J Supercomput
DOI 10.1007/s11227-007-0149-x

Exploring the performance limits of simultaneous
multithreading for memory intensive applications

Evangelia Athanasaki - Nikos Anastopoulos -
Kornilios Kourtis - Nectarios Koziris

© Springer Science+Business Media, LLC 2007

Abstract Simultaneous multithreading (SMT) has been proposed to improve system
throughput by overlapping instructions from multiple threads on a single wide-issue
processor. Recent studies have demonstrated that diversity of simultaneously exe-
cuted applications can bring up significant performance gains due to SMT. However,
the speedup of a single application that is parallelized into multiple threads, is often
sensitive to its inherent instruction level parallelism (ILP), as well as the efficiency of
synchronization and communication mechanisms between its separate, but possibly
dependent threads. Moreover, as these separate threads tend to put pressure on the
same architectural resources, no significant speedup can be observed.

In this paper, we evaluate and contrast thread-level parallelism (TLP) and specu-
lative precomputation (SPR) techniques for a series of memory intensive codes ex-
ecuted on a specific SMT processor implementation. We explore the performance
limits by evaluating the tradeoffs between ILP and TLP for various kinds of instruc-
tion streams. By obtaining knowledge on how such streams interact when executed
simultaneously on the processor, and quantifying their presence within each appli-
cation’s threads, we try to interpret the observed performance for each application
when parallelized according to the aforementioned techniques. In order to amplify
this evaluation process, we also present results gathered from the performance moni-
toring hardware of the processor.

E. Athanasaki (<) - N. Anastopoulos - K. Kourtis - N. Koziris

School of Electrical and Computer Engineering, Computing Systems Laboratory, National Technical
University of Athens, Zografou Campus, Zografou 15773, Greece

e-mail: valia@cslab.ece.ntua.gr

N. Anastopoulos
e-mail: anastop@cslab.ece.ntua.gr

K. Kourtis
e-mail: kkourt@cslab.ece.ntua.gr

N. Koziris
e-mail: nkoziris@cslab.ece.ntua.gr

@ Springer

E. Athanasaki et al.

Keywords Simultaneous multithreading - Thread-level parallelism -
Instruction-level parallelism - Software prefetching - Speculative precomputation -
Performance analysis

1 Introduction

Simultaneous Multithreading (SMT) [30] allows a superscalar processor to issue in-
structions from multiple independent threads to its functional units, in a single cycle.
It targets at maximum utilization of processor resources by simultaneously process-
ing independent operations. The key motivation behind this technique is that many
applications are characterized by insufficient inherent ILP that leaves the multiple
units of a superscalar processor underutilized during each cycle, or by long latency
operations, such as cache misses or branch mispredictions that stall the entire pipeline
for multiple cycles.

Applications exhibiting either kind of behavior during their execution can bene-
fit from SMT, when they are parallelized into multiple threads. In the former case,
maximum utilization can be achieved when instructions from additional application
threads (which may also exhibit low parallelism) fill up empty issue slots on the
processor. In this way, thread level parallelism is effectively converted into instruc-
tion level parallelism. In the latter case, whenever a thread stalls on a long latency
event, instructions from other threads can immediately issue, and therefore, utilize
the otherwise idle pipeline.

Along with multithreading, prefetching is one of the most popular techniques for
tolerating the ever-increasing memory wall problem. In contrast to multithreading,
where memory stalls of a thread are overlapped by executing useful instructions from
other threads, prefetching usually targets memory latency tolerance within a single
thread of execution. Prefetch instructions move data to some level of the cache hier-
archy ahead of time, anticipating that they will arrive early enough before they are
actually needed. As long as prefetched data are not evicted prior to its use, memory
access latency can be completely hidden.

Regarding SMT, two main alternatives have been investigated in literature to uti-
lize the multiple hardware contexts of the processor in order to accelerate a sequential
application: thread-level parallelism (TLP) and speculative precomputation (SPR).
With TLP, sequential codes are parallelized so that the total amount of work is dis-
tributed evenly among threads for execution, as in traditional shared memory multi-
processors. TLP is a commonplace option for most regular codes. In SPR, the execu-
tion of an application is facilitated by additional helper threads, which speculatively
prefetch data that are going to be used by the main computation thread in the near
future, thus hiding memory latency and reducing cache misses [5]. It targets perfor-
mance improvement of applications that are not easily parallelizable or exhibit hardly
predictable access patterns that render prefetching ineffective.

In either scenario, executing multiple application threads on SMT architectures is
a subtle issue. Most processor resources (e.g., caches, instruction queues, functional
units, fetch/decode units, etc.) are either shared or partitioned between logical proces-
sors, and only a few of them are replicated. Therefore, significant resource conflicts

@ Springer

Exploring the performance limits of simultaneous multithreading

can arise, e.g., due to cross-thread cache line evictions or when threads tend to com-
pete for the same units at the same time. Furthermore, the benefit of multithreading on
SMT architectures is sensitive to the specific application and its level of tuning [19].
For example, a highly optimized (e.g., unrolled and blocked) version of matrix mul-
tiplication is usually tuned to fully exploit registers, cache and multiple functional
units of the processor. As a result, adding extra threads on the same physical package
may harm this good usage, and therefore, performance. On the other hand, a nonopti-
mized matrix multiply has poor locality and exploitation of resources, and hence may
benefit from SMT.

Regarding single application performance, most previous work demonstrated re-
sults on simulated SMT machines [5, 14, 19, 31]. Experiments on real SMT-based
machines did not report significant speedups when sequential stand alone applica-
tions were threaded according to either TLP or SPR [7, 11, 28, 31, 32]. In this work,
we explore the potential for performance improvement of memory intensive applica-
tions when they execute on hyper-threaded processors using the aforementioned mul-
tithreading techniques. Hyper-threading technology [18] is Intel’s implementation of
SMT. Reference applications for our study are array-based numerical programs, both
with regular and irregular or random memory access patterns, as well as array-based
and pointer-intensive codes found in graph and database applications, mostly charac-
terized by irregular accesses. Although a particular technique may seem more appro-
priate than any other for a specific class of applications, as discussed above (e.g., TLP
for regular codes, SPR for more irregular ones), our work aims at a comprehensive
evaluation of all options for all codes we consider.

We tested the following configurations: First, we balanced the computational
workload of a given benchmark on two threads, statically partitioning the iteration
space. Then, we ran a main computation thread along with a helper prefetching
thread. The latter was spawned to speculatively precompute addresses that trigger L2
cache misses and fetch the corresponding data. Synchronization of the two threads is
a key factor for the effectiveness of SPR, since it must guarantee accuracy and time-
liness of data prefetches by properly regulating the run ahead distance of the helper
thread, and at the same time introduce minimal overhead.

We evaluated performance in two ways: First, we gathered results from specific
performance metrics counted by the processor’s monitoring registers. Second, we
analyzed the dynamic instruction mix of each application’s threads, and recognized
the most dominant instructions. Having investigated the way that synthetic streams
composed of these instructions interact on SMT processors, for different levels of
TLP and ILP, we were able to give further explanations on the observed performance.

The main contributions of this paper are threefold: First, we investigate the exper-
imental CPI and interaction for a number of synthetic instruction streams, common
in the codes we consider when executed on an actual SMT processor. Second, we
exhaustively attempt to achieve the best possible speedup on this processor, by ap-
plying the two alternatives for multithreaded execution, i.e., TLP and SPR. In contrast
to simulations so far presented, with real measurements on actual hardware, we find
that significant performance improvements are hard to be achieved for most of the
applications. Finally, a careful analysis of both real and simulation measurements,
reveals weaknesses of the specific SMT implementation under test and identifies re-
source conflicts that constitute performance bottlenecks.

@ Springer

E. Athanasaki et al.

The rest of the paper is organized as follows. Section 2 describes related prior
work. Section 3 deals with implementation aspects of software techniques to ex-
ploit hardware multithreading. Section 4 explores the performance limits and TLP-
ILP tradeoffs, by considering a representative set of instruction streams. Section 5
presents details on the processor and the experimental setup. Section 6 demonstrates
experimental results obtained for each application, and discusses their evaluation.
Finally, we conclude with Sect. 7.

2 Related work

Simultaneous multithreading [30] is said to outperform previous execution models
because it combines the multiple-instruction-issue features of modern superscalar ar-
chitectures with the latency-hiding ability of multithreaded ones: All hardware con-
texts are simultaneously active, competing in each cycle for the available shared re-
sources. This dynamic sharing of the functional units allows SMT to substantially
increase throughput, attacking the two major impediments to processor utilization—
long latencies and limited per-thread ILP. However, the flexibility of SMT comes at
a cost. When multiple threads are active, the static partitioning of resources (e.g., in-
struction queue, reorder buffer, store queue) affects codes with relative high instruc-
tion throughput. Static partitioning, in the case of identical thread-level instruction
streams, limits performance, but mitigates significant slowdowns when nonsimilar
streams of microinstructions are executed [28].

A number of works have considered software-controlled prefetching techniques
for improving single-thread application performance. These works focus on codes
with regular access patterns [20, 21], as well as pointer-based codes with recursive
data structures that exhibit irregular access patterns [16, 17]. Cache prefetching re-
duces the observed latency of memory accesses by bringing data into the cache be-
fore they are accessed by the CPU. However, as processor throughput improves due
to various other memory latency tolerance techniques, prefetching suffers from cer-
tain disadvantages. First, use of memory bandwidth is increased since prefetching
increases memory traffic. Memory requirements are also increased as much more
cache accesses are generated and thus, more data are being brought in the caches for
future use. Finally, the overhead due to the extra prefetch instructions inserted can be
notable, outweighing any performance gains of prefetching.

Numerous thread-based prefetching schemes have been proposed in literature. The
key idea is to utilize one or more spare execution contexts of a multithreaded or multi-
core processor to speculatively precompute future memory accesses and prefetch data
for the nonspeculative (main) context, under the assumption that all contexts share
some level of cache. By having separate threads to execute the entire path down to
the computation of specific addresses, we are able to handle more efficiently access
patterns that are otherwise difficult to prefetch, either by hardware or by software
(i.e., by simply inserting prefetch instructions in the main context). Studies of partic-
ular importance dealing with thread-based prefetching are Collins et al. Speculative
Precomputation [5], Roth’s and Sohi’s Speculative Data Driven Multithreading [24],

@ Springer

Exploring the performance limits of simultaneous multithreading

Sundaramoorthy et al. Slipstream Processors [26], Luk’s Software Controlled Pre-
Execution [14] and Kim et al. Helper-Threads [11]. Precomputation schemes consid-
ered in these studies target mainly loads with unpredictable, irregular, data-dependent
or pointer-chasing patterns. Usually, a small number of static loads, known as delin-
quent loads, are responsible for the majority of memory stalls in the nonspeculative
thread of each application.

