accuracy and
computational efficiency.

Key terms: Clonal Selection Principle, Gene Expression Pro-
gramming, Artificial Immune Systems, Data Mining.

I. INTRODUCTION

Recently, the immune system and the mechanisms it uti-
lizes in order to protect the body from invaders, has become a
new promising field in the domain of machine learning. The
natural immune system is a very powerful pattern recognition
system, which has not only the ability to recognize and
destroy foreign antigens, but also the ability to distinguish
between its own and foreign cells. Additionally, the immune
system can be characterized as a very effective reinforcement
learning system, as it is capable of continuously improving
its response to antigenic stimuli, which it has encountered in
the past.

The mechanisms that regulate the behaviour of the natural
immune system and how these mechanisms and concepts can
be applied to practical problems is the matter of research in
the field of Artificial Immune Systems (AIS). Early work
on AIS examined its potential in machine learning and

The authors are with the School of Electrical and Computer En-
gineering, National Technical University of Athens, Zographou, Athens
157 80, Greece (phone: +30 210 772 2508, fax: +30 210 772 2109, email:
andreas@cs.ntua.gr, bkk@cslab.ntua.gr).

compared it to known techniques, such as artificial neural
networks and conventional genetic algorithms (GAs) [9],
[2], [3], [19], [20]. One of the first features of the natural
immune system, which was modelled and used in pattern
recognition tasks, was the Clonal Selection Principle, first
introduced by Burnet [1] in 1959, upon which is based
reinforcement learning in the immune system. Later research
in immunology has enhanced Burnet’s theory by introducing
the notion of receptor editing [16], which will be discussed
further in Section II-B. A first attempt to model the clonal
selection principle was made by Weinard [22], though from
a more biological point of view. Fukuda et al. [7] were the
first to present a more abstract model of the clonal selection
principle, which they applied to computational problems.
However, it was the work of De Castro and Von Zuben [19],
[4] on the CLONALG algorithm that considerably raised the
interest around the clonal selection principle and its appli-
cations. CLONALG is an easy to implement and effective
evolutionary algorithm, which may be applied both to opti-
mization and pattern recognition tasks. CLONALG maintains
a population of antibodies, which it evolves through selec-
tion, cloning and hypermutation. The most important features
of CLONALG are that selection is a two-phase process and
that cloning and hypermutation depend on the fitness of
the cloned or mutated antibodies, respectively. Improvements
and variations of CLONALG were later introduced by White
and Garrett [23], who proposed the CLONCLAS algorithm,
and by Nicosia et al. [15], who proposed a variation of the
CLONALG, which used a probalistic half-life of B-cells and
a termination criterion based on information theory. A more
sophisticated application of the clonal selection principle is
the AIRS [21] supervised learning system, which combines
aspects of immune network theory [19] with the concept of
the clonal selection principle.

In this work, we examine further an enhanced implemen-
tation of CLONALG that we have proposed in [10]. The
innovative features of our approach may be summarized as
follows: the memory update process is reviewed and defined
in a more formal manner, providing some additional features.
Antigens are no longer defined as symbol strings and the
concept of generic antigens is introduced. Antibodies are
defined as symbol strings of a language L and not as simple
bit or real-valued vectors. Also, additional control is included
in the proliferation phase of the algorithm and population
refresh is altered. A new feature in our implementation is
a step of receptor editing, which was added just before the
first selection of antibodies. Receptor editing is expected to
provide wider exploration of the solution space and helps the

algorithm avoid local optima [19].
The above enhanced clonal selection algorithm is coupled

with a relatively new evolutionary technique, Gene Expres-
sion Programming (GEP), and used to mine classification
rules in data. GEP [5] was introduced by Ferreira as the
descendant of Genetic Algorithms and Genetic Programming
(GP), in order to combine their advantageous features and
eliminate their main handicaps. The most innovative feature
of GEP is that it separates genotype from phenotype of
chromosomes, which was one of the greatest limitations of
both GAs and GP. In this paper, we isolate from GEP the
representation of chromosomes, henceforth antibodies, and
use the modified version of CLONALG to evolve them,
so as to exploit its higher convergence rate. The actual
classification of data and the formation of rules is based
mainly on the work of Zhou et al. [24], who have successfully
applied GEP to data classification. Specifically, the one-
against-all learning technique is used in order to evolve rules
for multiple classes and the Minimum Description Length
(MDL) principle is used to avoid data overfitting. However,
in contrast to Zhou et al., who use a two-phase rule pruning,
we use only a prepruning phase through the MDL criterion,
which in some cases yields more complex rulesets. Finally,
the concept of Data Class Antigens (DCA) is introduced,
which represents a class of data to be mined. Apart from
generic antigens, a new multiple-point multiple-parent re-
combination genetic operator is added to GEP, in order to
implement receptor editing. The proposed algorithm was
tested against a set of benchmark problems and the results
were very satisfactory both in terms of ruleset accuracy as
well as in terms of the computational resources required.

The rest of the paper is structured as follows: Section II
provides a quick overview of the clonal selection principle
and its basic concepts. Section II-C describes our version
of CLONALG. Section III provides a brief description of
GEP and also introduces the multiple-point multiple-parent
recombination operator. In Section IV it is described how
the proposed hybrid technique is applied to data mining and
Section V presents some experimental results on a set of
benchmark problems. Finally, Section VI concludes the paper
and proposes future work.

II. OVERVIEW OF THE CLONAL SELECTION PRINCIPLE

The clonal selection principle refers to the algorithm
utilized by the immune system to react to an antigen. The
clonal selection theory was originally proposed by Burnet [1]
and establishes the idea that only those lymphocytes that
better recognize the antigen are selected to be reproduced.

When an antigen invades the organism, the first immune
cells to be activated are the T-lymphocytes, which have
the ability to recognize the foreign organism. Once they
have successfully recognized the antigen, they start secreting
cytokines, which in turn activate the B-lymphocytes. After
activation, B-lymphocytes start proliferating and finally ma-
ture and differentiate into plasma and memory cells. Plasma
cells are responsible for the secretion of antigen-specific
antibodies, while memory cells remain inactive during the

Primordial cells

Macrophage

B-lymphocyte
(antigen activated)

Helper
T-lymphocyte

Memory cells Plasma cells

Cytokines

. .
.

Activation

Proliferation
&

Differentiation

Other T-lymphocytes

Fig. 1. The clonal selection principle.

current immune response; they will be immediately activated
when the same antigen appears again in the future.

The clonal selection principle can be summarized in the
following three key concepts:

1) The new cells are clones of their parents and they are
subjected to somatic mutations of high rate (hypermu-
tation).

2) The new cells that recognize self cells are eliminated.
3) The mature cells are proliferated and differentiated

according to their stimulation by antigens.
When an antigen is presented to the organism, apart from T-
lymphocytes, some B-lymphocytes bind also to the antigen.
The stimulation of each B-lymphocyte depends directly on
the quality of its binding to the specified antigen, i.e. its
affinity to the antigen. Thus, the lymphocytes that better
recognize the antigen leave more offspring, while those that
have developed self-reactive receptors or receptors of inferior
quality are eliminated. In that sense, the clonal selection
principle introduces a selection scheme similar to the natural
selection scheme, where the best individuals are selected
to reproduce. The clonal selection principle is depicted in
Figure 1. In the following, learning in the immune system
and the mechanisms for the immune response maturation are
briefly described. A more detailed presentation can be found
in [19], [4].

