Employing Transactional Memory and Helper
Threads to Speedup Dijkstra’s Algorithm

Konstantinos Nikas, Nikos Anastopoulos, Georgios GounmasNectarios Koziris
National Technical University of Athens
School of Electrical and Computer Engineering
Computing Systems Laboratory
Members of HIPEAC
{knikas,anastop,goumas,nkozj@cslab.ece.ntua.gr

Abstract—In this paper we work on the parallelization of the face the two major issues inherent to the algorithimited
inherently serial Dijkstra’s algorithm on modern multicore plat- explicit parallelismand excessive synchronization
forms. Dijkstra’s algorithm is a greedy algorithm that computes Since Dijkstra’s algorithm does not favor the utilization

Single Source Shortest Paths for graphs with non-negative edge - . . "
and is based on the iterative extraction of nodes from a priority of multiple symmetric threads in any standard paralleiorat

queue. This property limits the explicit parallelism of the algo- Scheme (e.g. data-parallel, task-parallel, pipeline),ehebo-
rithm and any attempt to utilize the remaining parallelism results rate on the concept dfielper Threads (HT]8], [9] and test

in signi_ficant slowdowns due to synchronization overheads. To whether the incorporation of helper threads is a good gjyate
deal with these problems, we employ the concept of Helper i, hroyide performance speedups. The key idea is to employ a

Threads (HT) to extract parallelism on a non-traditional fashion b f threads that will offload fi f th :
and Transactional Memory (TM) to efficiently orchestrate the humber or threéads that will oftload operations from thé main

concurrent threads’ accesses to shared data structures. Relts thread in a transparent way. . o
demonstrate that the proposed implementation is able to achieve =~ To amortize the cost of excessive synchronization, we

performance speedups (reaching up to 1.84 for 14 threads), employ Transactional Memory (TM)10], [11]. TM is a
indicating that the two paradigms could be efficiently combined. ,5yq| programming model for multicore architectures that
allows concurrency control over multiple threads and isiggt
I. INTRODUCTION adopted by the industry, as it is demonstrated by Sun’s cpmin
processor Rock [12] or Intel's STM [13]. The programmer
Parallel programming is a very intricate, yet increasinglig offered the capability to envelop parts of the code within
important, task as we have entered the multicore era and margransaction, indicating that some of the memory accesses
cores are made available to the programmer. Although sepaiia this code segment may be performed by other threads as
applications or independent tasks within a single appticat well. The TM system monitors the transactions of the threads
can be easily mapped on multicore platforms, the sameasd if two or more perform conflicting memory accesses,
not true for applications that do not expose parallelism iniga decides how to handle this conflict. The common case
straightforward way. Dijkstra’s algorithm [1] is a challging is to allow one thread to commit its transaction and restart
example of such an application that is difficult to accekerathe transaction(s) of the other conflicting thread(s). le th
when executed in a multithreaded fashion. It is a fundamentase of non-conflicting transactions, TM systems perforen th
algorithm applied to compute single source shortest pathgpropriate accesses with (almost) no overhead. TM seems a
(SSSP) for graphs with non-negative edges and is used ipr@mising approach which increases programmability while
variety of applications, like network routing or VLSI desig being capable of providing performance gains through the
Dijkstra’s algorithm iteratively extracts one node from @&oncept of optimistic parallelism. Therefore, if for a give
min-priority queue and performs relaxations to this nodefgroblem the threads access the same memory location too
neighbors. To preserve the semantics of the algorithm tharely, then locking seems a pessimistic exaggerationjngak
extractions must be performed sequentially, a fact thaittye TM a more appropriate approach. Lately, TM’s usage in the
prohibits efficient parallelization [2], [3]. Straightfeard par- parallelization of specific algorithms has attracted ddien
allelism can be sought in the relaxation of the neighboraftention [14], [15], [16], as its potential on the speeddp o
but this approach leads to significant performance slowdpwmeal-world applications is still under investigation.
since the threads need to synchronize their concurrensatoce The evaluation of our scheme demonstrates that the
shared data very frequently [4]. Its fundamentally ser&line combination of the aforementioned approaches can provide
has led researchers to seek performance through significgpe¢edups, while requiring only a few extensions to the oaigi
modifications of the algorithm [3], [5], [6], [7]. Howevemi source code. The rest of the paper is organized as folloves: Se
this work we adhere to the original version and attempt ton Il discusses the basics of Dijkstra’s algorithm. Sactill
improve its performance by utilizing the capabilities gowd presents our scheme while Section IV presents its evatluatio
by modern multicore processors. To this direction, we needRelated work is presented in Section V and Section VI

(a) Min-priority queue as a binary heap. (b) Conflicting concurrent updates. (c) Non-conflicting concurrent updates.