As for thread-level parallel codes, most studies with simulated SMTs have demon-
strated limited performance gains mainly because of homogeneity of threads, as op-
posed to multiprogrammed workloads where resource requirements are less conflict-
ing [12, 13, 30]. This trend is persistent in evaluations with real HT-based machines as
well [4, 7, 28, 32]. Most of these works consider OpenMP as the main programming
paradigm for thread-level parallelization. In our work, we use explicit threading, as
an attempt to minimize thread management overheads of runtime mechanisms and
isolate each application’s inherent ability to scale on SMTs.

3 Implementation

From a resource utilization perspective, threads performing software prefetching in
SPR usually require less resources than the sibling computation threads, since they
do not perform any meaningful computations that could affect program state or data.
Furthermore, SPR can improve the performance of program codes that are not eas-
ily parallelizable. However, it targets only at reducing memory latencies and cannot
always take advantage of the multiple units and superscalar execution capabilities of
the SMT processor, especially in codes which exhibit low ILP. TLP, on the other hand,
gives the opportunity to programs for a better utilization of the processor’s resources.
Since most of these resources, however, are shared between the threads, contention is-
sues often arise, introducing performance penalties. There are cases, however, where
application threads can benefit from shared resources, and especially shared caches.
This happens, for example, when threads work on adjacent data, so that cache lines
fetched by one thread can be used by others, as well.

From an implementation point of view, sequential codes usually can be trans-
formed into thread-level parallel ones in a rather straightforward manner, provided
that they have sufficient inherent parallelism. Parallelization is usually performed
by statically partitioning the iteration space at innermost (fine-grained) or outermost
(coarse-grained) loop levels, as happens in traditional SMP environments. Due to its
relative simplicity, there are no generic TLP implementation issues we could discuss
in this section. We will rather go through a brief discussion about such issues on a
per-application basis. On the other hand, SPR mechanisms cannot always be incor-
porated that clearly. Since precomputation via multithreading must be as effective as
any other software prefetching approach, applications must be subjected under fine
tuning in order to deal with many synchronization and resource utilization issues that
emerge. The coexistence and coordination of precomputation threads must introduce
minimal interference and at the same time contribute beneficially to the progress of
main computation threads. In the sections that follow, we examine many key aspects
in the process of implementing SPR.

@ Springer

E. Athanasaki et al.

3.1 Synchronization issues

Many of our multithreaded workloads make extended use of synchronization mech-
anisms to guarantee atomicity on shared data accesses and to control and coordi-
nate thread execution. These mechanisms have to be as lightweight as possible, so
that their frequent invocation does not introduce significant overhead. For this pur-
pose, we have implemented spin-wait loops as a building block of our synchroniza-
tion primitives. Spin-wait loops are written using assembly instructions and oper-
ate entirely at user space on shared synchronization variables. When such loops are
executed on processors supporting HT technology, they can induce additional per-
formance penalty due to memory order violations and consequent pipeline flushes
caused upon their exit. Furthermore, they consume significant resources since they
spin much faster than the time needed by the memory bus to perform a single update
of the synchronization variable. These resources could be otherwise used to make
progress on the other logical processor. In order to overcome these issues, we have
embedded the pause instruction in the spin loop, as recommended by Intel [10].
This instruction introduces a slight delay in the loop and de-pipelines its execution,
preventing it from aggressively consuming valuable processor resources. These are
resources that are shared dynamically between the two threads on a hyper-threaded
processor; as Table 1 presents, the execution units, branch predictors and caches are
some examples.

Not all resources, however, are released by a thread when it executes a pause
instruction. Some processor units, such as the micro-ops queues, load/store queues
and re-order buffers were designed to be statically partitioned, such that each logical
processor can use at most half of their entries. When a thread executes a pause, it
continues to occupy the entries reserved for it in these units. The thread, however,
does not contribute to any useful work, so its entries could be entirely allocated to the
sibling thread to help it execute faster. By using the privileged halt instruction, a
logical processor can relinquish all of its statically partitioned resources, make them
fully available to the other logical processor and stop its execution, going into a sleep-
ing state. Later, as soon as it receives an inter-processor interrupt (IPI) from the active
processor, it resumes its execution and the resources are partitioned again.

The halt instruction is primarily intended for use by the operating system sched-
uler, as described in Sect. 5.2. Multithreaded applications with threads intended to
remain idle for a long period could take advantage of this instruction to boost their
execution. This was the case for some of the multithreaded codes we developed
throughout our study. The Linux OS we used does not provide services to be used

Table 1 Hardware management in Intel hyper-threaded processors

Shared Execution units, trace cache, L1 D-cache, L2 cache, DTLB, global history array, mi-
crocode ROM, uop retirement logic, IA-32 instruction decode, instruction scheduler, in-
struction fetch logic

Replicated Processor architecture state, instruction pointers, rename Logic, ITLB, streaming buffers,
return stack buffer, branch history buffer

Partitioned uop queue, memory instruction queue, reorder buffer, general instruction queue

@ Springer

Exploring the performance limits of simultaneous multithreading

explicitly by applications for similar purposes. For this reason, we implemented ker-
nel extensions that allow the execution of halt from user space on a particular logi-
cal processor, and the wake-up of this processor by sending IPIs to it. By integrating
these extensions in the spin-wait loops, we are able to construct long duration wait
loops that do not consume significant processor resources. Excessive use of these
primitives, however, in conjunction with the resultant multiple transitions into and
out of the halt state of the processor, incur extra overhead in terms of processor cy-
cles. This is a performance tradeoff that we took into consideration throughout our
experiments.

3.2 Implementing speculative precomputation

Most previous work on SPR has relied on schemes that continuously spawn new spec-
ulative threads during execution, either at the context of the main thread or at the con-
text of other speculative threads, at designated points in the program. These schemes
assume ideal hardware support, such as multiple contexts to host multiple specula-
tive threads, efficient hardware mechanisms that permit a thread to spawn another
instantly and with minimal overhead (e.g., flash-copy of live-in variables), or special
hardware for lightweight synchronization and low overhead suspension/resumption
of threads.

None of these facilities, however, are supported in current hyper-threaded proces-
sors. We have to employ therefore software techniques for efficient management of
speculative threads. In our work, we create at the beginning of the program a single
speculative thread that persistently occupies a specific hardware context throughout
execution. The main computation thread executes on the peer context in the same
physical package. Whenever the speculative thread does not perform prefetching, it
is periodically throttled, so that it is prevented from running too far ahead of the main
computation thread and contending with it for execution resources. In brief, imple-
menting SPR consists of the following steps: identifying delinquent loads, generating
code for prefetcher threads, inserting synchronization points between prefetcher and
computation threads, and optimizing the final code for better performance.

There are two main issues that need to be addressed in order SPR to be effec-
tive. First, prefetcher threads must be timely and accurate, i.e., they must bring the
right data at the right time, by keeping always a regulated distance with the compu-
tation threads. Second, since most of the processor resources are shared, they must
execute with minimal possible interference to the computation threads. In the next
sections, we discuss the steps in the SPR implementation process, along with these
two requirements and the tradeoffs they raise.

3.2.1 Constructing prefetcher threads

In order to identify top cache-missing memory references, we conducted memory
profiling to the original programs using the cachegrind tool from Valgrind simula-
tor [22]. From the profile feedback, we were able to determine and isolate the loads
that caused the majority of L2 misses. In most programs, only a few loads were re-
sponsible for 92% to 96% of the total misses.

@ Springer

E. Athanasaki et al.

The prefetcher threads were constructed by replicating the original program code
and preserving only the backward slices of the target delinquent loads, i.e., the chains
of instructions that affect the address computation of these loads. All other instruc-
tions were eliminated. To prefetch a load, we use the native Intel prefetch instructions
rather than preloading (i.e., “dummy” loads into temporal variables). This is because
native prefetch instructions are expected to introduce less interference to the execu-
tion pipeline. In fact, it was verified that native prefetch instructions provided better
performance over preloading, in the vast majority of delinquent loads.

3.2.2 Synchronizing worker and prefetcher threads

The most important part in SPR implementation is synchronization between pre-
fetcher and computation thread. It affects both the miss coverage ability of the
prefetcher thread and the extra overhead it poses to the computation thread. In our
programs, almost all delinquent loads reside within loops. Loop nests, in general, pro-
vide a convenient structure to apply a producer-consumer execution model between
the prefetcher and main computation threads: prefetcher thread runs ahead, brings a
certain amount of data in cache, and waits until worker thread starts consuming it.

In order to regulate the runahead distance of the prefetcher thread, we start from
posing an upper bound on the amount of data it prefetches each time. This distance
has to be sufficiently large, so that the data is prefetched into cache before the com-
putation thread makes use of it, and at the same time it must be kept small enough, so
that prefetched lines do not evict data from cache that have not yet been consumed by
the computation thread. In our programs, we enforced this upper bound for prefetched
data to be about half or less the L2 cache size.

To identify code regions that cover this amount of data, we start from the innermost
loop containing a delinquent load and keep traversing to the next outer loop, until the
memory references that have been executed so far have memory footprint equal to
the imposed bound. The entry and exit points of such precomputation spans, imply
in fact synchronization points between the worker and prefetcher thread. The shorter
these spans are, the more frequent the synchronization becomes between worker and
prefetcher and vice versa. Frequent synchronization enables fine-grained control over
prefetched data, but entails increased overhead as well. This is the primary reason
why we choose to prefetch for the L2 cache rather than the much smaller L1 cache.

We enforce synchronization by enclosing precomputation spans with synchroniza-
tion barriers. The barrier for the precomputation thread is placed at the exit point of a
span, while for the computation thread at the entry point. In this way, the prefetcher
thread always runs ahead of the main computation thread. Whenever it has prefetched
the expected amount of data but the computation thread has not yet started using
it, the prefetcher thread enters its barrier and stops its further progress. It can only
continue prefetching the next chunk of data, when it is signaled that the computa-
tion thread has started consuming the data, i.e., it has reached its barrier as well. In
the general case, and considering their lightweight workload, precomputation threads
reach almost always first a barrier, after having prefetched the data within a span. As
a result, computation threads need almost never to wait when they reach this barrier.
In practice, it was measured that on average only 1.45% of the total execution time of
computation threads was spent synchronizing on their barriers. An example of how
synchronization is implemented according the above scenario is shown in Fig. 1.