A. Learning in the immune system

During its lifetime an organism is expected to encounter
the same antigen many times. During the first encounter,
there exist no specific B-lymphocytes, and thus only a small
number of them are stimulated and proliferate (primary
immune response). After the infection is successfully treated,

Time

A
nt

ib
od

y
co

nc
en

tr
at

io
n

A1

t2 t3t1

Primary response Secondary response Cross-reactive
response

A1

A2 A2

A'1

Δτ1 Δτ2 Δτ3

Fig. 2. Antibody concentration during the primary, the secondary and the
cross-reactive immune response.

the B-lymphocytes that exhibited higher affinities are kept in
a memory pool for future activation. When the same antigen
is encountered again in the future, memory B-lymphocytes
are immediately stimulated and start proliferating (secondary
immune response). During their proliferation, B-lymphocytes
are subjected to a hypermutation mechanism, which may
produce cells with higher affinities. After the suppression of
the immune response, the best lymphocytes enter the memory
pool. The process of “storing” the best cells into memory,
may lead to the reinforcement of the immune responce across
successive encounters of the same antigen, as better cells
will always be the subject of the evolution. In that sense, the
immune response could be considered as a reinforcement
learning mechanism.

This notion could be schematically represented as in
Figure 2, where the x-axis represents time and the y-axis
represents the antibody concentration. In this figure, A1,
A2 and A′

1 represent different antigens that are successively
presented to the organism. When A1 is first encountered at
moment t1, there exist no specific lymphocytes for this anti-
gen, thus a lag phase (∆τ1) is introduced until the appropriate
antibody is constructed. In moment t2, A1 appears again,
along with the yet unknown antigen A2. The response to
A2 is completely similar to primary response to A1, which
proves the specificity of the immune response, while the
current response to A1 is considerably faster (∆τ2 � ∆τ1)
and more effective (higher antibody concentration). The third
phase depicted in Figure 2 reveals another important feature
of the immune memory: it is an associative memory. At
moment t3 antigen A′

1, which is structurally similar to
antigen A1, is presented to the immune system. Although
A′

1 has never been encountered before, the immune system
responds very effectively and directly (∆τ3 ≈ ∆τ2). This can
be explained by the fact that the A1-specific antibodies can
also bind to the structurally similar A′

1, hence providing a
qualitative basis for the A′

1 antibodies, which leads to a more
effective immune response. This type of immune response is
called cross-reactive immune response.

The gradual amelioration of the immune response, which
is achieved through successive encounters of the same anti-
gen, is described by the term maturation of the immune
response or simply affinity maturation. The mechanisms
through which this maturation is achieved, are described in
Section II-B.

A

C

B

C‘

B‘

A‘

Fig. 3. Two dimensional representation of the antibody-antigen binding
space. Hypermutation discovers local optima, whereas receptor editing can
discover the global optimum.

B. Affinity maturation mechanisms

The maturation of the immune response is basically
achieved through two distinct mechanisms:

1) hypermutation, and
2) receptor editing.
Hypermutation introduces random changes (mutations)

with high rate into the B-lymphocyte genes, that are respon-
sible for the formation of the antibodies’ variable region. The
hypermutation mechanism, apart from the differentiation of
the antibody population, permits also the fast accumulation of
beneficial changes to lymphocytes, which in turn contributes
to the fast adaptation of the immune response. On the
other hand, hypermutation, due to its random nature, may
often introduce deleterious changes to valuable lymphocytes,
degrading thus the total quality of the antibody population.
Therefore, there must exist some strict and efficient mech-
anism for the regulation of the hypermutation mechanism.
Such a mechanism would allow mutations with high rate to
lymphocytes that produce poor antibodies, and impose a very
small or null rate to lymphocytes with “good” receptors.

Receptor editing was introduced by Nussenzweig [16],
who stated that B-lymphocytes undergo also a molecular
selection. It was discovered, that B-lymphocytes with low
quality or self-reactive receptors destroy those receptors and
develop completely new ones by a V(D)J recombination.
During this process, genes from three different gene libraries
(libraries V, D and J) are recombined in order to form a single
gene in the B-lymphocyte genome, which is then translated
into the variable region of antibodies. Although this mecha-
nism was not embraced in Burnet’s clonal selection theory,
it can be easily integrated as an additional step before the
final selection of lymphocytes.

The existence of two mechanisms for the differentiation
of the antibody population is not a redundancy, but in
contrast they operate complementarily [19]. As depicted in
Figure 3, the hypermutation mechanism can only lead to local

optima of the antibody-antigen binding space (local optimum
A′), whereas receptor editing can provide a more global
exploration of the binding space (“jumps” to B and C). Thus,
hypermutation can be viewed as a refinement mechanism,
which—in combination with receptor editing, that provides
a coarser but broader exploration of the binding space—can
lead to the global optimum.

C. An implementation of the clonal selection principle

The basis of the hybrid evolutionary technique presented
in this paper is an implementation of CLONALG, which
was first introduced by Von Zuben and De Castro [4], [19].
Although the basic concept of the algorithm remains the
same, the implementation presented here, which is henceforth
called ECA (Enhanced Clonal Algorithm), is built upon
a slightly different theoretical background, in order to be
easily coupled with the GEP nomenclature. Additionally the
following features were added or enhanced in ECA:

• A receptor editing step was added just before the
first selection of antibodies, in order to achieve better
exploration of the antibody-antigen binding space.

• The update process of the population memory is defined
in a more formal manner.

• Antigens are no longer defined as simple symbol strings.
The concept of generic antigens is instead introduced,
which allows application of the algorithm to a variety
of machine learning problems.

• Antibodies are represented as symbol strings and not as
bit strings or real-valued vectors.

• Cloning of best cells depends also on the number nb

of clones selected in the first selection phase. This
allows a finer and more accurate control over the clones
produced, as two variables (nb and clone factor) control
the cloning process.

• The algorithm is more configurable than the pure
CLONALG. Specifically, it allows more memory cells
to recognize a single antigen and more memory cells
to be updated simultaneously. During the population re-
fresh phase, some improved clones are allowed to enter
the population, replacing some poor existing members.
This last feature is also common to CLONCLAS, which
is an enhanced implementation of CLONALG presented
in [23].

ECA maintains a population P of antibodies1, which are
the subject of evolution. An antibody is defined to be a string
of a language L, such that

L = {s ∈ Σ∗ and |s| = l, l ∈ N},

where Σ is a set of symbols and l is the length of the
antibody. Both Σ and l are parameters of the algorithm and
are set in advance.

1In the remaining of the paper no distinction will be made between
antibodies and lymphocytes, as the former constitute the gene expression of
the latter.

The population of antibodies, P , can be divided into two
distinct sets, M and R, such that

M∪R = P and M∩R = ∅,

where M contains the memory cells and R contains the
remaining cells.

A set G of antigens to be recognized is also defined. It
is worth mentioning that the only restriction imposed on
G, is that it should be a collection of uniform elements,
i.e. elements of the same structure or representation; no
assumption is made as to the structure or the representation
themselves. For that reason, these antigens are called generic
antigens. Generic antigens may allow CLONALG to be used
in a variety of pattern recognition problems.

Between sets G andM a mapping K is defined, such that

K : G →M.