Fig. 1: Min-priority queue andecr easeKey operations.

summarizes the paper and discusses future work directions. The algorithm involves a two-level nested loop. The outer

loop iterates over all the nodes and each time extracts the

one closest to the settled set. It clearly prioritizes thdeso
Dijkstra’s algorithm solves the SSSP problem for a directethd thus, is inherently serial. The inner loop relaxes the

graph with non-negative edge weights. Specifically,det= neighbors of the extracted node. The order of the relaxsigon

(V,E) be a directed graph with = |V| vertices,,m = |E| irrelevant and thus, this loop is conceptually parallelder,

edges, andv : E — R" a weight function assigning non-its operations includ®ecr easeKey, which means that the

negative real-valued weights to the edges(af For each threads may need to modify the binary heap concurrently.

vertex v, the SSSP problem computégv), the weight of Fig. 1b depicts how the parallel relaxations of two nodes

the shortest path from a source vertexo v. The weight can lead to conflictingDecr easeKey operations. In this

of the path is the sum of the weights of its edges»Ifs example, the relaxation of nodecauses its traversal to the

not reachable froms, then §(v) = oo. For each vertexs, root of the heap. Ifj is relaxed in parallel, a conflict arises as

Dijkstra’s algorithm maintains ahortest-path estimatgor it tries to travel through the parts of the heap thataverses.

tentative distanded(v), which is an upper bound for the Agoritm 1; Dijksuas algorithm.

actual weight of the shortest path frosmto v, d(v). Initially, Input__: Directed graptG; = (V, E), weight functionw : £ — R+,

d(v) is set toco and through successive edge relaxations it is source vertexs, min-priority queueq

gradually decreased, convergingd). The relaxation of an ~ OUPut : shortest distance arraj, predecessor aray

. . /* Initialization phase */

edge(v,w) setsd(w) to min{d(w),d(v) + w(v,w)}, Which 1 foreachv € v do

means that the algorithm tests whether it can decrease the d[v] — INF;

Il. THE BASICS OFDIJKSTRA' S ALGORITHM

weight of the shortest path fromto w by going throughs. 5 1oy (Q.v):
The algorithm maintains a partition &f into settled queued 2 Zr[ld] o

and unreachedvertices. Settled vertices hav&v) = §(v); _ .
/* Main body of the algorithm */
queued havel(v) > d(v) and d(v) # oo; unreached have 7 while @ # 0 do

_ L . _ 8 «— ExtractM n(Q);
d(v) = co. Initially, only s is queuedd(s) = 0 and all other 5 %reachvadjacem to o

vertices are unreached. In each iteration of the algorithm, 10 sum — d[u] + w(u, v);
vertex with the smallest shortest-path estimate is saleite 11 if d[v] > sum then _

N . 2 Decr easeKey(Q, v, sum) ;
state is permanently changed to settled and all its outgoing d[v] — sum;

edges are relaxed, causing any of its neighbors that wﬁe end o] = u

unreached by the source vertex until this point to becomgend

queued. The algorithm is presented in more detail in Alg. 1. To preserve the semantics of the algorithm, we need to syn-
The basic data structure lying at the heart of Dijkstrashronize the threads’ accesses to the heap. In [4] we eealuat

algorithm is a min-priority queue of vertices, keyed by theitwo multithreaded versions of the algorithm, one based on a

d(-) values. The queue maintains all but the settled Vel’ticesafarse-grain synchronization scheme which locks the eentir

the graph. At each iteration, the vertex with the smallest kinary heap and one based on a fine-grain synchronization

is removed from the queudxXt r act M n operation) and its scheme where the threads lock pairs of nodes. Note that,

outgoing edges are relaxed, which could result to redustiogpart from the synchronized accesses to the priority qubee,

of the keys of the corresponding neighboBe¢r easeKey threads need to synchronize further (e.g. with a barriethat

operation). To amortize the time complexity of these opegnd of their parallel relaxation phase, in order for the aiea

ations, the min-priority queue is implemented as a binagy proceed correctly to the next iteration of the outer Iddpe

heap. Thus, @ecr easeKey operation on a relaxed nodeto this excessive synchronization, both versions extdii@or

involves an upward traversal of the heap with consecutiy@rformance, motivating us to look for alternatives.

parent-child swaps, until the node reaches its correctipasi

which satisfies the min binary heap’s property, i.e. alldtgh Ill. SPEEDING UPDIJKSTRA'S ALGORITHM

have a key value larger or equal to that of their parent. An This section presents our scheme for parallelizing Digstr

example is shown in Fig. la. algorithm. It tries to deal with the two major problems, thek

extract-min [l read tid"-min relax outgoing edges
——————— Time----p

step k step k+1 step k+2

Thread 1 |

PuE]

i

Thread 2

Thread 3

Thread 4

Fig. 3: Execution pattern of the HT scheme.

using now the correct distance. In this case, the helpeadise
Fig. 2: Example of HT scheme’s functionality. work has been wasted. On the contrary, the distances fosnode
D and E will not change, as they obtained their minimum
value in thei — 1 step. Thus, in step the helper threads relax
A. Extracting more parallelism their neighbors correctly and when the main thread extracts