@ Springer

Exploring the performance limits of simultaneous multithreading

Listing 1. Worker thread

1 for (k=0; k<n; k++) {

2 for (ib=0; ib<n; ib+=bs) {

3

4 barrier wait (&barrier) ;

5 for (jb=0; jb<n; jb+=bs) {

6 for(i=ib; i1<MIN(ib+bs,n); i++) {

7 for (j=jb; J<MIN(jb+bs,n); j++) {
8 tclil[j] = MIN(gli]l[kl+glk]l[j], ogli1[3]1);
9 }

10 }

11 }

12

13 }

14 dtemp = tc;

15 tc = g;

16 g = dtemp;

17 }

Listing 2. Prefetcher thread

1 g_local=g;

2 tc_local=tc;

3

4 for (k=0; k<n; k++) {

5 for (ib=0; ib<n; ib+=bs) {

6

7 for (jb=0; jb<n; jb+=bs) {

8 for(i=ib; i<MIN(ib+bs,n); i++) {

9 for (j=jb; J<MIN(jb+bs,n); j++) {
10 prefetch(&g_locall[i] [j+64]);
11 }

12 }

13 }

14 barrier wait (&barrier) ;
15

16 }

17 dtemp = tc_local;

18 tc_local = g_local;

19 g_local = dtemp;

20 }

Fig. 1 Enforcing synchronization between worker and prefetcher thread in TC benchmark. The three
innermost loops correspond to a precomputation span. All variables except for those in italics are thread
local

@ Springer

E. Athanasaki et al.

3.2.3 Further optimizations

A key factor for the efficiency of SPR, is the efficiency of barriers themselves. The
prefetcher thread, which runs ahead and enters first its barrier, must wait on it without
disturbing significantly the peer computation thread by consuming shared resources
that may be critical for it to make progress efficiently. When the computation thread
enters its barrier, the prefetcher thread must resume as fast as possible, again with
minimal possible overhead. Consequently, two important requirements regarding bar-
riers are low resource consumption and high responsiveness. In cases where pre-
computation spans demand frequent synchronization, responsiveness might be more
important for SPR to operate efficiently. On the other hand, resource consumption
might be an issue for spans that involve few work and long periods of sleep by the
prefetcher thread. In our study, we have considered three different barrier implemen-
tations in order to evaluate the extent to which each of them meets the aforementioned
requirements.

The first implementation is barriers with sense-reversing [23] using spin-wait
loops with the pause instruction, as described in Sect. 3.1. The thread that waits
on the barrier spins repeatedly on a user-level variable until the last thread enters the
barrier and changes its value. An advantage of this approach is fast notification and
resumption of the waiter thread, due to fast propagation of value changes.

However, as we mentioned in Sect. 3.1, significant execution bandwidth of the
processor can be consumed even when the waiter thread simply busy waits on a vari-
able. In order to attack potential performance degradation, we constructed a version
of synchronization barriers with spin-loops that make use of the kernel extensions
we developed for halting and waking up the logical processors. When a waiter thread
(i.e., anyone but the last) reaches the barrier, it enters the spin-wait loop, wherein it
executes a halt instruction to put its logical processor into halted state. In this way,
it goes itself into sleeping mode, offering all of its resources for exclusive use by the
sibling thread. The waiter may be woken up periodically by IPIs sent by the OS (e.g.,
timer interrupts), but will exit the loop and the halted state only when it is notified by
the last thread to do so. To encode this notification, the last thread first updates the
spin-wait variable and then sends an IPI to the logical processor of the waiter.

Our third approach was the native implementation of barriers in the threading li-
brary. The version of Pthreads library we used, makes use of futexes, a mechanism
provided by the Linux kernel as a building block for fast userspace locking. Further
details on the internals of the mechanism are out of the scope of this paper, however,
a good discussion about its concepts and its implications for implementing synchro-
nization primitives is done in [8]. In this implementation of barriers, a waiter thread
that enters the barrier makes a futex system call with a FUTEX_WAIT argument,
which causes the thread to be suspended in the kernel. The thread is actually de-
scheduled, and assuming that there are not other runnable processes, all its resources
are released and made available to the other thread (i.e., the processor switches from
multi-threading to single-threading mode). When the last thread enters the barrier, it
calls futex with a FUTEX_WAKE argument, to wake up and reschedule all waiters
on the barrier.

In order to gauge the efficiency of each implementation in terms of both resource
consumption and responsiveness, we conducted a simple experiment. On the two con-

@ Springer

Exploring the performance limits of simultaneous multithreading

Table 2 Performance of various barrier implementations for the purposes of SPR. The second column
presents the time required for a worker thread to complete a certain amount of work, while a second thread
is waiting on the barrier. The third column shows the time required for the waiter to resume execution after
being woken up by the worker when it enters its barrier

Barrier implementation Average work time in sec- Average wakeup delay in

onds (std. deviation %) cycles (std. deviation %)
spin-loops 4.274 (£6.86%) 1395 (+22.03%)
spin-loops w/ halt 3.549 (£6.47%) 3766427 (£88.85%)
Sfutex 3.535 (£8.14%) 39374 (£6.28%)

texts of a Xeon hyper-threaded processor, we executed in parallel two threads, one
heavyweight (“worker”) and one lightweight (“waiter”). Both perform simple com-
putations on matrices, but the second thread has a workload almost 100 times lighter
than the first. At the end of their computations, the threads are synchronized with
a barrier. The lightweight thread finishes very quickly its job and enters the barrier,
waiting the peer thread for a large portion of its execution time. At first, we measured
the time within which the worker thread performs its computations. The larger this
time is, the more disturbing is the co-existence of the waiter while it waits on the
barrier. Then, we measured the machine cycles required for the waiter to resume its
execution after being woken up by the worker. This time is a direct indication of the
responsiveness of each implementation. We repeated the above experiment multiple
times for each barrier implementation, and present the results in Table 2.

As expected, the first implementation provides best response times, since it does
not invoke any OS intervention, but it is the most aggressive in term of resource
consumption. The other two approaches introduce much less interference, with the
implementation with futexes providing best wakeup times and optimal stability. It
seems that the kernel control path for waking up the waiter thread is much shorter for
this implementation.

We tested each of the above implementations in our programs, to synchronize
computation and prefetcher threads. As we suspected from our previous analysis,
the version of barriers with futexes outperformed all other approaches. This is be-
cause most delinquent loads in our programs involve little computation and long wait
periods, which renders efficient resource management more important than respon-
siveness. As a future work, we will study the possibility of hybrid implementations,
e.g., using barriers with spin-wait loops together with barriers with futexes, as an
attempt to attack more effectively loads that entail trivial sleep times and frequent
synchronization.

4 Quantitative analysis on the TLP and ILP limits of the processor

In order to gain some notion about the ability and the limits of the Xeon hyper-
threaded processor on interleaving and executing efficiently instructions from two in-
dependent threads, we have constructed a series of homogeneous instruction streams.
These streams include basic arithmetic operations (add, sub, mul, div), as well as
memory operations (load, store), on integer and floating-point 32-bit scalars. For

@ Springer

E. Athanasaki et al.

each of them, we experimented with different levels of instruction level parallelism,
in order to establish lower and upper bounds on the capabilities of the processor for
simultaneous execution. Each stream is constructed by repeatedly inlining in our pro-
gram the corresponding assembly instruction. All arithmetic operations are register-
to-register instructions. The memory operations involve data transfers from memory
locations to the processor registers and vice versa. In this case, each thread operates
on a private vector of numbers and the vector elements are traversed sequentially.

Let S and T be the sets of architectural registers that can be used within a win-
dow of consecutive instructions of a particular stream as source and target operands,
respectively. In our experiments, we artificially increase (decrease) the ILP of the
stream by keeping S and T always disjoint, and at the same time expanding (shrink-
ing) T, so that the potential for all kinds of data hazards (i.e., WAW, RAW, WAR) is
delimited (grown). These hazards are responsible for pipeline stalls. In our tests, we
have considered three degrees of ILP for each instruction stream: minimum (|7'| = 1),
medium (|7'| = 3), maximum (|T| = 6). To give an example of how we tune ILP in a
stream of an instruction A according to the previous discussion, in the case of medium
ILP, we repeat A so that exactly three registers are used exclusively as target regis-
ters, and furthermore, a specific target register is reused every three As. We notice
here that for integer mul’s and div’s, the potential ILP is limited to 1, since for each
such instruction the combination of edx and eax is always implied by the machine
ISA as the output register.

As a first step, we execute each instruction stream alone on a single logical proces-
sor, for all degrees of ILP. In this way, all the execution resources of the physical
package are fully available to the thread executing that stream, since the peer logical
processor sits idle. We execute each stream for about 10 seconds, and for this interval,
we record the number of instructions that were executed and the total number of clock
cycles that elapsed. By dividing these two quantities, we obtain an approximation for
the CPI of a specific instruction in the context of a particular ILP level. As a second
step, we co-execute within the same physical processor two independent instruction
streams of the same ILP, each of which gets bound to a specific logical processor. We
experiment with all possible combinations of the available instructions streams. For
each combination, we perform as before a similar measurement for the CPI, and we
compute then the factor by which the execution of a specific instruction was slowed
down compared to its stand alone execution.

This factor gives us an indication on how various kinds of simultaneously exe-
cuting streams of a specific ILP level, contend with each other for shared processor
resources. For example, when the stream of an instruction A is co-executed with the
stream of an instruction B, but the CPI of A doesn’t increase considerably, that indi-
cates a low rate of contention for resources between the two streams.

There is some additional information that we extract from the above experiments.
For a particular instruction stream, we can estimate whether the transition from
single-threaded mode of a specific ILP level to dual-threaded mode of a lower ILP
level, can hinder or boost performance. This can tell us whether it is better to im-
plement a certain degree of parallelism as ILP or TLP, given that both forms of par-
allelism are operationally equivalent. For example, let’s consider a scenario where,
in single-threaded and maximum ILP mode, instruction A gives an average CPI of

@ Springer

Exploring the performance limits of simultaneous multithreading

Clthr-maxiLp, While in dual-threaded and medium ILP mode the same instruction gives
an average CPI of Cospr-mediLp > 2 X Cimr-maxiLp- Because the second case involves
half of the ILP of the first case, the above scenario prompts that we must probably
not anticipate any speedup by parallelizing into multiple threads a program that uses
extensively this instruction in the context of high ILP (e.g., unrolling).