This mapping associates antigens with memory cells, which
are capable of recognizing them. Generally, the mapping K
is not a function, as a single antigen may be recognized
by a set of different memory cells, or stated differently, a
set of memory cells may be “devoted” to the recognition
of a specific antigen. For example, let G = {g0, g1} and
M = {m0,m1,m2}, then a mapping K, which is defined
as

K(g0) = m0,

K(g1) = m1,

K(g1) = m2,

states that memory cell m0 recognizes antigen g0, and
memory cells m1, m2 recognize antigen g1. The fact that K
is not a function, may impose a difficulty during the phase of
memory updating, since it will not be clear to the algorithm
which memory cell to replace. For that reason, apart from
the mapping K, a memory update policy will be needed in
order to update memory in a consistent manner. This policy
is responsible for selecting the memory cells, which will be
candidate for replacement, and the way this replacement will
take place, as it is possible that more than one memory cells
are updated during the memory update phase (see algorithm
step 8 below). An important point in the implementation of
ECA, is that both the size of the memory set M and the
mapping K are determined in advance and remain unchanged
throughout the execution of the algorithm. That means that
a specific antigen will always be recognized by a specific set
of memory cells, or, from a computational point of view, a
specific antigen will always be recognized by cells in specific
memory positions.

The mapping K divides the memory set M into a set of
distinct subsets Mi such that

Mi = {m : m = K(g), g ∈ G}, 1 ≤ i ≤ n = |G|.

If
⋃n

i=1Mi =M, then K defines a partition over the setM
and M is called minimal, as every memory cell recognizes
an antigen. It can easily be proved that a population set P

Population Initialization

Antigen Presentation

Convergence?Termination

More antigens?

No

Yes

NoYes

Antibody Selection

Proliferation/Cloning

Receptor editing

Population refresh

Clone maturation

Clone selection & memory
update

Fig. 4. The ECA algorithm; a modified version of the CLONALG
algorithm.

with a non minimal memory set can always be converted to
an equivalent population set P ′ with a minimal memory set.

Finally, the affinity function between antibodies and anti-
gens is defined as

f : L × G → R.

The function f should return higher values when an antibody
binds well to an antigen and lower ones, when the binding
is inadequate. Usually, f is normalized in the interval [0, 1].
The way the “binding” between an antibody and an antigen
is defined, depends mainly on the representation of the
antigens and the semantics of the antibody language L, which
makes this concept rather problem specific. The definition of
“binding” for the problem of data mining considered in this
paper is presented in Section IV-B.

Having described the theoretical background of our ver-
sion of ECA, a more detailed description of the algorithm
follows (see also Figure 4).
Step 1. [Population initialization] Each member of the

population is initialized as a random string of language
L. Additionally, a temporary set Gr is defined such that
Gr = G.

Step 2. [Antigen presentation] An antigen gi is selected
randomly from the set Gr and is presented to the
population. For each member of the population, the
affinity function f is computed and the affinity measure
produced is assigned to that member. Finally, antigen gi

is extracted from set Gr.
Step 3. [Receptor editing] The ne antibodies with the

lower affinities are selected to undergo the receptor
editing process. The best np antibodies are also selected
to form a gene pool, from which genes will be drawn
during the V(D)J recombination. The exact procedure
of the V(D)J recombination is described later in this
section.

Step 4. [Selection of best antibodies] The best nb antibod-
ies, in terms of their affinity, are selected and form the
set B.

Step 5. [Proliferation of best antibodies] Each antibody of
the set B is cloned according to its affinity. Generally,
antibodies with higher affinities produce more clones.
The set of clones is called C.

Step 6. [Maturation of the clones] Each clone cj of set C
is mutated at a rate aj , which depends on the affinity
of the clone. Generally, antibodies with higher affinities
should be mutated at a lower rate. The mutated clones
form the set Cm.

Step 7. [Affinity of clones] The antigen gi is presented to
the set of mutated clones, Cm, and the affinity function
f is computed for each clone.

Step 8. [Memory update] The nm best mutated clones are
selected according to their affinity, and form the set B′.
The mapping K is then applied to antigen gi, and the set
Mi of memory cells that recognize gi is obtained. Next,
the memory update policy is applied and a setM′

i, such
that |M′

i| = nm ≤ |Mi| is produced, which is the set
of the candidate for replacement memory cells. These
cells will be replaced by selected clones with higher
affinities, so that at the end of this process the following
inequality holds:

f(m, gi) ≥ f(a, gi), ∀m ∈M′
i,∀a ∈ B′.

The way the replacement will take place, i.e. how the
selected memory cells will be replaced by the best
clones, is also a matter of the memory update policy
described below.

Step 9. [Population refresh] At this step, the population is
refreshed in order to preserve its diversity. Refreshing
may be performed in two distinct ways. Either nr cells
are randomly selected from the set of mutated clones
and are inserted into the population replacing some
existing cells, or the nd worst cells, in terms of their
affinity to antigen gi, are replaced by completely new
ones, which are random strings of language L.

Step 10. [End conditions check] If Gr 6= ∅, then the algo-
rithm is repeated from Step 2. Otherwise, the satisfac-
tion of a convergence criterion between the memory and
the antigen set is checked. At this point, an evolution
generation is said to be complete. If no convergence
has been achieved, then Gr ← G and the algorithm
is repeated from Step 2, otherwise the algorithm is
terminated. z

1) Proliferation control and regulation of the hypermu-
tation mechanism: The success of the ECA algorithm in
a pattern recognition problem depends heavily on the reg-
ulation of the proliferation of the best antibodies and the
maturation of the clones. Thus, a control mechanism should
be established, that could firstly augment the possibility that
a “good” clone will appear, and secondly guarantee to the
most possible extent that the already “good” clones will not
disappear.

The ECA algorithm uses almost the same control mech-
anisms as CLONALG. Namely, in order to control the
proliferation of the best antibodies, it first sorts the set B

of best antibodies in descending order, and then applies the
formula

ni = round
(

β · nb

i

)
, 1 ≤ i ≤ nb (1)

to compute the number of clones that each antibody will
produce. In this formula, round(·) is the rounding function,
β is a constant, called clone factor, nb is the total number of
antibodies selected in Step 4 of the algorithm, and i is the
rank of each selected antibody in the ordered set B. What is
important here is that the number of clones depends on the
number of antibodies selected before cloning and not on the
total size of population as in CLONALG. This allows finer
control over the proliferation of the best clones, which may
lead to better resource utilization.

Hypermutation is controlled through the exponential func-
tion

α(x) = αmaxe
−ρ·x, αmax ≤ 1, (2)

where α is the mutation rate, αmax is a maximum mutation
rate, ρ is a decay factor, and x is the affinity normalized in
the interval [0, 1].

2) Memory update policy: In general, the memory update
policy depends directly on the cardinality of the memory and
antigen sets, the mapping K and the number of best clones,
nm, candidate for entering the memory pool. In the problem
at hand, a rather simple mapping K and a straightforward
memory update policy were used. First, we require that
|M| = |G| and the mapping K is defined to be a one-to-
one mapping:

M = K(G).

In the implementation presented here only one clone is al-
lowed to enter the memory in each generation and therefore,
the memory update policy is straightforward: the cell to be
replaced is the one denoted by the mapping K, or—stated
differently—it holds that

M′
i =Mi, 1 ≤ i ≤ |G|.

Finally, as a convergence criterion between memory and the
antigen set, the Least Mean Square (LMS) criterion is used,
considering

e =
|G|∑
i=1

(mi − gi)2, mi = K(gi).

3) Receptor editing: The notion behind the implementa-
tion of the receptor editing process is to form new antibodies
from random substrings of different antibodies of reasonably
high quality. For that reason, during the receptor editing
process, the np best antibodies are selected to form a pool
of genes. A gene is considered to be any substring of an an-
tibody2. These genes will be recombined through the V(D)J
recombination, in order to form the new antibody. V(D)J
recombination is a five step process, which is described by
the following algorithm (see also Figure 5), where lc is the

2The reference to “gene” should not be confused with a GEP gene.