As discussed in Section II, explicit parallelism existsyonl them it will not have to perform any relaxations.
the inner loop of Dijkstra’s algorithm. Our goal is to coarse In our implementation, the main thread operates like in the
the granularity of parallelism as in [3], [6], [7], withottdugh ~Sequential versionextractingin each iteration the minimum
changing the algorithm itself. Thus, instead of partitrgnthe vertex from the priority queue and relaxing all its outgoing
inner loop and assigning only a few neighbors to each thre&flges. At the same time, theth helper threadeads the
we parallelize the outer loop by assigning the relaxatiom oftentative distance of thé-th vertex in the queue (let us call
Comp|ete set of neighbors to each thread. it Tk for short) and attempts to relax its outgoing edges

We specifically exploit the following basic property oftased on this value. When the main thread accomplishes
Dijkstra’s algorithm: the relaxations lead to monotoniigal all its relaxations, it notifies the helper threads to stopirth
decreasing values for the distances of unsettled nodebk ufglaxations, and they all proceed to the next iteration.sThi
each distance reaches its final minimum value. As long ag%ecution pattern is illustrated in Fig. 3.
node is inserted in the queued set (i.e. its distance ffoim This orchestration by the main thread has a potential draw-
not infinite) its neighbors can also be relaxed to newer wgatiatack. It is possible, that at this point a helper thread might
values. This property is not utilized by the original algom, have updated only some of the neighbors of its vertgx
which avoids calculating intermediate distances that eviin- leaving the rest with their old, possibly suboptimal, distas.
tually be overwritten by updating only the neighbors of th&s explained above, however, this is not a problem since all
extracted node. Our key idea is that parallel threads care sefeighbors ofz; with suboptimal distances will be correctly
asHelper Threadsand relax neighbors of nodes belonging te/pdated when,. reaches the top of the priority queue.
the queued set. Optimistically, the load correspondingtoes
of these relaxations will be taken off theain thread

The rationale behind our scheme is that vertices occupy-In our scheme the threads need to access the binary heap
ing the top k positions in the queue might be, with somes well as the data structures that implement the graphs(line
probability, already settled. When the helper threads re&@-14 in Alg. 1) in parallel. For efficient concurrency canhtr
their distances and relax their outgoing edges, there igla hive propose the use of Transactional Memory.
probability they will set their neighbors to settled as well A TM system allows non-conflicting updates, like those
Thus, when the main thread checks these vertices latersliown in Fig. 1c, to occur in parallel with no overhead. At
will avoid any further relaxations. On the contrary, if appel the same time, it guarantees atomicity, which means that if
thread reads a node that has not been settled yet, it willtapda conflict arises, it will allow one of the threads to update
its neighbors to suboptimal tentative values. When, thotigh, the heap (e.g. perform the traversal of nodén Fig. 1b)
node is extracted by the main thread later on, all its outgoinvhile the rest will have to repeat their work (e.g. relax
edges will be re-relaxed using the correct final distance. node j in Fig. 1b). To implement this, we enclose each

This is illustrated in Fig. 2, where théth iteration of DecreaseKey operation within a transaction using the ap-
the outer loop is depicted. In the previous step, nddeas propriateBegi n- Tr ansact i on andEnd- Tr ansact i on
extracted and its neighbors were relaxed to the values showrimitives, as shown in Alg. 2 and Alg. 3 for the main and
In the current step, the main thread extracts néjewhile helper threads respectively.
the helper threads are assigned the next three nodes in thim the beginning of each iteration, the main thread extracts
priority queue, namely’, D and E. Thus,C’s neighbors will the top vertex from the queue. At the same time, the helper
be relaxed using valug). However, at the end of this stefi;s threads spin-wait until the main one has finished the extnact
distance will be updated tor by the main thread. In stepr1 and then each one reads —without extracting— one of the
the main thread will extract’ and relax again its neighborstop & vertices in the queue (implemented by tReadM n

of sufficient explicit parallelism and the synchronizatiwosts.

B. Efficient Concurrency Control

function). Next, all threads relax in parallel the outgoings too difficult and error-prone to develop a fine-grain laoaki
edges of the vertices they have undertaken. Compared to siseeme for these threads. The programmer would probably
original algorithm, a performance improvement is expectellave to use a series of locks in a composable fashion to
since, due to the helper threads, the main thread will et@luguard all the data structures that must be accessed atomical
the expression of line 7 in Alg. 2 as true fewer times and thu@ines 7-10 in Alg.2). This is a quite intricate task, since
will not need to execute the operations of lines 8-10. correctness requires avoiding potential deadlocks ololokes,

Algorithm 2. Main thread’s code.

while efficiency requires avoiding serialization of ac@ssas
much as possible. On the other hand, this functionality is

; WhlleuQ:éE?(tdroact Mn(Q); achieved easily with TM, just by enclosing the critical $ect

S e acent to o in onetransaction, as shown in Alg. 2 and Alg. 3.

5 sum — d[u] + w(u, v); Even if such a complex locking scheme was implemented,
6 Begin-Transaction it would incur a very high overhead on non-conflicting par-
273 ' d[vD]eirsegew:;(Q,v,sum): allel accesses. This would be acceptable if the majority of
9 d[v] — sum; concurrent accesses led to conflicts. However, in this wark w
19 Engr] = i show that the opposite is true. Therefore, the optimistianea

12 end of TM, where non-conflicting accesses are allowed to execute
ﬁ Sjgi:-za;';sacﬁon with no overhead, makes it a better solution.