4.1 Co-executing streams of the same type

Figure 2 provides results regarding the average CPI for a number of synthetic streams.
It demonstrates how the different combinations of TLP and ILP modes for a given
stream can affect its execution time. The streams presented in the diagram are some
of the most common instruction streams we encountered in real programs. As we will
see in the following sections, fadd-mul is one such representative instruction mix in
our benchmarks. Its corresponding stream is constructed by interleaving within the
same thread fp-add’s and mul’s in an alternating fashion.

Let us consider the fadd instruction stream. In the case of minimum ILP, the cy-
cles of the instruction do not alter when moving from 1 to 2 threads, which results
practically in overall speedup. This reveals that the benefit from the ability of the
processor to overlap instructions from the two threads, outweighs the cost of pipeline
stalls due to the frequent data hazards from both threads. However, this scenario does
not yield the best performance. The best instruction throughput is obtained in the
single-threaded mode of maximum ILP, as depicted in the same diagram. The mea-
surements show indirectly that an instruction window W45 of 6 consecutive inde-
pendent fp-add’s executed by a single thread (/thr-maxILP case) can complete in less

1thr-minILP

|
8 ——— 2thr-minILP-|
mmmm 1thr-medILP
== 2thr-medILP
—a 1ithr-maxILP
7 C— 2thr-maxILP7]
6
T 5
o
o
g
s 4
>
<
3 ,,,,,,,,,
2 e | — R L
1 o R L [|| [| | | SO
0

fadd fmul fadd-mul jiadd iload istore
Examined instruction stream

Fig. 2 Average CPI for different TLP and ILP execution modes of some common instruction streams

@ Springer

E. Athanasaki et al.

time than splitting the window in two and assigning each half to two different threads
(2thr-medILP case). In other words, implementing parallelism as ILP is better than
implementing it as TLP for this case. Furthermore, as implied by the results for the
2thr-maxILP case, even if we distribute evenly a bunch of W46 windows to two
threads for execution, there is no performance gain compared to assigning all of them
only to one thread (/thr-maxILP case, again). It seems that when the available ILP
increases in a program, pipeline stall problems diminish, leaving space for resource
contention issues to arise and affect performance negatively.

As Fig. 2 shows, fimul stream exhibits a similar behavior, as regards the way in
which CPI fluctuates between different execution modes. In addition, it is interest-
ing to see that mixing in the same thread fp-add and fp-mul instructions, results in
a stream (fadd-mul) whose final behavior is averaged over those of its constituent
streams. For other instruction streams, such as iadd, it is not clear which mode of
execution gives the best execution times, since the throughput of the instruction re-
mains the same in all cases. Hyper-threading achieved to favor TLP over ILP only
in the case of iload, because the cumulative throughput in all dual-threaded cases is
larger compared to the single-threaded cases.

4.2 Co-executing streams of different types
Figures 3 and 4 present the results from the co-execution of different pairs of streams

(for the sake of completeness, results from the co-execution of a given stream with
itself, are also presented). We examine pairs whose streams have the same ILP level

Examined instruction stream

jiadd/isub imul idiv iload istore
2.4
C—/ max ILi’
/3 med ILP
29 @ min ILP

Slowdown factor of
examined instr. stream

iadd/isub
imul

idiv

iload
istore
iadd/isub
imul

idiv

iload
istore
iadd/isub
imul

idiv

iload
istore
iadd/isub
imul

idiv

iload
istore
iadd/isub
imul

idiv

iload
istore

Co-executed instruction streams

Fig. 3 Slowdown factors from the co-execution of various integer instruction streams

@ Springer

Exploring the performance limits of simultaneous multithreading

because we believe that this is the common case in most parallel applications. The
slowdown factor represents the ratio of the CPI when two threads are running concur-
rently, to the CPI when the benchmark indicated on the top x-axis is being executed
in single-threaded mode. What is clear at first glance, is that the throughput of integer
streams is not affected by variations of ILP, as happens in the case of floating point
streams.

e The execution of fdiv instruction streams is mostly affected by streams of the same
type rather than streams of different operations. When both threads execute fp-
div’s, their instructions take each about 120%—140% more time to complete com-
pared to their stand alone execution. Other floating-point operations, however, in-
teract perfectly, causing insignificant slowdown to each other. It seems that there
are enough hardware resources to avert any bottleneck for this type of operation.
fdiv is the only stream that is not affected seriously by variations of ILP. finul also
experiences its major slowdown when co-executed with itself. fadd/fsub streams,
on the other hand, are affected by streams of the same type (slowdown up to 100%),
as well as streams of different fp operations (finul causes a significant slowdown
of 180%). In lowest ILP mode, all different pairs of fadd, fmul and fdiv streams,
can co-exist perfectly (except for the case of fdiv-fdiv).

fload or fstore instructions (with a miss rate of 3%) can slowdown floating-point
arithmetic operations by about 40%. This can be a significant delay in the case of
parallel benchmarks, especially if we take into account the accessory synchroniza-
tion overhead added to the hardware bottleneck. We note that if the miss rate of

Examined instruction stream

fadd/fsub fmul fdiv fload fstore
2.4
l:ll max ILP
C—/3 medlILP
@ min ILP

Slowdown factor of
examined instr. stream

fadd/fsub
fmul

fdiv

fload
fstore
fadd/fsub
fmul

fdiv

fload
fstore
fadd/fsub
fmul

fdiv

fload
fstore
fadd/fsub
fmul

fdiv

fload
fstore
fadd/fsub
fmul

fdiv
fload
fstore

Co-executed instruction streams

Fig. 4 Slowdown factors from the co-execution of various floating-point instruction streams

@ Springer

E. Athanasaki et al.

load/store instructions increases to 100%, the delay caused to other instruction
streams is really minor. However, this is not the case of optimized codes. (Both
Figs. 3 and 4 present the results of 3% miss rate for load and store instruction
streams.)

e When both threads execute iadd/isub, a 100% slowdown arises, which is equiv-
alent to serial execution. Other types of arithmetic or memory operations affect
iadd/isub less, by a factor of 10%—45%. imul and idiv instruction streams are al-
most unaffected by co-existing threads.

iloads and especially istores (with 3% miss rate) appear to have a slowdown of
32% and 98%, respectively, when they co-execute with each other. iadd/isub in-
duce a slowdown of about 115% and 320% to iload and istore instruction streams,
respectively (the latter factor exceeds the boundaries of Fig. 3). If the miss rate
increases to 100%, the slowdown is moderated.

Finally, we mixed integer and floating-point instruction streams. Such mixes are
more frequent in multiprogrammed workloads or irregular parallel codes, rather than
regular ones. We present them here in order to show how various kinds of instructions
interact with each other on hyper-threaded processors. The results are depicted in
Fig. 5, and concern pairs of floating-point and integer arithmetic streams of the same
ILP degree. First, we observe that floating-point streams co-exist with integer streams
somehow better than do the latter with the former. Second, each floating-point stream
sustains its largest slowdown when executed with its integer counterpart. This phe-
nomenon is somewhat milder in the opposite case. Summarizing Fig. 5, fadd /fsub is

Examined instruction stream

fadd/fsub fmul fdiv jadd/isub imul idiv
3| — maxiP i N
C—/ med ILP
= min ILP
2.5
£
53
k]
8=
c2 2
83
==
3E
ng -
[0}
1.5

-

iadd/isub
imul
idiv
iadd/isub
imul
idiv
iadd/isub
imul
idiv
fadd/fsub
fmul
fdiv
fadd/fsub
fmul
fdiv
fadd/fsub
fmul
fdiv

Co-executed instruction streams

Fig. 5 Slowdown factors from the co-execution of various pairs of floating-point with integer instruction
streams

@ Springer

Exploring the performance limits of simultaneous multithreading

decelerated in the worst case by 100%, fimul by 35%, fdiv by 108%, while iadd/isub
by 201%, imul by 40% and idiv by 358%. The smallest slowdowns are generally
remarked for minimum ILP, and can be as low as 0%.

5 Experimental framework
5.1 The Xeon hyper-threading architecture

We experimented on an Intel Xeon processor, running at 2.8 GHz. This processor
is based on Netburst microarchitecture, and is one of the first mainstream chips to
encompass low-end simultaneous multithreading capabilities.

It has an out-of-order, superscalar, speculative core, characterized by its deep
pipeline. The core has instruction fetch bandwidth of up to three microoperations
(uops) per cycle, dispatch and execution bandwidth of up to six per cycle and retire-
ment bandwidth of up to three per cycle. The branch misprediction penalty is about
20 cycles. There is a 128-entry renamed register file and up to 126 instructions can
be in flight at a time. Of those, 48 can be loads and 24 can be stores. It has a 16 KB
8-way set associative L1 data cache with a 2 cycle load-use latency and 64 bytes
cache line. The L2 unified cache is 1 MB 8-way set associative, with cache lines of
64 bytes, as well. The equivalent of a typical L1 instruction cache in our system is the
execution trace cache. Trace caches do not store instructions but traces of decoded
uops. Xeon’s trace cache has a capacity of 12 K uops, and is 8-way set associative.

The Xeon processor provides capabilities for software prefetching by special in-
structions. The programmer can use these instructions to provide hints about the
memory locations that are going to be accessed later. The processor also imple-
ments a hardware prefetching mechanism by which memory data are transparently
prefetched to the unified L2 cache based on prior reference patterns. The hardware
prefetcher supports multiple streams and can recognize regular patterns such as for-
ward or backward linear accesses.

Hyper-threading technology [18] makes a single physical processor appear as two
logical processors by applying a two-threaded SMT approach. The operating system
identifies two different logical processors, each maintaining a separate run queue. In
a HT-enabled processor, almost all execution resources are shared: caches of all lev-
els, execution units, instruction fetch, decode, schedule and retirement logic, global
history array. On simultaneous requests for shared resources, access is alternated be-
tween threads, usually in a fine-grained fashion (cycle-by-cycle). Thus, when both
threads are active, the maximum instruction fetch, decode, issue, execution and re-
tirement bandwidth is essentially halved for each of them.

The architectural state in a hyper-threaded processor is replicated for each thread.
Replicated are also the instruction pointers, ITLBs, rename logic, return stack
and branch history buffers. Buffering queues between pipeline stages, as well as
load/store queues, are statically partitioned, so that each thread can use at most half
of their entries. In this way, a thread can make forward progress independent and un-
affected from the progress of the other thread. The reorder buffer is also partitioned.

@ Springer

E. Athanasaki et al.

As quoted in [28], this static partitioning of hardware resources instead of their
dynamic sharing is the primary difference between hyper-threading and the theoret-
ically optimal architecture proposed in [29]. SMT research has argued that dynamic
sharing of structures is more effective than static partitioning. However, as we noted,
statically partitioned resources deter unoptimized threads from affecting the perfor-
mance of co-executing threads. Anyway, the disadvantages of static partitioning are
minimized with only two hardware contexts, so that the actual behavior is not far
from the behavior of the virtual dynamically shared structures.