Timet2t1

2

A′
1

Δτ1

Δτ2 Δτ3

No

Yes

Antibody Selection

Termination

Initialization (lc ← 0)

Gene selection (lg)

Formation of the new
antibody (lc ← lc + lg)

lc = L ?

Fig. 5. An implementation of the V(D)J recombination.

current length of the antibody under construction, lg is the
length of the gene selected, and L is the length of the entire
antibody.
Step 1. [Initialization] lc ← 0.
Step 2. [Antibody selection] An antibody is selected ran-

domly from the pool of antibodies.
Step 3. [Gene selection] A substring of random length lg

is selected from the selected antibody. The length lg
should conform to the restriction

lg ≤ L− lc.

Step 4. [Antibody formation] The gene selected is ap-
pended to the new antibody, and the length lc is updated:

lc ← lc + lg

Step 5. [End condition] If lc = L, then the algorihtm
terminates. Otherwise, it is repeated from Step 2. z

D. Convergence analysis of ECA

The ECA algorithm has plenty of parameters and, as a
result, its tuning may be rather tedious. In this section, a
primary approach toward managing the algorithm parameters
will be performed. A character recognition problem will be
used in order to examine some of the main parameters of
ECA, and how these affect its convergence. The character
recognition problem consists of 8 characters, as depicted
in Figure 6 [11]. In this step of analysis, receptor editing
is disabled and we seek to understand how the remaining
ECA parameters affect convergence. More specifically, we
will examine how mutation rate decay and clonal expansion
affect performance and accuracy. We will assume that the
algorithm converges if and only if it does so within 200
generations. As a convergence criterion, we use the Mean
Squared Error (MSE) criterion, formally defined as

e =
1
n

n∑
i=1

d2
i , (3)

where di is the normalized Hamming distance between the
memory cells and the presented antigens or patterns. In

Fig. 6. The Lippman character set.

0 50 100 150 200

0,00

0,05

0,10

0,15

0,20

0,25

0,30

M
SE

Generations

 ρ = 5
 ρ = 2
 ρ = 10

β = 20
nb = 5

Fig. 7. ECA convergence rate relative to mutation rate decay ρ.

the character recognition benchmark problem we impose a
minimum MSE of 10−3.

One critical parameter of ECA, which can considerably
affect convergence, is mutation rate decay ρ, as depicted
in Figure 7, where the MSE is plotted against generation
number. When ρ = 5, ECA converges rather fast within
about 70-75 generations, but, when ρ = 2 or ρ = 10, the
algorithm does not succeed to converge within the window of
200 generations. When ρ = 10, the new antibodies are quite
similar to those of previous generations, so it will take the
algorithm longer to form a set of memory cells of adequate
quality. The exact opposite happens when ρ = 2. The high
mutation rate imposed to new antibodies in early generations
will soon create a set of quality cells. However, while these
high mutation rates are beneficial at the beginning, they tend
to hinder the overall performance of the algorithm through
generations, as they may insert deleterious changes to quality
cells obtained so far. The algorithm will eventually converge,
because the best cells are always kept in memory, but at a
very slow rate. This hindering behaviour of high mutation
rates can be also deducted from Figure 7, where the ρ = 10
curve gets lower than the ρ = 2 curve from generation 70
and forth.

Another critical parameter of the algorithm is the product
βnb, which controls the creation of clones (see Equation 1).
As depicted in Figure 8, larger values of βnb lead to faster
convergence, although differences are rather small as this
product increases. This behaviour could be explained by the
fact that the more the clones, the better the chances for a
quality antibody to appear. However, after a certain number
of clones is attained, more out of them would not benefit at
all, because they are already numerous enough to accomodate
any beneficial mutation introduced for a given mutation rate.

0 25 50 75 100

0,00

0,05

0,10

0,15

0,20

0,25

0,30

M
S

E

Generations

 βnb = 5
 βnb = 25
 βnb = 50
 βnb = 75
 βnb = 100
 βnb = 125

ρ = 5

Fig. 8. Convergence rate relative to the product βnb.

20 40 60 80 100 120
0

20

40

60

80

100

120

βnb

G
en

er
at

io
ns

 (a
ve

ra
ge

)

 Variable nb (β = 20)
 Variable β (nb = 5)

ρ = 5

Fig. 9. How independent variation of β and nb affect convergence.

This fact imposes a subtle tradeoff between convergence
speed and computational resources needed, as more clones
would not improve convergence rate, but, in contrast, they
would reduce the overall performance of the algorithm.

Finally, another interesting issue concerns whether and
how convergence rate is affected by separately modifying β
or nb while keeping the βnb product constant. In Figures 9
and 10, the average convergence rate and its standard devia-
tion are plotted against the product βnb. Each figure displays
two curves, one corresponding to varying nb, while keeping
β constant (β = 20), and the other corresponding to varying
β, while keeping nb constant (nb = 4). Although average
convergence rate seems not to be influenced by β and nb

separately, especially for higher values of their product, the
choice of β and nb seems to affect the standard deviation of
convergence rate, and hence stability of the algorithm.

III. GEP ANTIBODIES

In the hybrid data mining approach presented here, an-
tibodies are represented as GEP chromosomes, and hence-
forth will be referred to as GEP antibodies, in order to be

20 40 60 80 100 120
0

5

10

15

20

25
G

en
er

at
io

ns
 s

ta
nd

ar
d

de
vi

at
io

n

βnb

 Variable nb (β = 20)
 Variable β (nb = 5)

ρ = 5

Fig. 10. How independent variation of β and nb affect standard deviation
of convergence.

distinguished from classical linearly encoded and expressed
antibodies. GEP antibodies may not be considered as fully
functional GEP chromosomes, in that they do not support
all the genetic operators (see Section III-B) defined by GEP.
Nonetheless, such support could be easily integrated, as GEP
antibodies maintain the exact structure of GEP chromosomes.

Gene Expression Programming was first introduced by
Ferreira [5], [6] as the descendant of Genetic Algorithms
(GAs) and Genetic Programming (GP). It fixes their main
disadvantage, the genotype-phenotype coincidence, though
preserving their main advantages, namely the simplicity of
the GAs’ chromosome representation and the higher expres-
sion capabilities of GP. This dual behaviour is achieved
through a chromosome representation, which is based upon
the concepts of Open Reading Frames (ORFs) and non-
coding gene regions, which are further discussed in the
following section.

A. The GEP antibody genome

The GEP genome is a symbol string of constant length,
that may contain one or more genes linked through a linking
function. A GEP gene is the basic unit of a GEP genome,
and consists of two parts: the head and the tail. In the head,
any symbol, either terminal or function symbol, is allowed.
In the tail, only terminal symbols are allowed. The length of
the tail depends on the actual length of the head of the gene,
according to the formula [5]

t = h(n− 1) + 1, (4)

where t is the length of tail, h is the length of head, and n
is the maximum arity of the function symbols in the GEP
alphabet. This formula guarantees that the total gene length
will be enough to hold any combination of function symbols
in the head of the gene, while at the same time preserving
the validity of the produced expression.