12 end Enransacton IV. EXPERIMENTAL EVALUATION

Algorithm 3 Helper threads’ code.

A. Experimental setup

; whilewcg”r fogfé e The performance of the proposed scheme was evaluated
3 z + ReadM n(Q, tid) ; through full-system simulation, using the Wisconsin GEMS
4 t — 0;

s for‘;gchy adjacent to sand while stop — 0 do tqolset v.2.1 [17], .[12.3] in con!unctlon Wl.th the $|m|cs' 031
6 Begin-Transaction simulator [19]. S_|m|cs provides functional simulation of a
7 if done = 0 then _ SPARC chip multiprocessor system (CMP) that boots unmod-

g f;“j[?y]:ﬂﬂ:ﬂ?;f’y)' ified Solaris 10. The GEMS Ruby module provides detailed
10 Decr easeKey(Q, y, sum) ; memory system simulation and for non-memory instructions
E fr[[’;]]:i’fm’ behaves as an in-order single-issue processor, executieag o
ﬁ else . instruction per simulated cycle.

15 i Hardware TM is supported in GEMS through the LogTM-

ﬁ . end SE subsystem [20]. It is built upon a single-chip CMP system

en

with private per-processor L1 caches and a shared L2 cache. |
Our scheme employs TM not only for the concurrerfeatureseager version managementhere transactions write
accesses to the various data structures, but for the oratiest the new memory values “in-place”, after saving the old value
of the helper threads as well. Specifically, when the main a log. It also supporteager conflict detectigras conflicts,
thread completes the relaxations for its vertex, it sets the. overlaps between the write set of one transaction a@d th
notification variabledone to 1 within a separate transaction.write or read set of other concurrent transactions, arectite
This value denotes a state where the main thread proceedattthe very moment they occur. On a conflict, the offending
the next iteration and requires all helper threads to stap amansaction stalls and either retries its request hopiag tte
follow, terminating any operations that they were perfargni other transaction has finished, or aborts if LogTM detects
on the heap. All helper threads executing transactionsisit th potential deadlock. The aborting processor uses its log to
point will abort, sincedone is included in their read sets.undo the changes made and then retries the transactionr In ou
Then they will retry their transactions, but there is a gooekperiments we used thdYBRI D conflict resolution policy,
chance that they will findlone set to1, stop examining the which tends to favor older transactions against younges.one
remaining neighbors in the inner loop and continue with theable | shows the configuration of the simulation framework.
next iteration of the outer loop. If the main thread happens
to perform theExtract M n operation too quicklydone
will be set back ta) and the helper threads will miss the last
notification, continuing from the point where they had stegpp [configurations up to 32 cores
This might yield suboptimal updates to the distances of the>™CS| Processor |y asparc il Cu (Ii+)
neighbors, but as explained above, these will be ovenritte Private, 64KB, 4-way set-associative,
once the vertices examined by the helper threads reachphe [to L1 caches | 648 line size, 4 cycle hit latency
of the queue. So, correctness is guaranteed. Unified and shared, 8 banks, 2MB, 4-way set-

. . . . - . iative, 64B line size, 10 cycle hit laten¢:
Employing TM instead of traditional locking primitivesei. associave ne Size, -7 cyce n areny

. N Memor 160 cycle access latenc
locks and barriers, offers two significant advantages:tFits Y Y eney .
TM System | HYBRID resol. policy, 2Kb HW signatures

TABLE I: Simulation framework.

Ruby | L2 cache

TABLE II: Graphs used for experiments where a the ratio of the main thread’Becr easeKey op-

| random [rmat [ssca | erations to those executed in the serial case. This is a&impl
E Ser. [Id. E Ser. [Id. E Ser. [1d. estimate and does not take into account the time spent iadhre
(K) | (%) | Sp. | (K) | (%) | Sp. | (K) | (%) | Sp. orchestration or delays due to conflicting transactionse Th
10 | 529 | 1.89 | 10 | 684 | 1.46| 28 | 450 2.22 . 1+d _
50 | 62.2 | 1.61| 50 | 588 | 1.70| 60 | 55.2 | 1.81 speedups could be approximated by = Traxd which
100 | 50.9 | 1.96 | 100 | 483 | 2.07 | 118 | 46.6 | 2.15 C ; ; a
00 T 2011 249 200 1 380 263 177 415 241 implies that s shoulid increase with the average out-degree
500 | 284 | 352 | 500 | 273 | 366 | 590 | 274 | 3.65 and thus, the density of the graph, explaining the results of
1000 | 22.6 | 442 | 1000 | 22.2 | 450 | 1157 | 22.4 | 4.64 Fig. 4. This figure also reveals that the speedup increases as

To avoid resource conflicts between our programs and fmore threads are utilized. This tendency reaches a maximum

operating system’s processes, we used CMP configurati(?r%m’ after which employmg more threads leads to a slight
with more processor cores than the number of threads R rformance degradation. The number of threads needed to

required. At the same time, each thread is bound to a specﬁlcc leve this maximum, is again related to the graph’s densit

processor to avoid migrations. Finally, all codes were ctedp . , .
with Sun's Studio 12 C compiler (O3 level). D. Interpretation of the HT scheme’s behavior
In this section, we attempt to gain a better insight into the