5.2 Operating system

The operating system that was used for the experiments was Linux version 2.6.13.
A decisive factor for the performance of multithreaded applications in a HT-enabled
processor is the scheduling algorithm that the operating system uses. Obviously, even
if both logical processors of a physical package are identified as different process-
ing units, they must be distinguished from logical processors of different physical
packages.

Linux as of 2.6 version has implemented a unified algorithm to handle scheduling
of multi-CPU systems in which the processing units have unequal relationships with
each other. Such systems are for example SMP machines with HT-enabled proces-
sors or NUMA machines. This algorithm is based on what is called scheduling do-
main. Scheduling domains are sets of processing entities which share properties and
scheduling policies. With scheduling domains, the different properties of the logical
and physical processing units can be identified and the scheduler can act accordingly.

The Linux scheduler uses the halt instruction to boost the performance of the
running tasks. When there is only one thread of execution for a physical processor
the scheduler uses the halt instruction in the idle logical CPU in order to activate
the single thread (ST) mode for the processor. In this way, the running thread can take
advantage of the full resources of the processor. The halt instruction is also used
by the scheduler when there are two different tasks with different priorities, each on
a logical processor of the same physical package. The task with the highest priority
will run in ST mode to fully utilize the resources of the physical package.

5.3 Performance monitoring

Most modern processors provide on-chip hardware for performance monitoring. Intel
processors provide mechanisms for selecting, filtering, counting and reading perfor-
mance events via Model Specific Registers (MSRs). In Xeon processors, one can
monitor a rich set of performance events such as cache misses/hits assorted by co-
herence protocol semantics, TLB misses/hits, branch prediction statistics, instruc-
tions/uops statistics and memory bus transactions.

Performance counters help programmers to better understand the issues involved
in the execution of a program and identify possible bottlenecks and issues that de-
crease performance. Performance counters also provide a good insight of the internals
of the processor, enabling the programmer to achieve optimal performance.

It is worth noting that with the introduction of the hyper-threading technology
on Intel processors the performance monitoring capabilities were extended, so that

@ Springer

Exploring the performance limits of simultaneous multithreading

the performance counters could be programmed to select events that are qualified by
logical processor IDs, whenever that was possible.

To use these performance monitoring capabilities, a simple custom library was de-
veloped. Because the rdmsr and wrmsr instructions are privileged instructions, this
library used a simple device provided by the Linux OS to access the MSR registers.
A trivial kernel module was developed to set the PCE flag in CR4 register in order
for the library to use the rdpmc instruction to read the contents of the performance
counters.

6 Performance evaluation
6.1 Benchmarks

The first two benchmarks, BT and CG, are from version 2.3 of NAS Parallel Bench-
mark suite. BT is a simulated CFD application that uses an implicit algorithm to
solve 3-D compressible Navier—Stokes equations. It solves block-tridiagonal systems
of 5 x 5 blocks using the finite differences method. The benchmark operates mostly
on multi-dimensional arrays and exhibits bad locality. CG is a conjugate gradient
method, used to compute an approximation to the smallest eigenvalue of a large,
sparse, symmetric positive definite matrix, by solving an unstructured sparse linear
system. The benchmark lacks any temporal locality, makes a lot of indirect memory
references, but does not suffer from excessive misses probably due to the fact that
the matrix is symmetric and the hardware prefetcher can detect the resultant regular
accesses.

The performance of both benchmarks was evaluated for Class A data sizes. The
implementations of the benchmarks were based on the OpenMP C versions of NPB
2.3 provided by the Omni OpenMP Compiler Project [1]. We transformed these ver-
sions so that appropriate threading functions were used for work decomposition and
synchronization, instead of OpenMP constructs.

In HJ benchmark, the equi-join of two database relations is computed using the
hash-join algorithm [25], one of the most important operations in database query
processing. The algorithm first partitions both relations using a hash function on the
join attribute. In this way, the tuples of a partition of one relation need to be checked
only against the tuples of the corresponding partition of the other relation, since all
tuples in both partitions have the same hash value. Finally, for each such pair of
partitions, the algorithm proceeds as follows: it builds a hash table on the partition
of the smaller (build) relation, and then probes this table using tuples of the larger
(probe) relation to find matches. Most of the time in the algorithm is spent on hash-
lookup operations during this probe phase.

We partitioned a probe relation with 2 M tuples and a build relation with 1 M tuples
into 20 partitions each. The relations were created such that every tuple in the build
relation matches exactly two tuples in the probe relation. For each build partition, we
used a hash table of 500 buckets. Given a uniform and random distribution of join
attribute values, this means that each hash bucket hosts a linked list of 100 entries,
each pointing to a different build tuple. As a result, the amortized cost for each hash

@ Springer

E. Athanasaki et al.

lookup is 50 pointer jumps. In the TLP implementation, consecutive pairs of build and
probe partitions are assigned to threads in a cyclic fashion. Each thread builds a hash
table for its build partition, and then probes it using the corresponding probe partition.
There are no dependences between different pairs of partitions, so no synchronization
between threads is required.

LU is atiled version of an LU decomposition kernel that operates on a 1024 x 1024
matrix. In the TLP version, the kernel is parallelized by assigning different tiles to
different threads for in-tile factorization. This work partitioning scheme is a coarse-
grained one. It is divided in three computation phases, which are determined by inter-
tile data dependences of the algorithm. As a result, the use of barrier synchronization
is mandated between consecutive phases. Within each phase, the threads can work on
different tiles independently, without arising any data hazards.

MM is a tiled and unrolled matrix multiplication between three 1024 x 1024 ma-
trices, where blocked array layouts have been applied. This means that the order of
traversal of the elements in each matrix coincides with the order in which these ele-
ments are stored in memory. Tiling along with blocked layouts yield optimal cache
performance. In the TLP scheme, consecutive tiles of output matrix C (in block row-
major order) are assigned for computation to different threads in a circular fashion,
which is a coarse-grained work partitioning scheme. There are not any data depen-
dences, so data consistency is implied and no synchronization mechanisms are re-
quired. Furthermore, the two threads work on different cache areas, without interfer-
ing in one’s another cache lines.

SV is a Sparse matrix-Vector multiplication kernel. We used a 100000 x 100000
matrix, with 150 nonzero elements distributed randomly and uniformly on each row.
It is stored using the Compressed Storage Row (CSR) format [3]. According to this
format, only the nonzero elements of the matrix are stored in memory (contiguously
and in row-major order), and additional arrays are used to index the column of each
element in the original matrix, as well as the beginning of each row. As in CG, this
yields many indirect memory references. However, SV suffers from many irregular
memory accesses in the input vector, because unlike CG, the sparse matrix has com-
pletely random structure.

Thread level parallelization of the kernel is performed in terms of data parallel
decomposition at the outermost loop level (coarse-grained). In this way, the matrix
is partitioned according to its rows, and each thread undertakes a different chunk of
rows and computes the corresponding part of the output vector. This scheme does not
impose any kind of data dependences. Furthermore, because nonzero elements are
distributed uniformly across the matrix, there is no issue of load imbalance between
threads. If the matrix had different distribution of nonzeroes, this naive scheme could
probably lead to load imbalance, because each part would contain different number of
nonzeroes. In this case, a more elaborate scheme that partitions the matrix according
to the number of nonzeroes should be applied.

Lastly, TC computes the transitive closure of a directed graph with 1600 vertices
and 25000 edges. The graph is represented with an adjacency matrix (dense repre-
sentation). This problem reduces essentially to an all-pairs shortest-paths problem,
which can be solved using the Floyd—Warshall algorithm [6]. The structure of the
algorithm is very similar to that of regular matrix multiplication, but one cannot per-
mute the loops in any order, due to dependences imposed by the outermost loop. To

@ Springer

Exploring the performance limits of simultaneous multithreading

Table 3 Benchmarks under test

Application Data set

NAS BT Class A

NAS CG Class A

Hash-join 2 M probe tuples (232 MB), 1 M build tuples (116 MB),
20 partitions per relation, 500 entry hash-table

LU decomposition 1024 x 1024, 16 x 16 blocks

Matrix multiplication 1024 x 1024, 64 x 64 blocks

Sparse matrix-Vector multiplication 100000 x 100000, 150 non-zeroes per row

Transitive closure 1600 vertices, 25 000 edges, 20 x 20 blocks

improve data reuse and facilitate parallelization, we have implemented a tiled version
of the algorithm, by tiling the two innermost loops. In TLP, in each iteration of the
outer loop, consecutive tiles of the matrix (in block row-major order) are processed
by different threads in a circular fashion. Before threads proceed to the next iteration,
they are synchronized with a barrier to satisfy the outermost loop dependence.

Table 3 summarizes the benchmarks and their data sets. Of those benchmarks, BT,
HJ and TC had the worst cache performance in their original, serial versions, with lo-
cal L2 miss rates between 23% and 35%. LU, MM and CG had the best performance,
with rates below 0.6%, while SV suffered a miss rate of about 7%.

6.2 Experimental results

In the following sections, we evaluate the performance of the above applications,
when applying each of the multithreaded execution schemes. At first, we report mea-
surements from specific events counted by the performance monitoring mechanisms
of the processor. Then, we present attained performance for each application and try
to explain it through a combined analysis of these performance metrics. We present
measurements taken for four events:

e L2 misses: The number of second level cache read misses (including load and
Request for Ownership—RFO) as seen by the bus unit. For TLP, we show the
cumulative number of misses on behalf of both threads. This gives us an indication
on whether the threads of a particular application benefit from shared caches or
experience conflicts. For SPR, we present only the misses of the worker thread, in
order to capture the ability of the prefetcher to cover worker’s misses.

e LI misses: The number of first level data cache read misses. Again, for the various
execution modes, we present the cumulative number of misses only for processors
where worker threads are executed.

e Resource stall cycles: The number of clock cycles that a thread stalls in the allo-
cator, waiting until store buffer entries are available. The allocator is the part of
the processor which takes uops from the uop queue and allocates to them many of
the key machine buffers (e.g., register file entries, ROB entries, load/store buffer
entries, instruction queue/memory queue entries). It stalls a logical processor when
it tries to use more than the half of partitioned buffers. This performance metric is
indicative of the contention that exists between the threads for shared resources.