To better illustrate the concepts of GEP, consider the
following example. Let F = {Q, ∗, /,−,+} be the function

0123456789012345678901234567890
/aQ/b*ab/Qa*b*-ababaababbabbbba

a b

*b

/

Qa

/

Fig. 11. Translation of a GEP gene into an ET.

symbol set, where Q is the square root function, and T =
{a, b} be the terminal symbol set. Let also h = 15, and
thus, from equation (4), t = 16, as the maximum arity of
function symbols is n = 2, which is the arity of ∗, /,− and
+. Consider, finally, the following GEP gene with the above
characteristics (the gene tail is denoted in an italic font):

0123456789012345678901234567890
/aQ/b*ab/Qa*b*-ababaababbabbbba

This gene is decoded to an expression tree (ET), as depicted
in Figure 11. The decoding process is rather straightforward:
the ET is constructed in a breadth-first order, while the gene
is traversed sequentially. The expansion of the ET stops
when all leaf nodes are terminal symbols. However, the most
important issue in the decoding process is that only a part
of the GEP gene is translated into an expression tree. This
part is called an Open Reading Frame (ORF) and has variable
length. An ORF starts always at position 0 and spans through
to the position where the construction of the corresponding
ET has finished. The rest of the GEP forms the non-coding
region.

Using such a representation of genes, it is obvious that
GEP distinguishes the expression of genes, i.e. their pheno-
type, from their representation, i.e. their genotype. Addition-
ally, it succeeds in a rather simple and straightforward man-
ner to couple the higher expression capabilities of expression
trees and the effectiveness of the pure linear representation.

Finally, GEP antibodies may contain multiple genes. In
such a case, each gene is translated independently and they
are finally combined by means of a linking function [6]. The
structure of a multigene antibody is depicted in Figure 12.

B. Genetic operators

The flexibility of GEP antibodies allows the easy adoption
of almost any genetic operator, that is used by GAs. The only
additional requirement is that these operators should preserve
the structure of the GEP genes, i.e. no operator may insert
non terminal symbols in the gene tails.

For the purposes of this work, only two genetic operators
are used: the mutation operator, as was originally defined for

012345678901234
+bQ**b+bababbbb
--b/ba/aaababab

*Q*a*-/abaaaaab

a b

+ b

* b

*

Qb

+

a a

/a

/ b

- b

-

+

a a

/ a

*a

Q

b a

-

*

*

+

Fig. 12. A multigene antibody with 3 genes. Individual genes are linked
through addition.

GEP [5], [6], and a multiple-parent multiple-point recombi-
nation operator, which is introduced here.

The mutation operator, which is used to perform the hyper-
mutation of antibodies, is rather trivial and is not presented
here. The multiple-parent multiple-point recombination op-
erator is analogous to one- and two-point recombination
operators used by the standard GEP, with the difference that
more than two parents are used and more than two gene split
positions are allowed. This operator was introduced in order
to support the V(D)J recombination mechanism, which was
presented in Section II-C, and to provide a better exploration
of the solution space, as well.

The way this operator acts over GEP antibodies resembles
the way V(D)J recombination is performed. Initially, n anti-
bodies are randomly selected to form the set of parents. The
number of parents, n, is a paremeter of the algorithm. Next, a
split point in every parent is randomly generated. Split points
should be in ascending position order, i.e. the split point of a
parent antibody should be at the right of the split point of the
previously splitted parent. Split point generation is repeated
until a split point coincides with the end of a parent antibody.
If all parents are split once and the last split point has not
reached the end of an antibody, the split operation proceeds
to the first splitted parent antibody adding a new split point
to it. In that way, the parent antibodies are splitted multiple
times. The offspring of this recombination is an antibody
consisting of the gene segments between split points of their
parents.

The multiple-parent multiple-point recombination could
be better illustrated by the following example. Consider the
antibody alphabet Σ = {Q, ∗, /−,+, a, b}, where Q is the
square root function, ∗, /, +,− are as usual, and a, b are
terminal symbols. Let also h = 5 and n = 3. Finally,
assume that the selection process yields the following three

antibodies:

012345678900123456789001234567890
Q+bb*bbbaba-**--abbbaaQ*a*Qbbbaab
/-++QbababbQ**abbabbaaQ*ab+abaaab
-+Qbabaaabb/Q*+aababbab*+*Qaaabab

If the set of the generated split points is P =
{(6, 1, 1), (2, 2, 2), (9, 2, 3), (3, 3, 1), (10, 3, 2)}, where the
triplet (i, j, k) signifies a split point at position i of the j-
th gene of the k-th parent antibody, then the resulting gene
segments are the ones underlined in the above scheme. The
offspring of this recombination will be the combination of
these 5 gene segments:

012345678900123456789001234567890
Q+bb*bababbQ**+aababaaQ*ab+abaaab

The multiple-parent multiple-point recombination may offer
considerable benefits to population diversity, as it mimics in
a rather consistent manner the process of the natural V(D)J
recombination.

IV. APPLICATION TO DATA MINING

In this section, the ECA algorithm and the basic repre-
sentation concepts of GEP described above are combined,
in order to be applied in data mining problems. Additional
issues, such as antigen representation, affinity function and
data covering algorithm, as well as overfitting avoidance and
generation of the final rule set, are also treated in more detail
in this section.

A. Antigen representation

The ECA algorithm is a supervised learning technique,
where antigens play the role of patterns to be recognized.
In a data mining task, a description of the data classes may
represent the patterns for recognition. For that reason the con-
cept of Data Class Antigens (DCAs) is introduced. A DCA
represents a single data class of the problem and consists of
a sequence of data records, which belong to the same class.
DCAs conform to the generic antigen definition introduced
in Section II-C, where antigens must be represented as a
sequence of arbitrary objects of similar structure. In order to
fully integrate the notion of DCAs into the ECA algorithm,
an appropriate “binding” between DCAs and GEP antibodies
should be defined, as well as a consistent affinity measure.
These issues are treated in the next two sections.

B. Data Class Antigen recognition

A GEP antibody is said to better recognize a DCA, when
it can produce a better classification of its instances. This is
equivalent to saying that the best GEP antibody would be
the one that identifies all instances of the class represented
by the DCA as being instances of this actual class, provided
no noise in data is present.

The classification technique used in this work is based
on one-against-all learning, where an instance of a class is
recongized against all other classes. This technique can be
easily implemented using GEP antibodies, by classifying a

record of a DCA in the class represented by this DCA, if
the ET of the GEP antibody is evaluated positively. More
strictly, this classification mechanism can be described by
the following definition:

Definition IV.1. A record r of a DCA g, which represents
a data class Cg , will be classified in this class by a GEP
antibody, which is translated in the expression P , if and only
if P (r) > 0. Otherwise, it is not classified.

This definition “binds” GEP antibodies to DCAs and
makes the application of the ECA algorithm to a data
classification problem rather straightforward; data classes of
the problem are coded as DCAs, which are successively
presented to ECA, which in turn evolves the GEP antibody
population, in order to produce a rule set for the specified
data class.

Every GEP antibody may be considered as a rule that
describes the data of a DCA. A record or example r satisfies
a rule R coded in GEP format, or more simply r is a positive
example, if P (r) > 0, where P is the expression represented
by rule R. Otherwise, the example is considered negative.
Similarly the coverage of a rule R is defined to be the set
of all positive examples.

C. Affinity function and covering algorithm

Having defined the binding between GEP antibodies and
DCAs in the previous Section, it is obvious that a rule
of good quality will be one that covers as many positive
examples and as few negative examples as possible. Instead
of using pure rule completeness and consistency measures, a
measure combining both rule completeness and consistency
gain was used, as in [24]. More precisely, the affinity function
is defined by the formula

f(R) =
{

0, consig(R) < 0
consig(R) · ecompl(R)−1, consig(R) ≥ 0

,

(5)
where consig(R) is the consistency gain of the rule R and
compl(R) is the completeness of rule R, which can be
defined as [12], [24]:

compl(R) =
p

P
, (6)

consig(R) =
(

p

p + n
− P

P + N

)
P + N

N
, (7)

In the above equations, p is the number of positive examples
covered by rule R, n is the number of negative examples cov-
ered by rule R, P is the total number of positive examples,
i.e. all examples belonging to the class under consideration,
and N is the total number of negative examples, i.e. all the
counter-examples of the class under consideration. It is easy
to prove, that this affinity function favors rules with greater
consistency rather than rules with high completeness. The use
of a consistency gain measure, instead of a pure consistency
one, was preferred, because the consistency gain actually
compares the consistency of a prediction rule to a totally
random prediction [12]. This is the reason why the affinity
function f is set to 0 every time consig(R) is negative,

Overfitting?