B. Reference graphs behavior of our scheme. We focus our study on one family of

In our evaluation we strived to work on graphs which var§raphs, the rmat, as the other families exhibit similar biha
in terms of density and structure. In that attempt, we used tAnd We select only three representative graphs with dritere
GTgraph graph generator [21] to construct graphs With density degrees; low (10K), medium (200K) and high (1000K).
vertices from theRandom R-MAT and SSCA#Zanmilies. Fig. 5 shows the distribution ddecr easeKey operations

To obtain an estimate of possible speedups, we profiled fPRfween the main and helper threads and compares them to
stand-alone execution of the main thread of our scheme #19seé performed in the serial case. As more threads are used,
each graph to calculate the extent of the sequential part. ¢ main thread'sDecr easeKey operations are reduced,
sequential we define the non-transactional part of the codistifying the performance improvement. However, not ad t
which includes mainly théExt r act M n operations. In the helper threads’ operations are useful, as illustrated gs.Fsb
ideal case where the helper threads would manage to offlGfl SC, where the total numberécr easeKeys is greater
all the relaxations of the main thread, the speedup would B@gn that of the serial case, explaining why the performance
%% Note that this is optimistic, since even in this cas80€s not keep improving. Interestingly, similar reducsian
the main thread would still have to check if any relaxatiores athe main thread’s operations are also achieved for the epars
required. In general, it constitutes a theoretical uppambdo 9raph, as it is shown in Fig. 5a. However, Fig. 4a shows that

for any performance improvement and is presented in Tablef this case the performance is actually degraded. This can

for each graph family. be attributed to the transactions’ abort rate, which is @efin
as the ratio of aborts to commits and is depicted in Fig. 6.
C. Performance results It is obvious, that for the sparse graph, the abort rate is

Fig. 4 presents the speedups achieved by our HT+TM bad8g Ih?ghf cau?ing alrlwyl_perforn;)ance im?rgvemer::s due tofthe
implementation of Dijkstra’s algorithm for our graph suitdne er:(p 0|tat|og of para ehlsmhto be cancele .OUt.'f. owleveeri,j 0
speedup obtained fgy threads is the ratio of the execution '€ More dense graphs, the a ort rate IS signi cantly r uce
time of the serial algorithm to the execution time with and thus, speedups are achieved. An important observation

threads,p — 1 of them being helper threads. The maximurmou,g,h' is that in any case the abor't rate of the main thread is
speedup i4.84, achieved for 4 threads in Fig. 4f. Considering significantly low, W_h'Ch means that it is not obstructed by th
the serial nature of the algorithm and the inherent diffiealin helper threads. This explains the_ robusiness of our schasne,
its parallelization, this is a significant performance gaiote " the worst case the slowdown is arounds.

also that the performance is strongly related to the density!'® Same conclusion can be derived from Fig. 7, where the
of the graph. In the serial case the execution time can B&ecution cycles of the main thread are depicted. The non-
estimated as follows: transactional cycles remain stable for each graph, as gy r

resent the time spent dixt r act M n operations, which are
Tseriar = n x O(Ign) +d x n x O(lgn) (1) not affected by our scheme. The addition of helper threads re
duces the time spent in transactions, i.e. the parallelgfartr
stcheme, since the main thread executesDess easeKeys,
Sti .
as shown before. The overhead cycles represent the time

mates the time spent dbxt r act M n operations, while the : : -
. . spent in aborts or stalls caused by transaction conflicts Th
second part approximates the time spentDecr easeKey
overhead is relatively small, illustrating once again ttia

operat_lons. Similarly, th.e execution time of our scheme can . read is not hindered by the helper threads.
be estimated as follows:

To gain a better understanding of the wasted work due to
Tur =nx0(gn)+axdxnxO(gn),a<1 (2) transaction aborts, Fig. 8 plots the percentage of the total

wheren denotes the number of vertices in the graph @nd
the average out-degree of the nodes. The first part of () e

(a) 10Kx10K (b) 10KX50K () 10Kx100K

14 T T T T T 14 T T T T T 14 T T T T T
rand-helper —&— rand-helper —&— rand-helper —&—
rmat-helper —6— rmat-helper —6— rmat-helper —6—
ssca-helper —+— | ssca-helper —+— | ssca-helper —+— |
13 13 13
o o =
: = 3
3 12 % 12 3 12
@ @ Q
o o o
& & n &
2 11 2 11k e == =3 2 11
3 : | 3
= = =
ES 1 ES 1 E 1
S S S
E] M%e\e_o E 2
0.9 i ST 0.9 0.9
gl v gl v ol vy
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of threads Number of threads Number of threads
(d) 10Kx200K (e) 10Kx500K (f) 10Kx1000K
19 —— — 19 — 19— 77777
rand-helper —8—
18 rmat-helper —e— | 18 18 o = S = = = = e = 2]
seober —— PP
. 17 . 17 o 17
5 E W%ﬁ E
o 16 o 16 o 16
@] o
g g Wﬂ g f
5 15 5 15 5 15
@ (0] @
- /E/H—EM s L. / £ . J/
g e e s | A g 44
S £ s
£ 13 £ 13 £ 13
] ¢/] 3
12 7 1.2 12
rand-helper —8— rand-helper —8—
11 11 rmat-helper —e— 11 rmat-helper —e— 7
— Jl) sscashelper T e sscashelper T
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of threads Number of threads Number of threads