@ Springer

E. Athanasaki et al.

For the serial execution of each application, we present the ratio of stall cycles
over the total number of cycles. For TLP schemes, we present the ratio of stall
cycles on behalf of both worker threads, over the total number of cycles in the
scheme. When this ratio is significantly increased compared to the serial execution,
this designates contention between workers which has as a result both threads to
stall for a larger portion of their execution time. For SPR schemes, we present the
ratio of stall cycles of the worker thread over the total number of cycles in the
scheme. When this ratio is increased compared to serial execution, this means that
the worker thread is disturbed by the co-execution of the prefetcher thread.

e Nonbogus uops retired: The number of nonbogus uops that were retired during the
execution of the program. Bogus uops are the ones that were canceled because of a
misprediction. For all cases, the uops numbers presented are the numbers of those
retired for both threads. For TLP, therefore, this sum expresses the extra instruc-
tions due to parallelization and synchronization overhead. For SPR, it additionally
expresses the amount of workload of the prefetcher thread.

Both in TLP and SPR versions of our codes, we create two threads each of one we
bind to a specific logical processor within a single physical package. We have used
the NPTL library for the creation and manipulation of threads. To force the threads
to be scheduled on a particular processor, we have used the sched_setaffinity
system call. All user codes were compiled with the GNU C compiler version 4.1.2
using the O2 optimization level, and linked against version 2.5 of the GNU C library.
We note also that the hardware prefetcher of the processor was enabled throughout
all experiments.

6.2.1 Cache performance

Figure 6a shows the numbers of L2 misses normalized with respect to the serial ex-
ecution. In TLP schemes, L2 misses on behalf of both threads increase for most
applications. In particular, H] and MM suffer a significant increase by a factor of
2.44 and 1.79, respectively. For HJ, this is because the working sets' of the threads
are much larger than the L2 cache size, which results in excessive number of cross-
thread cache line evictions. This is not the case for MM, however. This benchmark
has almost perfect locality, with access patterns easily recognizable by the hardware
prefetcher, suffering very few L2 misses (less than 30000), and the working sets of
both threads fit together in L2 cache. Thus, we believe that the increase of L2 misses
in this case is due to conflict misses, which could be attacked with a more careful
placement of data used by each thread or by applying related techniques such as
copying [27]. In the other benchmarks, the increase of L2 misses was below 11%. Of
those, TC saw actually a decrease in the cumulative number of L2 misses by 13%,
which shows that this benchmark benefits from shared caches and the fact that the
worker threads act mutually as prefetchers to some extent.

1By working set here, we mean the part of overall data on which each thread is working each time. For
many of the applications, a thread exhibits some kind of reuse on this data chunk before proceeding to
process the next chunk.

@ Springer

Exploring the performance limits of simultaneous multithreading

{g | = serial
e tip
—
1.6 P
?
1 14
o
2 12
[%2]
(0]
2 1
S
N 08
o
=
5 0.6
&
04 |
0.2
0
BT CG HJ LU MM SV TC
(a) L2 misses
1.8 | mmmmm serial
e tip
1.6 ST
P
& 14
o
2 12
[%2]
[0
g '
S
o 08¢ |
(0]
=
i 0.6
i
04
0.2
0

BT CG HJ LU MM SV TC

(b) L1 misses

Fig. 6 Normalized numbers of L2 and L1 misses with respect to single-threaded execution

In SPR versions, prefetcher threads achieved coverage of L2 misses of worker
threads in all benchmarks, by 72% on average. This percentage renders the selection
of delinquent loads and the synchronization periods between workers and prefetch-

@ Springer

E. Athanasaki et al.

ers successful. SV enjoyed the largest miss reduction (by almost 96%), and HJ the
smallest (by 39%). In general, best coverage rates were achieved for codes that have
a few delinquent loads that reside usually within a heavily traversed loop nest (e.g.,
SV, MM, LU, TC). In addition, these loads have really short backward slices, com-
pared to codes such as HJ where multiple pointer jumps are required to compute the
address of a single load.

Figure 6b presents the normalized numbers of L1 cache misses. In TLP implemen-
tations, the relative variance of L1 misses with respect to sequential execution was
below 7% for five out of seven benchmarks. The notable exceptions were again MM,
which suffered an increase of 97%, and TC, which experienced a decrease of 50%.
In SPR implementations, the L1 misses of the worker thread for most applications
were reduced by less than 20%. In our experience, such small L1 miss divergences
hardly can be safe indicators for performance. In general, L1 miss rates are not the
dominant performance factor, especially when codes are not highly tuned for locality
and are not optimized to take advantage of L1 cache. This is the case for most of our
benchmarks, as well, since neither TLP schemes partition the data into chunks that
fitin L1, nor SPR schemes target L1 misses.

6.2.2 Resource stall cycles

Figure 7a shows for each scheme the fraction of total cycles that corresponds to cy-
cles during which worker threads are stalled by the allocator. For BT and LU bench-
marks, stall cycles constitute notable portion of their total cycles (about 5%). In TLP
schemes, this portion sees an increase by a factor of 4.5 for BT and 10.4 for LU,
which indicates potential contention between worker threads. For the rest bench-
marks, the fraction of stall cycles is rather negligible (less than 0.0027% for four
of them). On average, TLP schemes experience an increase by a factor of 5.5 in their
percentage of stall cycles compared to their single-threaded counterparts. TC sees the
largest increase (by a factor of 15.7) and CG the smallest (by a factor of 1.03). On
the other hand, the co-execution of prefetcher threads in SPR schemes does not seem
to increase significantly the stalls of the worker threads. On average, worker threads
suffer an increase by a factor of 1.2. These results verify once again that threads
with diverse profiles may co-exist better than threads with symmetric profiles on the
contexts of a hyper-threaded processor.

6.2.3 Uops retired

Figure 7b depicts the relative increase of retired uops from both threads. Furthermore,
each bar gives a breakdown of uops for all threads participating in a specific execution
scheme. tlp-T0 and tlp-T1 designate the uops on behalf of each worker thread in TLP.
spr-W and spr-P denote uops attributed to worker and prefetcher threads in SPR,
respectively.

In TLP schemes, the total number of retired uops did not increase compared to the
sequential execution for most benchmarks. Exceptions were HJ (increase by 16%)
and TC (decrease by 15%). In all cases, the initial workload was distributed evenly
on both worker threads, as is evident by the almost equal fractions t/p-70 and tlp-T1.

@ Springer

Exploring the performance limits of simultaneous multithreading

100 -
= serial
. m tlp
& 10 ——
[%2]
Y
o
>
[&]
= 1E
8 :
[F
@ [
e
8 0.1 E
1) F
o i
5 [
o 0.01 E
(@)] F
E [
= i
g [
5 0.001 |
o
BT CG HJ LU MM S TC
(a) Resource stall cycles
1g | W serial]
’ = tlp-TO
s tip-TH —
1.6 - —— spr-P
=xxxx1 spr-W
14

Relative uops increase

HJ LU TC

(b) Non-bogus uops retired

Fig. 7 Ratio of resource stall cycles over total number of cycles, and normalized number of uops with
respect to single-threaded execution

@ Springer

E. Athanasaki et al.

In SPR implementations, the cumulative number of uops goes up by 43% on av-
erage. As can be seen in Fig. 7b, this increase is attributed mainly to the instruc-
tions executed by the precomputation threads. The instructions of worker threads
remain the same compared to the serial execution, except for HJ and SV, where they
are increased by 16% and 9%, respectively. The largest number of instructions by
prefetcher threads were inserted in CG, HJ, TC and SV benchmarks. These instruc-
tions account for 42% to 84% of the instructions in the serial execution. The smallest
extra overhead was introduced in BT, LU and MM benchmarks, where prefetchers
executed a fraction of only 3%—15% of the total instructions in the single-threaded
case. In the first group of codes, there are usually many instances of delinquent loads
that should be preexecuted by the prefetcher, which has to issue a prefetch instruction
for every such instance, or it must execute a rather long chain of instructions until the
computation of the delinquent load address. In the other set of codes, there are few
delinquent load instances, or a single prefetch instruction suffices to cover multiple
instances (e.g., those that occur in adjacent cache lines) as a result of the regularity in
the access patterns of these codes.

In order to gain a better understanding on the execution profile of the threads in
SPR versions, we measured for each application the fraction of cycles during which
the worker and prefetcher threads perform useful computations or sleep on synchro-
nization barriers. This cycle breakdown is presented in Fig. 8. In this diagram, peri-
ods of work and wait are denoted as work and synch, respectively. As expected, small
number of instructions executed by the prefetcher threads translate into large wait
periods and vice versa. On average, prefetcher threads sleep on barriers for 53% of

100

K C—— W-synch
90 . . . i =xxxx1 \W-work
e P-synch
m P-work
= 80
3~
E 70
S
o 60
8
;c:’ 50 - - -]
o
8 40 B .
]
c
g 30 - - - -
[0)
10 - - - - -
0

BT CG HJ LU MM SV TC

Fig. 8 Cycles breakdown for worker(W) and prefetcher(P) threads in SPR

@ Springer

Exploring the performance limits of simultaneous multithreading

the total SPR execution time. Of those, prefetcher for MM sleeps the most (94%),
and prefetcher for SV the least (12%).

6.2.4 Multithreaded speedups

Figure 9 presents the attained speedups of the multithreaded execution schemes with
respect to sequential execution. At a first glance, TLP schemes outperformed SPR im-
plementations in almost all cases. Six out of seven benchmarks enjoyed performance
gains with thread-level parallelization. The maximum speedup was 1.36 (TC), and
the minimum 1.03 (MM). HJ suffered a slowdown of 1.22. The average speedup for
all applications was 1.14. SPR achieved performance improvements in three cases.
The maximum speedup attained with this method was 1.34 (TC) and the minimum
1.04 (LU). SPR had the worst performance in CG, where a slowdown of 1.45 was
observed.

Combining our previous results and observations on performance metrics and the
timing results of Fig. 9, we can deduce that SPR is a promising technique and can
accelerate the execution of the main computation thread, in cases where the extra
instructions introduced by the prefetcher thread are relatively few, the coverage of L2
misses is good, and the percentage of time during which the prefetcher sleeps, having
relinquished its share of resources, is rather large. This is the case of TC, LU and BT
benchmarks. MM falls into this category, as well, but its already good locality and
the trivial number of L2 misses it suffers do not leave much room for improvement.