Termination

Yes

Yes

No

No

Initialization (R ← ∅)

Evolution of a new
rule r

R ← R∪ {r}
C ← C − Cp

C = ∅ ?

Fig. 13. The covering algorithm used for the coverage of all positive
examples of a data class. Overfitting detection is not presented in this figure.

which signifies that the rule R is worse than a random guess.
Finally, f is normalized in the interval [0, 1].

Covering algorithm: In real-life problems, a single rule
is usually not adequate to describe a class of data. For that
reason multiple rules are evolved for each class, so as to
cover as many positive examples of the class as possible,
avoiding, if possible, data overfitting. The covering algorithm
used is rather simple and is briefly described in [24]. For
each class in the problem one rule is firstly evolved, using
the affinity criterion described above. If this rule fails to
cover all positive examples of the class, then the covered
examples are removed and another rule is evolved on the
remaining examples. This process continues until all positive
examples are covered or data overfitting occurs (see next).
This algorithm is depicted in Figure 13, where R is the rule
set under construction, C is the class under consideration,
and Cp are the positive examples covered by the currently
evolved rule.

D. Avoiding overfitting

A serious problem that should be confronted in a data
mining task is data overfitting. The affinity function de-
scribed in Section IV-C tends to overfit noisy data, as it
favors consistent rules over complete ones. For that reason,
an overfitting criterion should be adopted in order to generate
accurate rules. The overfitting criterion used in the algorithm
presented here is based on the Minimum Description Length
(MDL) principle [8], [17], which states that shorter rules
should be preferred to longer ones [13]. More formally, if
H is a set of hypotheses or rules and D is the data, then the
MDL principle states:

Minimum Description Length principle: The most pre-
ferrable hypothesis from a set of hypotheses H , should be a
hypothesis hMDL, such that

hMDL = argmin
h∈H

(LC1 + LC2),

where L denotes length, C1 is the encoding for the hypothe-
ses set and C2 is the encoding for the data set.

It is important to state here, that the MDL principle
can only provide a clue for the best hypothesis or rule.

Only in case where C1 and C2 are optimal encodings
for the sets of hypotheses and data, respectively, does the
hypothesis hMDL equal the maximum a posteriori probability
hypothesis, which is the most likely hypothesis of the set
H . However, if encodings C1 and C2 reflect consistently
the possible complexities of hypotheses or data, then the
hypothesis hMDL may be a good choice.

A rule in our hybrid technique can be easily and con-
sistently encoded using the already defined GEP antibody
encoding. More precisely, the length of a rule h will be the
length of its ORF multiplied by the total number of bits
needed to encode the different symbols of the GEP alphabet,
that is

Lh = log2(Nc) · LORF, (8)

where Nc is the total number of symbols, terminal or not, in
the alphabet. Therefore, the length of the whole rule set, or
the length of the theory Lt, will be the sum of the lengths
of all rules in the rule set, so

Lt = log2(Nc)
∑

i

Leffi , (9)

where Leffi is the effective length, or the length of the ORF,
of the i-th rule in the rule set.

In order to consistently and effectively encode the data,
we used an approach similar to the one presented in [24].
Only the false classifications are encoded, as the correct
ones could be computed from the theory, which is already
encoded and transmitted. As well as this, in contrast to the
general approach [13], no encoding for the actual class of the
missclassification is needed. Indeed, since an one-against-all
approach is used for rule generation, we are only interested
in whether the rule classifies correctly an example or not.
Therefore, the length Le of the exceptions of a rule can be
computed by the formula

Le = log2

(
Nr

Nfp

)
+ log2

(
N −Nr

Nfn

)
, (10)

where Nr is the total number of examples covered by the
rule, Nfp is the number of false positives, Nfn is the number
of false negatives, and N is the total number of examples.
Equation (10) can also be applied to a whole rule set,
provided the coverage of a set of rules is defined properly.
In our approach, in order to find the coverage of a rule set,
all rules in the set are applied sequentially to an example,
until one is triggered. In such a case, the example is added
to the coverage. If no rule is triggered, then the example is
not covered by the rule set.

For the total encoding length of the rule set (theory and
exceptions) a weighted sum is used, as in [24], in order to
provide more flexibility to the MDL criterion. Specifically,
the encoding length LR of a rule is

LR = Le + w · Lt, 0 ≤ w ≤ 1, (11)

where w is the theory weight. If w = 0, then theory does
not contribute in the total rule set length, which is equivalent
to say, that the MDL criterion is not applied at all, as

Time

A
nt

ig
en

co

nc
en

tr
at

io
n

A1

t2 t3t1

Primary response Secondary response Cross-reactive
response

A1

A2 A2

A′
1

Δτ1

Δτ2 Δτ3

Termination

Yes

Yes

No

No

O
ve

rf
it

ti
ng

 a
vo

id
an

ce

R ← ∅
Lmin ←∞

Evolution of a new
rule r

R ← R∪ {r}

Computation of LR

LR > Lmin ?

R ← R− {r}

Lmin = LR
C ← C − Cp

C = ∅ ?

Fig. 14. The covering algorithm with the MDL overfitting criterion.

the covering algorithm presented in Section IV-C and in
Figure 13 guarantees that the rule set will always cover
more examples, therefore leading to less exceptions. In the
problems considered in this paper we set w = 0.1 or w = 0.3
depending on the noise in the data.

The MDL criterion is easily integrated to the covering
algorithm already presented by maintaining the least de-
scription length Lmin encountered so far, and by updating
it accordingly at each iteration, as depicted in Figure 14.

E. Generation of final rule set

The final step of the data mining technique presented here
is the combination of the independent class-specific rule sets
to form a final rule set, which will be able to classify any
new example, which will be later presented to the system.
Two problems should be coped with in this last part of the
process:

• classification conflict, where two or more rules classify
the same example into different classes, and

• data rejection, where an example is not classified at all.
In order to solve the first problem, all produced rules are

placed in a single rule set and are sorted according to their
affinity—no pruning as in [24] is performed. When a new
example is presented, all rules are tried sequentially until one
is triggered. The class of the first triggered rule will be the
class of the new example. If no rule is triggered, then the
problem of data rejection arises, which is solved by defining
a default data class.

The default class is defined after the final sorted rule set
is formed. All examples of the problem are presented to this
rule set and are classified. If an example cannot be classified,
then its actual data class is queried and a counter, which
counts the unclassified examples of this class, is augmented

Initialization

More data?

Triggers a rule?

Instance selection

Class of instance

Class with the most
unclassified instances

Tie? Class with more
instances

Default class

No

Yes

Yes

No

No

Yes

Fig. 15. Algorithm for defining the default data class.