Fig. 4: Multithreaded speedups for graphs of different dgns

(a) 10Kx10K (b) 10Kx200K (c) 10Kx1000K

e
140 HT-main —k—
HT-helper —¢—
120 T-all ——

80 \
60 %
40 ><
R

e
140 HT-main —k—
HT-helper —¢—
120 T-all —— 1

100 \
80 ;{\
60

wl K
Y/MHHH*HH

-
140 HT-main —k—
HT-helper —¢—
120 T-all —— 1

100 \
80 ;&
60

ol XK
4

20

% DecreaseKey ops w.r.t. serial execution

% DecreaseKey ops w.r.t. serial execution

% DecreaseKey ops w.r.t. serial execution

20 / RS eCS
0 P S 0 e 0 . P S R S S
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of threads Number of threads Number of threads

Fig. 5: Distribution ofDecr easeKey operations between the main and helper threads.

(a) 10Kx10K (b) 10Kx200K (c) 10Kx1000K
30 T T T T T T T T T 35 T — — — 0.8 T — — —
overall — foverall — W
ain thread s o _ imain thread = 0.7 | main thread o
25 - — 3 g i I -
25 1 06 M M
20 .l 05
o o o - 7
& g 2 '
= 15 o z z 04 s
g s s 1 5
< < < 03 il
10 T
tr] 02t 4
5t 1 05 - . 01l i
0l= 0 0 B
2 4 6 4 6 8 6

Nl
Nl

8 10 12 14 16 18 20 22 24 26 28 30 32 10 12 14 16 18 20 22 24 26 28 30 32 4 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of threads Number of threads Number of threads

Fig. 6: Overall and main thread transaction abort rates.

cycles spent by all threads in aborted transactions wither@s size of the transactions’ write sets. The larger the writs,se
to the total number of cycles spent in successfully comuhittehe higher the probability of a conflict. Table Il presentg t
transactions. Again, for graphs of medium or high densityange of the average write set size of all transactionsthege
the amount of wasted work is relatively small, justifyingeth with that of the transactions that envelop tbecr easeKey
observed speedups. On the contrary, a lot of work is wasteperations. Note that the average sizes are quite smalinipa
for the sparse graph, explaining the absence of performaricea low probability for conflicts. These findings confirm that
improvements in this case. due to its optimism, TM is a better approach than locks for the

In general, the small amount of wasted work shows thipplementation of our scheme, as explained in Section lII-B

most of the concurrent accesses to the shared data stucturéinally, Fig. 9 compares the cycles the main thread needs
are non-conflicting. The number of aborts depends also on floe every 100 iterations of the algorithm’s outer loop foagh

(a) 10Kx10K (b) 20Kx200K (c) 10Kx1000K

166407 | fORAT CYCIES] 6e+07 [T T T ot Cycles —— 1.60+08 [fOTEI CYCIES ——

lnon-xact cycles — lnon-xact cycles — non-xact cycles —

act cycles | | act cycles —— act cycles | |
1.4e+07 act overhead cycles — 5e+07 \\‘\H_._Ht% H 1.4e+08 act overhead cycles —
126407 [T e gt S 1.2e+08

4e+07

1le+07 le+08

8e+06 3e+07 8e+07

6e+06 6e+07

2e+07 .

Main thread cycle breakdown
Main thread cycle breakdown
Main thread cycle breakdown

4e+06 4e+07

1le+07 al

2e+06 2e+07 H 1

0 0
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of threads Number of threads Number of threads

Fig. 7: Breakdown of main thread’s total cycles: non-tratismal (non-xact), transactional (xact) and overheadt(zaerhead).

(a) 10Kx10K (b) 10Kx200K (c) LOKX1000K

T 120 T 120 T
act cycles —— act cycles —— act cycles ——
act overhead cycles —— act overhead cycles —— act overhead cycles [

[
)
[S]

=
Q
<]

100 100

@
S3

80 H | 80

o
o

60 [al 60

I
S

40 1 40 H

n
o

20 H al 20 r

%Cycle breakdown for average transaction
%Cycle breakdown for average transaction
%Cycle breakdown for average transaction

o

0 = 0
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of threads Number of threads Number of threads

Fig. 8: Percentage of useful (xact) and wasted (xact ovejhteansactional cycles.