On the other hand, even under very good L2 miss coverage, if the extra overhead
that the prefetcher introduces with its co-execution is noteworthy, and the time for

1.4]
B scria

1.3 mm tlp

1.2 | — Spr

1.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Speedup

BT CG HJ LU MM SV TC

Fig. 9 Speedup of TLP and SPR methods

@ Springer

E. Athanasaki et al.

which it must share processor resources with the worker thread is considerable, SPR
can affect performance negatively. This happens for example in SV and CG bench-
marks. HJ is an interesting exception. In this code, SPR achieves the smallest cov-
erage of L2 misses, in comparison to all other benchmarks. Furthermore, 90% more
instructions are executed with respect to the serial version, and the prefetcher thread
does work for at least 75% of its total execution time. Nevertheless, performance
degradation is negligible. This motivates us to examine less aggressive SPR schemes,
where we could probably be more eclectic in choosing delinquent loads, or even
willing to sacrifice some of the successfully covered misses, in order to favor overall
performance. In any way, we argue that miss coverage and prefetcher thread overhead
constitute a tricky tradeoff which is worthwhile to investigate.

Regarding TLP, our measurements are on par with most previous results in lit-
erature which argue that SMT favors mostly codes which are not highly tuned for
optimal utilization of functional units or locality. MM is one benchmark that falls
in both categories and confirms this assertion. TC, BT and SV, on the other hand,
exhibit bad locality and large miss rates, and thus seem to benefit more from SMT.
Other significant factors for the efficiency of TLP methods on SMTs are the degree
of inter-thread cache interference (prominent in HJ and MM) and the amount of extra
instructions due to parallelization or synchronization (HJ). Cache contention in those
cases prompts that, even though most programs can be converted into thread-level
parallel ones in a straightforward manner; they should be subjected under fine tuning
when they are intended to run on SMT systems in order to execute efficiently. Cache
blocking techniques or other methods for reducing conflicts could be employed for
this purpose.

6.3 Further experimentation

Table 4 presents the utilization of the busiest processor execution subunits when run-
ning each of the reference applications. The first column (serial) contains results of
the initial, single-threaded versions. The second column (#/p) presents the behavior
of one of the two workers in the TLP implementations. In this case, each of the
two threads execute an almost equivalent workload (at about a half of the total in-
structions of the serial case, ignoring the extra parallelization overhead), and conse-
quently, percentages are nearly identical. The third column (spr) presents statistics
of the prefetching thread in the SPR versions of our codes (the peer working thread
behaves like the single thread of the serial version). All percentages in the table refer
to the portion of the total instructions of each thread that used a specific subunit of
the processor. The statistics were generated by profiling the original application exe-
cutables using the Pin binary instrumentation tool [15], and analyzing for each case
the breakdown of the dynamic instruction mix, as recorded by the tool. Figure 10 [9]
presents the main execution units of the Xeon processor, together with the issue ports
that drive instructions into them. Our analysis examines the major bottlenecks that
prevent multithreaded implementations from achieving some speedup.

As a general observation, all benchmarks are characterized by high percentages of
instructions that read from, or write to memory, hence proving their memory inten-
sive nature. Compared to the serial versions, TLP implementations do not generally

@ Springer

Exploring the performance limits of simultaneous multithreading

Table 4 Processor subunits utilization from the viewpoint of a specific thread

Execution unit Instrumented thread
serial tlp spr
BT ALUO+ALUL: 8.06% 8.06% 12.06%
FP_ADD: 17.67% 17.67% 0.00%
FP_MUL: 22.04% 22.04% 0.00%
FP_MOVE: 10.51% 10.51% 0.00%
MEM_LOAD: 42.70% 42.70% 44.70%
MEM_STORE: 16.01% 16.01% 42.94%
CG ALUO+ALU1: 28.04% 23.95% 49.93%
FP_ADD: 8.83% 7.49% 0.00%
FP_MUL: 8.86% 7.53% 0.00%
FP_MOVE: 17.05% 14.05% 0.00%
MEM_LOAD: 36.51% 45.71% 19.09%
MEM_STORE: 9.50% 8.51% 9.54%
HJ ALUO+ALUI: 78.61% 78.65% 79.81%
MEM_LOAD: 40.13% 40.09% 40.07%
MEM_STORE: 0.91% 0.91% 0.06%
LU ALUO+ALU1: 38.84% 38.84% 38.16%
FP_ADD: 11.15% 11.15% 0.00%
FP_MUL: 11.15% 11.15% 0.00%
MEM_LOAD: 49.24% 49.24% 38.40%
MEM_STORE: 11.24% 11.24% 22.78%
MM ALUO+ALUI: 27.06% 26.26% 37.56%
FP_ADD: 11.70% 11.82% 0.00%
FP_MUL: 11.70% 11.82% 4.13%
MEM_LOAD: 38.76% 27.00% 58.30%
MEM_STORE: 12.07% 12.02% 20.75%
Sv ALUO+ALUL: 25.05% 27.58% 24.03%
FP_ADD: 13.32% 12.90% 0.00%
FP_MUL: 13.32% 12.90% 0.00%
MEM_LOAD: 51.15% 46.15% 53.77%
MEM_STORE: 17.23% 13.27% 0.34%
TC ALUO+ALUI: 67.14% 67.21% 79.62%
MEM_LOAD: 40.72% 41.47% 21.93%
MEM_STORE: 8.55% 8.52% 0.19%

change the mix for various instructions. Of course, this is not the case for SPR im-
plementations. For the prefetcher thread, not only the dynamic mix, but also the total
instruction count cannot be compared with those of the worker thread. Additionally,

@ Springer

E. Athanasaki et al.

Port 0 Port 1 Port 2 Port 3
Y Y Y Y
ALUO (x2) FP_MOVE ALU1 (x2) INTEGER FP Execute MEM_LOAD MEM_STORE
ADD/SUB FP move FP_ADD
Logic Shift FP_MUL Loads
Store data FXCH ADD/SUB Rotate FP_DIV Prefetch Store address
FP Store data -
Branches

Fig. 10 Instruction issue ports and main execution units of the Xeon processor

different memory access patterns require incomparable effort for address calculations
and data prefetching, and subsequently, different number of instructions.

In TLP implementations, BT, SV, MM, LU and CG benchmarks exhibit high us-
age of floating-point units. The utilization of ALUs is also significant. As seen in
Sect. 4.1, fadd-mul instruction mixes can co-execute efficiently on a hyper-threaded
processor, yielding performance gains in most cases. On the other hand, streams with
instructions that utilize ALUs, such as iadd’s, do not experience slowdowns, but do
not seem to benefit from hyper-threading, as well. Of the above benchmarks, BT is
dominated the most by fp-add’s and mul’s, and the least by instructions that exe-
cute on ALUs, and we believe that this mixture is among the main reasons for the
noteworthy speedup that was achieved for this benchmark.

Other benchmarks such as MM or LU, where this mixture of instructions is dif-
ferent, enjoyed lower performance gains. For example, in MM benchmark, the most
prominent characteristic is the large number of logical instructions used: almost 26%
of total instructions in both the serial and the TLP versions. This is due to the im-
plementation of blocked array layouts with binary masks [2] that were employed for
this benchmark. Although the out-of-order core of the Xeon processor possesses two
ALU units (double speed), among them only ALUO can handle logical operations. As
a result, concurrent requests for this unit in the TLP case will lead to serialization of
corresponding instructions, without offering any speedup. With respect to MM, LU
exhibits higher ALUs usage. In this case, however, instructions can be executed by
both ALUs and are distributed equally on them. This explains in a way the better per-
formance of LU. Exception to the above trend is the TC benchmark. It is dominated
exclusively by integer operations, but this does not seem to constitute a bottleneck
for its performance, since it enjoys a large speedup. However, we believe that hyper-
threading exploits the benchmark’s bad locality rather its instruction mix, to boost its
performance.

As expected in SPR schemes, prefetcher threads execute instructions that apart
from memory units, utilize solely ALUs. They execute such instructions at least for
the same portion as the worker threads do. This means that when the number of their
instructions is comparable to the total instructions of the worker threads, significant
pressure is put on ALUs. And as we have discussed, it is difficult to overlap instruc-
tions executed on ALUs of a hyper-threaded processor. These facts explain somehow
the inability of SPR to accelerate applications such as CG, HJ and SV. TC is an ex-
ception again, and the performance improvement that SPR offers can be attributed to
its already bad locality and the good miss coverage by the prefetcher.

@ Springer

Exploring the performance limits of simultaneous multithreading

7 Conclusion and future work

This paper presented performance results for a simultaneous multithreaded architec-
ture, the hyper-threaded Intel microarchitecture, when running single-programmed
workloads comprised of memory-intensive applications. In these applications, both
work partitioning schemes to exploit thread-level parallelism and speculative pre-
computation techniques to attack memory latency were considered. Our evaluation
was based on timing results and performance measurements obtained from actual
program execution, as well as simulation. The results gathered demonstrated the lim-
its in achieving high performance for applications threaded according to TLP or SPR
schemes.

Implementing speculative precomputation on a real SMT machine was rather chal-
lenging, because it is not a natural choice for the applications we considered, and
furthermore, it is not supported in hyper-threaded processors by special hardware
facilities assumed in most previous related studies. We had to consider, therefore,
various tradeoffs and evaluate different options, in order to make SPR as efficient
as possible. In three out of seven benchmarks, SPR achieved speedups between 4%
and 34%, and performed comparably to single-threaded execution in most of the rest.
Prefetcher threads managed to cover 39%-96% of the L2 misses of the workers,
while their execution introduced 43% more instructions on average. We can argue
that SPR technique can be effective, when the coverage of L2 misses is rather large,
the extra instructions that the prefetcher introduces are few, and the prefetcher is sus-
pended having released its resources for a large portion of its total execution time. In
order to fine tune data prefetching in some codes, a considerable number of additional
instructions have to be inserted into the pipeline. However, even under such increase
in the number of uops, SPR seems promising since it harms performance only by a
marginal factor. This motivates the exploration of less aggressive SPR schemes.

With thread-level parallelization, six out of seven applications enjoyed speedups
between 3% and 36%. On average, TLP accelerated applications by almost 14%.
Our results confirm what most previous studies have shown so far, i.e., that SMT fa-
vors mostly programs that are moderately or nonoptimized for locality or resource
utilization. Additionally, inter-thread cache conflicts can be a major factor for per-
formance degradation. For this reason, porting thread-level parallel codes to SMT
systems should not be effortless, if we opt for performance.

As a future work, we intend to explore the possibility of integrating TLP and
SPR schemes in the same application, in order to achieve even better performance
gains. Furthermore, we will evaluate the scalability of TLP and SPR in multi-SMT
systems (e.g., SMPs of SMTs). With the advent of hybrid multicore and manycore
processors, the investigation of hybrid multithreaded techniques to exploit multiple
grains of parallelism within a single application seems to be worthwhile, as well.