Benchmark Description
Dataset Instances Attributes Classes

balance-scale 625 4 3
breast-cancer-wisconsin 683 9 2
glass 214 9 7
ionosphere 351 34 2
iris 150 4 3
pima-indians-diabetes 768 8 2
lung-cancer 32 56 3
waveform 5000 21 3
wine 178 14 3

TABLE I
BENCHMARK PROBLEMS USED.

by one. After all examples are presented to the rule set,
the class with the most unclassified examples is selected
to become the default data class of the problem. Ties are
resolved in favor of the class with the most instances. This
process is depicted by the flow chart in Figure 15.

V. EXPERIMENTAL RESULTS

The hybrid data mining technique presented so far, was
tested against a set of benchmark problems from the UCI
repository [14]. Some important information about each
benchmark problem is presented in Table I. The purpose of
this test was to track the differences in prediction accuracy
and in required resources, in terms of convergence rate and
population size, between the hybrid technique proposed here
and the standard GEP technique proposed in [24].

A. Data preprocessing

In order to evaluate the proposed algorithm, we used a
five-fold cross-validation technique. Each dataset was split

into five equal subsets. In each run of the algorithm, one
such subset was used as the testing set, whilst the remaining
four constituted the training set.

However, some preprocessing was necessary for some
datasets. More particularly, in the ‘breast-cancer-wisconsin’
dataset, 16 tuples with missing attributes were eliminated,
while, in the ‘wine’ dataset, some missing attributes were
replaced by some random reasonable value. Additionally, the
tuples of a number of datasets (‘glass’, ‘iris’, ‘lung-cancer’,
and ‘wine’) were originally ordered per class. In order to
better train the algorithm, these datasets were first shuffled
and then split into training and testing sets according to
the cross-validation technique used. This data shuffling was
necessary, so that both the training and the testing set always
contained instances of every class of the dataset.

B. Algorithm evaluation

In our previous work [10], we have tested ECA+GEP
against the MONK and the ‘pima-indians-diabetes’ problems
and the results were rather satisfactory. In this work, we
have tried to tune some algorithm parameters, in order to
maximize accuracy and at the same time minimize—as far
as possible—the resources used by the algorithm. Although
this was not the result of a thorough investigation of every
algorithm parameter (see Section VI), we experimentally
selected a set of parameter values that could be critical in
this tradeoff.

The set of datasets chosen is rather diverse and covers a
large spectrum of problem configurations ranging from 2-
class up to 7-class problems and from a modest number
of 4 attributes to a relatively large description set of 56
attributes in the ‘lung-cancer’ problem. The algorithm was
quite uniformly configured for every benchmark problem, as
all of them have numerical attributes. The general configu-
ration is detailed in Table II. Comparing this configuration
with the one presented in our earlier work [10], we have
increased the population size from 20 to 40 individuals, so as
to let diversity emerge more easily. As well as this, antibody
length was decreased from 100 to only 40 symbols in total.
Although this may signify some loss of expressiveness, it
turned out not to be so decisive. On the other hand, the gain
in rule clarity, as rules are much shorter now, and the impact
of the decrease of antibody length to the execution time of the
algorithm, are much more considerable. As a function set for
the GEP-antibodies we used a set F of algebraic functions,
such that F = {+,−,×,÷, Q, I}, where Q is the square
root function, and I is the IF function, which is defined as

I(x, y, z) =
{

y, x > 0
z, x ≤ 0

. (12)

The set of terminal symbols consisted of as many symbols
as each problem’s attributes plus a set of 4–5 constants,
whose values were chosen according to prior knowledge
of each benchmark problem’s attribute values. Finally, the
algorithm was allowed to run for only 50 generations, as the
increased population yields better diversity.

Algorithm Configuration
Parameter Value

Maximum generations 50

Maximum rules/class 3

Gene head length (h) 13

Antibody length (L) 40

Genes/antibody 1

Population size (|P|) 50

Memory size (|M|) 1

Selected antibodies (nb) 5

Replaced antibodies (nr) 0

Refreshed antibodies (nd) 0

Edited antibodies (ne) 5

Antibody pool size (np) 2

Maximum mutation rate (αmax) 1.0

Mutation rate decay (ρ) 5.0

Clone factor (β) 15.0

Theory weight (w) 0.1

TABLE II
GENERAL ALGORITHM CONFIGURATION.

The results of this configuration have well overwhelmed
our expectations, as the proposed algorithm has outperformed
the standard GEP in almost every benchmark. The results in
terms of rule accuracy are summarized in Table III, where
a 95% confidence interval is also presented. ECA+GEP
achieves better accuracy in every benchmark, except the
‘balance-scale’ and ‘pima-indians-diabetes’ datasets, where
it is 8% and 1.4% less accurate, respectively. However, the
differences in favor of ECA+GEP grow up to about 40%
in the ‘lung-cancer’ dataset and remain above 15% in the
‘breast-cancer-wisconsin’ and ‘waveform’ datasets. Finally,
another important issue is that ECA+GEP is at least as stable
as pure GEP, as it achieves comparable confidence intervals.

However, this increased prediction accuracy does not come
at the expense of computational efficiency, as ECA+GEP
uses a population of 40 (172 at peak) individuals, which is
evolved for only 50 generations. Instead, GEP uses a constant
population of 1000 individuals, which is evolved for 1000
generations.

An example ruleset generated by ECA+GEP is presented
in Common Lisp notation in the following listing. This rule
set is obtained from the ‘iris’ benchmark and achieves 100%
accuracy3.

(cond
((> (* (If (* (/ 5 sw) 3)

(- (+ pl pl) (- 5 1))
(+ pw pl))

(- (/ sl 2) (+ sl pl))) 0)
’Iris-setosa)

((> (If pw (/ 5 (- (* pw 3) 5)) sl) 0)
’Iris-virginica)

((> (sqrt (- (/ (sqrt (sqrt 2)) (- 2 pw))
(sqrt (sqrt (- (+ sw 2)

pl))))) 0)

3This accuracy value is achieved on a specific test set obtained after the
preprocessing step described and may slightly vary for different subsets of
‘iris’.

Rule Accuracy
Benchmark GEP ECA+GEP

balance-scale 100.0± 0.0% 92.0± 3.5%

breast-cancer-wisconsin 76.6± 1.8% 98.2± 0.9%

glass 63.9± 8.8% 67.5± 12.6%

ionosphere 90.2± 2.4% 98.3± 2.5%

iris 95.3± 4.6% 98.3± 1.3%

lung-cancer 54.4± 15.6% 93.0± 4.7%

pima-indians 69.7± 3.8% 68.3± 2.9%

waveform 76.6± 1.4% 93.6± 4.5%

wine 92.0± 6.0% 97.3± 3.4%

TABLE III
RULE ACCURACY COMPARISON OF GEP AND ECA+GEP.

Execution Times
Benchmark Time (mm:ss.ss)

balance-scale 04:43.73
breast-cancer-wisconsin 05:36.27
glass 03:22.18
ionosphere 02:30.00
iris 00:56.00
lung-cancer 00:07.88
pima-indians 04:51.61
waveform 44:59.42
wine 01:23.43

TABLE IV
EXECUTION TIMES OF ECA+GEP.

’Iris-versicolor)
((> (+ (- (If 3 (/ (- 2 3) pl) 2)

(+ (* pw sw) (/ sw 2))) pl) 0)
’Iris-virginica)

((> (- pl (+ 5 (/ 2 3))) 0)
’Iris-virginica)

(t ’Iris-versicolor))

In that listing If is a special function defined as in
Equation (12) and sl, sw, pl, and pw, are the attributes
‘sepal length’, ‘sepal width’, ‘petal length’, and ‘petal width’,
respectively.