Avg. write-set Avg;.iszHftgr-set Max g | | | HTseznl?I |
Densit Vbl write-set z i tipf—
g size Decreaseley | "gize b
g
S 25e+06
10K 1.31-3.14 12.44 - 20.02 28 - 31 o
Q
50K 1.16 - 2.07 8.26 - 12.08 29 -31 % 2e+06
©
100K 1.08 - 1.71 7.84 - 10.79 28 - 30 é 1.5e+06
200K 1.04 - 1.52 7.66 - 9.83 28 - 31 E
E 1e+06
500K 1.02 -1.20 7.54 - 8.81 27 - 31 §
1000K 1.01 - 1.12 7.67 - 8.68 29 - 36 s 5000
TABLE IlI: Write-set size. %o 2000 4000 6000 8000 10000

Outer loop iterations

Fig. 9: The timeline of execution.

rmat-10Kx200K, when running in parallel with 0, 1, 3 and 13

helper threads. The first observation is that the majority gf concurrent priority queue which is based on binary heaps
the execution time is spent on the first 30% of the iterationgnq supports parallel Insertions and Deletions using fiagg
The second observation is that as the algorithm proceeds, {king on the nodes of the binary heap. Since these opaatio
available parallelism is reduced and the gains from the @ise, not traverse the entire data structure, local lockingdea
more helper threads are negligible. In fact, for the last Zog%rformance gains. However, in the caseDefcr easeKey
of the iterations, the main thread spends the same amounifich performs wide traversals of the data structure it degs
time both in the serial case and with 13 helper threads. Tlggagormance greatly, unless special hardware synchriiza
motivates us to explore adaptive schemes, where the numgeg,pported by the underlying platform.
of helper threads will be dynamically adjusted. To expose more parallelism, it would be beneficial to
concurrently extract a large number of nodes from the pyiori
gueue. This can be achieved if several nodes have equal
A significant part of Dijkstra’s execution is spent in updatedistances from the set of visited nodes. Thus, if the priority
in the priority queue. Therefore, enabling concurrent ases queue is organized into buckets of nodes with equal dist&ance
to this structure seems a good approach to increase pertben the extraction and neighbor updates can be done in
mance. Brodal et al. [2] utilize a number of processors fmarallel per bucket (Dial's algorithm [5]). A generalizati
accelerate th®ecr easeKey operation and discuss the ap-of Dial's algorithm calledA-stepping is proposed by Meyer
plicability of their approach to Dijkstra’s algorithm. Hewer, and Sanders [3]. Madduri et al. [7] usk-stepping as the
this work is evaluated on a theoretical Parallel Random sgcebase algorithm on Cray MTA-2. In the Parallel Boost Graph
Machine (PRAM) execution model. Hunt et al. [22] implemenitibrary [6] Dijkstra’s algorithm is parallelized for a dr#buted

V. RELATED WORK

memory machine where the priority queue is distributed in REFERENCES
the local memories of the system nodes. The aforementionf| 1 cormen, C. Leiserson, R. Rivest, and C. Steintroduction to
approaches are based on significant modifications to Dijk- Algorithms The MIT Press, 2001.

stra’s algorithm to enable coarse-grain parallelism aad ke 2] G- Brodal, J. Traff, C. Zaroliagis, and I. Stadtwald, “allel prior-
.. lel i | . In thi dh ity queue with constant time operations)’ Parallel and Distributed
promising parallel implementations. In this paper we adher Computing vol. 49, pp. 4-21, 1998.

to the pure Dijkstra’s algorithm to face the challenges of it [3] U. Meyer and P. Sanders, “Delta-stepping: A parallegtgrsource short-

parallelization and test the applicability of TM and HT. est pai agonthm.” IrProc. Gth Ann. European Symp. on Algorithms
TM has attracted extensive scientific research during tte lajy ,(\, Anast)opouk',& K. Nikas, G. Goumas, and N. Koziris, ‘a@xperi-

few years, focusing mainly on its design and implementation ences on accelerating dijkstra’s algorithm using trarsaat memory,”

details. Nevertheless, its efficacy on a wide set of real- non in Proc. 3rd Workshop on Multithreaded Architectures and Aqations
L) . . ! . ' (MTAAP’09) 2009.

trivial applications is only now starting to be exploredo8®@t |5 R. Dial, “Algorithm 360: Shortest path forest with topgjical ordering,”

al. [15] use TM to parallelize Delaunay triangulation, Vdats Communications of the ACMol. 12, pp. 632-633, 1969.

o ;) ; - [6] N. Edmonds, A. Breuer, D. Gregor, and A. Lumsdaine, “Sirgperce
et al. [14] eXp|OIt It to parallellze Lee’s routing algomh shortest paths with the parallel boost graph library,"Stth DIMACS

and Kang and Bader [16] employ it for computing minimum mplementation Challenge — The Shortest Path Prob2o06.
spanning forests of sparse graphs. [7] K. Madduri, D. Bader, J. Berry, and J. Crobak, “Parallélogest
path algorithms for solving large-scale instances,” 9th DIMACS
Implementation Challenge — The Shortest Path Prob2096.
VI. CONCLUSIONS- FUTURE WORK [8] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y. Lee, Cavery,
. . .. , and J. P. Shen, “Speculative precomputation: Long-rangéetphéng
) In this .WOI‘.k, we attempt '[.O parallellze .D”kStraS algo- of delinquent loads,” inProc. 28th Ann. Int'l Symp. on Computer
rithm, which is known to be inherently serial. Our scheme Architecture (ISCA'01)2001.
utilizes the notion of “Helper Threads” (HT) to offload the [8] W. Zhang, B. Calder, and D. Tullsen, "An event-driven nitblteaded

in th db lativel ti tabl ti f dynamic optimization framework,” ifProc. 14th Int’l Conf. on Parallel
main threa y Speculatively executing a notable portion ol architectures and Compilation Techniques (PACT,0X)05.