Of particular interest is the exploration of alternative parallelization techniques
that try to avoid resource contention on SMTs. Detecting and co-scheduling phases
within an application’s lifetime that are complementary in terms of their resource
requirements, could be a possible direction. In any case, assigning different types of
computations to different threads seems to be a challenge for multithreaded parallel
applications running on SMTs.

@ Springer

E. Athanasaki et al.

References

20.

21.

22.

23.

. Omni OpenMP compiler project (2003) Released in the international conference for high performance

computing, networking and storage (SC’03), November 2003

Athanasaki E, Koziris N (2004) Fast indexing for blocked array layouts to improve multi-level cache
locality. In: Proceedings of the 8th workshop on interaction between compilers and computer architec-
tures (INTERACT’04), held in conjunction with HPCA-10, Madrid, Spain, February 2004, pp 109-
119

Barrett R, Berry M, Chan T, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C, van
der Vorst H (1994) Templates for the solution of linear systems: building blocks for iterative methods.
SIAM, Philadelphia

Bulpin J, Pratt I (2004) Multiprogramming performance of the Pentium 4 with hyper-threading. In:
Proceedings of the third annual workshop on duplicating, deconstructing and debunking (WDDD
2004) held in conjunction with ISCA 04, Munich, Germany, June 2004, p 5362

Collins J, Wang H, Tullsen D, Hughes C, Lee Y-F, Lavery D, Shen J (2001) Speculative precompu-
tation: long-range prefetching of delinquent loads. In Proceedings of the 28th annual international
symposium on computer architecture (ISCA ’01), Goteborg, Sweden, July 2001, pp 14-25

Cormen T, Leiserson C, Rivest R (2001) Introduction to algorithms. MIT Press, Cambridge
Curtis-Maury M, Wang T, Antonopoulos C, Nikolopoulos D (2005) Integrating multiple forms of
multithreaded execution on multi-SMT systems: a study with scientific applications. In: ICQES
Drepper U (2005) Futexes are tricky. December 2005

Intel Corporation. IA-32 Intel architecture optimization. Order Number: 248966-011

Intel Corporation (2001) Using spin-loops on Intel Pentium 4 processor and Intel Xeon processor.
Order Number: 248674-002, May 2001

. Kim D, Liao S-W, Wang P, del Cuvillo J, Tian X, Zou X, Wang H, Yeung D, Girkar M, Shen J (2004)

Physical experimentation with prefetching helper threads on Intel’s hyper-threaded processors. In:
Proceedings of the 2nd IEEE/ACM international symposium on code generation and optimization
(CGO 2004), San Jose, CA, March 2004, pp 27-38

Lo J, Eggers S, Emer J, Levy H, Stamm R, Tullsen D (1997) Converting thread-level parallelism to
instruction-level parallelism via simultaneous multithreading. ACM Trans Comput Syst 15(3):322—
354

Lo J, Eggers S, Levy H, Parekh S, Tullsen D (1997) Tuning compiler optimizations for simultaneous
multithreading. In: Proceedings of the 30th annual ACM/IEEE international symposium on microar-
chitecture (MICRO-30), Research Triangle Park, NC, December 1997, pp 114-124

Luk C-K (2001) Tolerating memory latency through software-controlled pre-execution in simultane-
ous multithreading processors. In: Proceedings of the 28th annual international symposium on com-
puter architecture (ISCA *01), Goteborg, Sweden, July 2001, pp 40-51

Luk C-K, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wallace S, Reddi VJ, Hazelwood K
(2005) In: Building customized program analysis tools with dynamic instrumentation. SIGPLAN Not
40(6):190-200

Luk C-K, Mowry T (1996) Compiler-based prefetching for recursive data structures. In: Proceedings
of the 7th international conference on architectural support for programming languages and operating
systems (ASPLOS-VII), Boston, MA, October 1996, pp 222-233

Luk C-K, Mowry T (1999) Automatic compiler-inserted prefetching for pointer-based applications.
IEEE Trans Comput 48(2):134-141

Marr D, Binns F, Hill D, Hinton G, Koufaty D, Miller JA, Upton M (2002) Hyper-threading technol-
ogy architecture and microarchitecture. Intel Technol J 6:4—15

Mitchell N, Carter L, Ferrante J, Tullsen D (1999) ILP versus TLP on SMT. In: Proceedings of the
1999 ACM/IEEE conference on supercomputing (CDROM), November 1999

Mowry T (1998) Tolerating latency in multiprocessors through compiler-inserted prefetching. ACM
Trans Comput Syst 16(1):55-92

Mowry T, Lam M, Gupta A (1992) Design and evaluation of a compiler algorithm for prefetching. In:
ASPLOS-V: proceedings of the fifth international conference on architectural support for program-
ming languages and operating systems, New York, NY, USA. ACM Press, New York, pp 62-73
Nethercote N, Seward J (2003) Valgrind: a program supervision framework. In: Proceedings of the
3rd workshop on runtime verification (RV’03), Boulder, CO, July 2003

Patterson D, Hennessy J (2003) Computer architecture. A quantitative approach, 3rd edn. Kaufmann,
Los Altos

@ Springer

Exploring the performance limits of simultaneous multithreading

24.

25.

26.

217.

28.

29.

30.

31.

32.

Roth A, Sohi G (2001) Speculative data-driven Multithreading. In: Proceedings of the 7th interna-
tional symposium on high performance computer architecture (HPCA ’01), Nuevo Leone, Mexico,
January 2001, pp 3748

Silberschatz A, Korth H, Sudarshan S (2001) Database systems concepts, 4th edn. McGraw—Hill/
Higher Education, New York

Sundaramoorthy K, Purser Z, Rotenberg E (2000) Slipstream processors: improving both performance
and fault tolerance. In: Proceddings of the 9th international conference on architectural support for
programming languages and operating systems (ASPLOS IX), Cambridge, MA, November 2000,
pp 257268

Temam O, Granston E, Jalby W (1993) To copy or not to copy: a compile-time technique for as-
sessing when data copying should be used to eliminate cache conflicts. In: Proceedings of the 1993
ACM/IEEE conference on supercomputing (SC’93), Portland, OR, November 1993, pp 410419

Tuck N, Tullsen D (2003) Initial observations of the simultaneous multithreading Pentium 4 proces-
sor. In: Proceedings of the 12th international conference on parallel architectures and compilation
techniques (PACT °03), New Orleans, LA, September 2003

Tullsen D, Eggers S, Emer J, Levy H, Lo J, Stamm R (1996) Exploiting choice: instruction fetch
and issue on an implementable simultaneous multithreading processor. In: Proceedings of the 23rd
annual international symposium on computer architecture (ISCA ’96), Philadelphia, PA, May 1996,
pp 191-202

Tullsen D, Eggers S, Levy H (1995) Simultaneous multithreading: maximizing on-chip parallelism.
In: Proceedings of the 22nd annual international symposium on computer architecture (ISCA ’95),
Santa Margherita Ligure, Italy, June 1995, pp 392403

Wang H, Wang P, Weldon RD, Ettinger S, Saito H, Girkar M, Shih S, Liao W, Shen J (2002) Specu-
lative precomputation: exploring the use of multithreading for latency. Intel Technol J 6(1):22-35

Wang T, Blagojevic F, Nikolopoulos D (2004) Runtime support for integrating precomputation and
thread-level parallelism on simultaneous multithreaded processors. In: Proceddings of the 7th ACM
SIGPLAN workshop on languages, compilers, and runtime support for scalable systems (LCR’2004),
Houston, TX, October 2004

Evangelia Athanasaki received her Diploma in Electrical and Computer Engi-
neering (2002) and her PhD in Computer Engineering (2006) from the National
Technical University of Athens. She is currently a Grid Infrastructure Engineer
in the Greek Research and Technology Network (GRNET). Her research interests
include Computer Architecture, High Performance Computing and Grid Comput-
ing.

Nikos Anastopoulos received his Diploma in Computer Engineering & Infor-
matics from the Computer Engineering & Informatics Department of the Uni-
versity of Patras, Greece. He is currently a PhD candidate in the School of Elec-
trical and Computer Engineering, National Technical University of Athens. His
research interests include parallel and high performance computer architectures,
multithreaded and multicore processors, programming models and software tech-
niques for the efficient interaction of scientific applications with emerging multi-
processor architectures. He is a student member of the IEEE.

@ Springer

E. Athanasaki et al.

Kornilios Kourtis received his Diploma from the School of Electrical and Com-
puter Engineering of the National Technical University of Athens. He is currently
a PhD candidate in the same institution. His research interests include high per-
formance computing, parallel computing and distributed systems. He focuses on
software optimization techniques for modern and emerging computer architec-
tures. He is a student member of the IEEE.

Nectarios Koziris received his Diploma in Electrical Engineering from the Na-
tional Technical University of Athens (NTUA) and his Ph.D. in Computer Engi-

. neering from NTUA (1997). He joined the Computer Science Department, School

of Electrical and Computer Engineering at the National Technical University of
Athens in 1998, where he currently serves as an Assistant Professor. His research
interests include Computer Architecture, Parallel Processing, Parallel Architec-
tures (OS and Compiler Support, Loop Compilation Techniques, Automatic Al-
gorithm Mapping and Partitioning) and Communication Architectures for Clus-
ters. He has published more than 60 research papers in international refereed jour-
nals and in the proceedings of international conferences and workshops. Nectarios
Koziris is a recipient of the IPDPS 2001 best paper award for the paper “Minimis-

ing Completion Time for Loop Tiling with Computation and Communication Overlapping”. He serves as a
reviewer in International Journals (TPDS, JPDC, JSC etc) and as a Program Committee member in various
parallel computing conferences (IPDPS, HiPC, ICPP, IPDPS, CAC, PDSEC, SAC etc). He is a member
of IEEE Computer Society, member of IEEE TCPP and TCCA, member of ACM and chairs the Greek
IEEE Computer Society Chapter. He also serves as Vice-Chairman for the Greek Research and Education
Network (GRNET-Greek NREN, www.grnet.gr).

@ Springer

	Exploring the performance limits of simultaneous multithreading for memory intensive applications
	Abstract
	Introduction
	Related work
	Implementation
	Synchronization issues
	Implementing speculative precomputation
	Constructing prefetcher threads
	Synchronizing worker and prefetcher threads
	Further optimizations

	Quantitative analysis on the TLP and ILP limits of the processor
	Co-executing streams of the same type
	Co-executing streams of different types

	Experimental framework
	The Xeon hyper-threading architecture
	Operating system
	Performance monitoring

	Performance evaluation
	Benchmarks
	Experimental results
	Cache performance
	Resource stall cycles
	Uops retired
	Multithreaded speedups

	Further experimentation

	Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