C. Resource utilization

In order to obtain a rough estimate of the resources utilized
by the proposed algorithm, we have recorded execution
times of the algorithm on every benchmark, as well as the
maximum resident working set size. The algorithm and the
entire framework supporting it was written in the Java pro-
gramming language (JDK 1.5) and was compiled with Sun’s
javac compiler, version 1.5.0 05. The algorithm was run
on a Pentium 4 machine (2.16Ghz, 1.0GB RAM) running
Windows XP Professional SP2. The reported execution time
is the total elapsed wall-clock time including initialization
times (read input, algorithm setup, etc.), testing times, output
dumping, and any overhead incurred by the shell script used
to batch-run the algorithm on every benchmark. It is worth
noticing that none of the benchmarks needed more than
an hour to run, although no special concern for software
optimization issues was taken. Execution times range from

just about 8sec for small datasets, such as the ‘lung-cancer’
dataset (32 tuples), and rise up to about 45min for larger
ones, such as the ‘waveform’ dataset (5000 tuples). Despite
the fact that we had no direct implementation of GEP in
order to comparatively evaluate execution times, we think
that ECA+GEP is quite fast for an evolutionary technique.
Table IV summarizes execution times for each benchmark
problem. As far as memory utilization is concerned, we
have not encountered important variation between different
benchmarks, as the maximum resident set size depends
mainly on the configuration of the algorithm, which was
essentially the same for every benchmark examined. More
precisely, the process of ECA+GEP consumed a maximum
of 131MB of memory during its lifetime.

VI. CONCLUSIONS AND FUTURE WORK

The immune system is an extremely complex system,
which must provide a set of very effective and reliable
services and techniques, in order to protect the body from any
kind of infection. Modelling such techniques and applying
them to machine learning problems is a very challenging
task. In this paper, we have modelled the clonal selection
mechanism by implementing an extension of the CLONALG
algorithm, in order to perform data classification tasks. By
coupling this clonal selection model with Gene Expression
Programming, we have achieved a considerable reduction
in the resources required by the data mining algorithm.
Specifically, by applying a set of changes to the conventional
CLONALG algorithm, such as addition of a receptor editing
step and a more formally defined memory management, we
have achieved a considerable amelioration in the convergence
rate of the algorithm. Additionally, the proposed algorithm,
using a more fine-grained proliferation control, succeeds in
maintaining and manipulating a very small initial population,
which, even at peak, may become five times less than the
population maintained by the conventional GEP technique.
By carefully selecting algorithm parameters, a considerable
improvement of prediction accuracy compared to conven-
tional GEP may be achieved, while at the same time sparing
computational resources.

However, it is obvious that a proper algorithm config-
uration is essential in obtaining good results. ECA+GEP
involves a bunch of parameters that should be tuned, hence
a deeper investigation of the algorithm’s behaviour against
each parameter is a future research prospect. A second
step would be to examine different overfitting criteria and
how antibodies with multiple genes and their corresponding
linking function affect prediction accuracy and convergence
rate.

REFERENCES

[1] F. M. Burnet. The Clonal selection theory of acquired immunity.
Vanderbilt Univ. Press, Nashville TN, 1959.

[2] D. Dasgupta. Artificial neural networks and artificial immune systems:
Similarities and differences, 1997.

[3] D. Dasgupta. Artifical Immune Systems and their Applications.
Springer Verlag, Berlin, 1998.

[4] L. N de Castro and F. J. Von Zuben. Learning and optimization using
the clonal selection principle. IEEE Transactions on Evolutionary
Computation, 6:239–251, June 2002.

[5] C. Ferreira. Gene Expression Programming: A new adaptive algorithm
for solving problems. Complex Systems, 13(2):87–129, 2001.

[6] C. Ferreira. GEP tutorial. WSC6 tutorial, September 2001.
[7] T. Fukuda, K. Mori, and M Tsukiyama. Immune networks using

genetic algorithm for adaptive production scheduling. In 15th IFAC
World Congress, 1993.

[8] P. Grunwald, I. J. Myung, and M. Pitt. Advances in Minimum
Description Length: Theory and Application. MIT Press, 2005.

[9] J. E. Hunt and D. E. Cooke. Learning using an artificial immune
system. Journal of Network and Computer Applications, 19:189–212,
1996.

[10] V. K. Karakasis and A. Stafylopatis. Data mining based on gene
expression programming and clonal selection. In Gary G. Yen, Si-
mon M. Lucas, Gary Fogel, Graham Kendall, Ralf Salomon, Byoung-
Tak Zhang, Carlos A. Coello Coello, and Thomas Philip Runarsson,
editors, Proceedings of the 2006 IEEE Congress on Evolutionary
Computation, pages 514–521, Vancouver, BC, Canada, 16-21 July
2006. IEEE Press.

[11] R. P. Lippman. An introduction to computing with neural nets.
Computer Architecture News ACM, 16(1):7–25, March 1988.

[12] R. Z. Michalski and K. A. Kaufman. A measure of description quality
for data mining and its implementation in the AQ18 Learning System.
In International ICSC Symposium on Advances in Intelligent Data
Analysis (AIDA), June 1999.

[13] T. M. Mitchell. Machine learning. McGraw Hill, New York, US,
1996.

[14] D. J. Newman, S. Hettich, C. L. Blake, and C. Z. Merz. UCI repository
of machine learning databases, 1998.

[15] G. Nicosia, V. Cutello, and M. Pavone. A hybrid immune algorithm
with information gain for the graph coloring problem. In Genetic and
Evolutionary Computation Conference (GECCO-2003) LNCS 2723,
pages 171–182, Chicago, Illinois, USA, 2003.

[16] M. C. Nussenzweig. Immune receptor editing: revise and select. Cell,
95(7):875–878, December 1998.

[17] J. Rissanen. MDL Denoising. IEEE Transactions on Information
Theory, 46(7):2537–2543, 2000.

[18] S. B. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng,
K. De Jong, S. Džeroski, S. E. Fahlman, D. Fisher, R. Hamann,
K. Kaufman, S. Keller, I. Kononenko, J. Kreuziger, R. S. Michalski,
T. Mitchell, P. Pachowicz, Y. Reich H. Vafaie, W. Van de Welde,
W. Wenzel, J. Wnek, and J. Zhang. The MONK’s Problems: A
performance comparison of different learning algorithms. Technical
Report CMU-CS-91-97, Carnegie Mellon University, December 1991.

[19] F. J. Von Zuben and L. N. De Castro. Artificial Immune Systems: Part
I - Basic theory and Applications. Technical Report TR-DCA 01/99,
FEEC University Campinas, Campinas, Brazil, December 1999.

[20] F. J. Von Zuben and L. N. De Castro. Artificial Immune Systems:
Part II - A Survey of applications. Technical Report TR-DCA 02/00,
FEEC University Campinas, Campinas, Brazil, February 2000.

[21] A. Watkins and J. Timmis. Artificial Immune Recognition System
(airs): An Immune-Inspired Supervised Learning Algorithm. Genetic
Programming and Evolvable Machines, 5:291–317, 2004.

[22] R. G. Weinard. Somatic mutation, affinity maturation and antibody
repertoire: A computer model. Journal of Theoretical Biology,
143:343–382, 1990.

[23] J. A. White and S. M. Garrett. Improved pattern recognition with
artificial clonal selection. In 2nd International Conference on Artificial
Immune Systems (ICARIS-03), pages 181–193, 2003.

[24] C. Zhou, W. Xiao, T. M. Tirpak, and P. C. Nelson. Evolving accurate
and compact classification rules with Gene Expression Programming.
IEEE Transactions on Evolutionary Computation, 7(6):519–531, De-
cember 2003.