its Decr easeKey operations. For the implementation, weg10] M. Herlihy and E. Moss, “Transactional memory: Architertl support
choose to employ Transactional Memory (TM), not only for for lock-free data structures,” ifroc. 20th Ann. Int'l Symp. on Computer

it " bility. but al for it t hi Architecture (ISCA'93)
its ease of programmability, but also for its nature, whicfj;; A adi-Tabatabai, C. Kozyrakis, and B. Saha, “Unlockinoncurrency:

allows to explore any optimistic parallelism inherent inrou Multicore programming with transactional memomCM Queuevol. 4,

scheme. The evaluation revealed that the proposed scheme no. 10, pp. 24-33, 2006. _ _
[12] M. Tremblay and S. Chaudhry, “A third-generation 65nmcte 32-

!S able to prqwde S|gmf|9am speedups (reaching up.&d) thread plus 32-scout-thread CMT SPARC processoirioc. Int’'l Solid
in the majority of the simulated cases. The results further State Circuits Conf. (ISSCC '082008.

confirmed the existence of optimistic parallelism, justify [13] B. Saha, A-R. Adl-Tabatabai, R. L. Hudson, C. C. Minmda
the selection of TM B. Hertzberg, “Mcrt-stm: a high performance software tratieaal

] .) o memory system for a multi-core runtime,” iRroc. 11th Symp. on
An important outcome of this work is the indication that Principles and Practice of Parallel Programming (PPoPP)0@006.

the TM mechanism could be efficiently Ieveraged for th@4l I Watson, C. Kirkham, and M. Lujan, "A study of a transac@l parallel
routing algorithm,” inProc. 16th Int'l Conf. on Parallel Architecture and

implementation of speculative multithreading, as it isoals compilation Techniques (PACT'Q73007.
discussed in [23]. We feel that studying the combination @f5] M. L. Scott, M. F. Spear, L. Daless, and V. J. Marathe, [4D@ay

these two models is extremely important, especially as new triangulation with transactions and barriers,” lIBEE Intl. Symp. on
y P P y Workload Characterization (IISW'07R007.

systems are coming that will provide support for TM[12]. [16] S. Kang and D. A. Bader, “An efficient transactional mematyorithm
As future work, we will investigate the application of this for computing minimum spanning forest of sparse graphsProc. 14th
technique on other algorithms solving the SSSP problenfy suc Sgg;p on Principles and Practice of Parallel Programming¢PP’09)

as A'Stepping and Bellman-Ford. We also aim to explore tl’l@n M. M.artin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alam@¢en,
impact of various TM characteristics, such as the resalutio K. Moore, M. Hill, and D. Wood, “Multifacet's general exedni-driven

policy, version management and conflict detection, on the m“'“procegszorgsgimzuc')%tor (gems) toolseBbmput. Archit. Newsvol. 33,
’ ’ no. 4, pp. 92-99, 5.
performance of our scheme. Moreover, results demonstrajeg] “wisconsin multifacet gems simulator,” http://www.csse.edu/gems/.

interesting variations in the available parallelism bedwe [19] P. Magnusson, M. Christensson, J. Eskilson, D. Forsg@ Hallberg,
different execution phases, motivating us to explore more J- Hogberg, F. Larsson, A. Moestedt, and B. Werner, “SimicsuiA
. . system simulation platformComputer vol. 35, no. 2, pp. 50-58, 2002.
adaptive schemes in terms of the number of parallel threag®; | ven, J. Bobba, M. Marty, K. Moore, H. Volos, M. Hill, MSwift,
Finally, we aim to further explore the integration of the and D. Wood, “Logtm-se: Decoupling hardware transactionainorgy

; ; from caches,”Proc. 13th Int'l Symp. on High Performance Computer
two programming models, namely Transactional Memory and Architecture (HPCA'07) 2007.

Speculative Multithreading. [21] D. Bader and K. Madduri, “Gtgraph: A suite of syntheticagh
generators,” 2006, http://www.cc.gatech.eckemesh/GTgraph/.
ACKNOWLEDGEMENTS [22] G. Hunt, M. Michael, S. Parthasarathy, and M. Scott, “afficient

algorithm for concurrent priority queue heapsif. Proc. Lettersvol. 60,
The experiments were executed on hardware platforms, PP 151127, 2996 .
| ided by Intel Hellas S.A. Thi K E%] L. Porter, B. Choi, and D. Tullsen, “Mapping out a patbrfr hardware
generously provided Dy Intel Feflas S5.A. ThiS WOrk Was SUp- -~ transactional memory to speculative multithreading, Pioc. 18th Int'l
ported by the Greek Secreteriat of Research and Technology Conf. on Parallel Architectures and Compilation Technigi(®ACT'09)
(GSRT) and the European Commission under the program 2009 —in press.

05AKMWN95.

